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Introduction: Head and neck squamous cell carcinoma (HNSCC) frequently
invades the jaw, and surgical treatment often leads to bone defects requiring
reconstruction with titanium plates. To enhance the anti-tumor and bone
regeneration properties of titanium, a selenium-modified hydroxyapatite
coating was developed on titanium surfaces.

Methods: Selenium-modified hydroxyapatite coatings was fabricated using
micro-arc oxidation (MAO). The coating properties were characterized by
SEM, XPS, AFM, Contacting angle test and ICP-OES. Cell proliferation assays
were performed using rBMSCs and Cal27 cells. The osteogenic potential of the
materials was assessed via ALP and OCN immunofluorescence staining and
quantitative polymerase chain reaction (qPCR). Apoptosis in Cal27 cells was
analyzed through flow cytometry, and ROS levels in rBMSCs and Cal27 cells
were measured using ROS fluorescent probes.

Results: A coating was successfully formed on the surface of titanium with a
porous structure via MAO. The atomic percentages of calcium, phosphorus and
selenium on the coating surface were 42.47%, 45.43% and 12.3%, respectively,
and the ion components could be released steadily and slowly. In vitro, 0.2 µg/mL
selenium had toxic effects on Cal27 and promoted osteogenic differentiation of
rBMSCs. PCR showed that selenium increased the expression of genes related to
osteogenic differentiation of rBMSCs by 3–5 times. ROS detection found
differences in intracellular ROS content between Cal27 and rBMSCs.
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Discussion: By incorporating selenium-modified coatings, titanium implant
materials can simultaneously promote osteogenesis and inhibit tumor growth,
offering a promising strategy for postoperative functional recovery in HNSCC
patients.
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1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is one of the
most prevalent malignant tumors, characterized by aggressive and
invasive growth (Chuang et al., 2008; Buim et al., 2010; Li et al.,
2023). Statistics indicate that approximately half of HNSCC cases
involve invasion into adjacent jaw tissue (Brown et al., 2002; Jo et al.,
2017). Currently, surgery remains the primary treatment for
HNSCC, frequently requiring extensive resection of the tumor
and affected jaw (Chamoli et al., 2021). However, jaw resection
not only significantly compromises the patient’s quality of life but is
also associated with a poor prognosis. Studies have shown that the
survival rate of patients with jaw invasion after surgery is markedly
lower than that of patients without bone invasion (DeAngelis et al.,
2019). The free fibular flap has become the standard of care, and its
combination with bridging plates effectively restores jaw
morphology (Kammerer and Al-Nawas, 2023). Nevertheless, it is
associated with certain risks, including prolonged operation
duration and complex preparation processes, and while it
primarily addresses bone defect repair, a considerable risk of
recurrence persists following tumor resection. Consequently,
researchers have begun to investigate biomaterials capable of
simultaneously repairing bone defects and inhibiting tumor
recurrence.

Hydroxyapatite (HA) is the primary inorganic component of
bones and teeth, recognized for its superior biocompatibility and
bioactivity compared to other materials (Fendi et al., 2024). HA
surface modification of prosthetic metal implants is widely used
to enhance bone stability (Zhang et al., 2019; Popkov et al., 2023).
Notably, HA can be functionalized with ion substitutions to
improve its reparative properties (Salam and Gibson, 2022).
For instance, doping with magnesium, strontium, or zinc ions
enhances bone regeneration (Hou et al., 2023). The incorporation
of silver ions imparts localized antimicrobial capabilities
(Ivankovic et al., 2023; Piecuch et al., 2023). Similarly, the
addition of cerium ions provides effective anti-inflammatory
and antioxidative effects (Kim and Kim, 2022). Recent studies
have demonstrated that introducing anionic selenium into HA
can effectively inhibit osteosarcoma (Barbanente et al., 2021;
Huang et al., 2024). While selenium frequently exerts an
inhibitory effect on cancer when used in conjunction with
chemotherapeutic agents, often resulting in a systemic
response (Zhang et al., 2024). Thus, selenium-modified HA
coatings on titanium implants not only inhibit HNSCC, but
also achieve the effect of reducing systemic reactions. This
approach offers a promising strategy for restoring bone
continuity and reducing local recurrence in postoperative
HNSCC patients.

Micro-arc oxidation (MAO) enhances the biocompatibility of
materials by applying high voltage to induce an oxidation reaction
on the anodized metal surface, forming a ceramic-like oxide film
(Sheng et al., 2022). Our previous studies successfully utilized MAO
to create ceramic coatings on titanium surfaces incorporating
magnesium and zinc ions (Li et al., 2020a; Zhou et al., 2022; Yu
et al., 2023). Historically, MAO research has primarily focused on
the incorporation of specific cations into metal surfaces, with
relatively limited exploration of anion incorporation. In this
study, selenite was successfully introduced into the titanium
surface coating by optimizing the electrolyte composition and
instrument parameters, enabling an investigation of its osteogenic
and anti-tumor properties.

To our knowledge, no experimental studies have investigated
selenium-doped hydroxyapatite for head and neck squamous cell
carcinoma (HNSCC), nor has there been substantial research on
incorporating anions into titanium surface coatings via micro-arc
oxidation (MAO). In this study, selenite was successfully
incorporated into a porous hydroxyapatite coating on titanium using
MAO. The resulting selenium-modified coating exhibited excellent
structural properties and biocompatibility, effectively inhibiting
HNSCC growth and promoting bone regeneration. Using human
tongue squamous cell carcinoma cell lines and rat mesenchymal
stem cells, the anti-tumor and osteogenic effects were further
explored in vitro, offering a promising material for postoperative
repair in patients with jaw invasion by HNSCC.

2 Materials and methods

2.1 Sample and coating preparation

Round pure titanium plates (10mm in diameter, 1 mm thick, TA1)
were used as substrates for the porous coating. The oxide layer on the
titanium surface was removed using abrasive paper, followed by
sequential ultrasonic cleaning with acetone, anhydrous ethanol, and
deionized water for 5 min each. For the experimental group
(SeHAMAO), the electrolyte consisted of 0.05 mol/L calcium acetate
monohydrate (C4H6CaO4·H2O, Aladdin, Shanghai, China), 0.02 mol/L
sodium β-glycerophosphate pentahydrate (C3H7Na2O6P·5H2O,
Aladdin, Shanghai, China), and 0.01 mol/L sodium selenite
(Na2SeO3, Aladdin, Shanghai, China). The negative control group
(HAMAO) used the same electrolyte without sodium selenite.
Porous ceramic coatings were applied to the titanium plates using
micro-arc oxidation (MAO, WHD-20, Harbin, China). The MAO
process was performed under a constant current of 0.8 A for 8 min,
with a pulse frequency of 1,000 Hz and a duty cycle of 10%. After
treatment, the samples were rinsed with deionized water and air-dried.
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2.2 Characterization

The surface morphology and elemental distribution of the
coatings were analyzed using scanning electron microscopy
(SEM, ZEISS Gemini SEM 300, Germany). The chemical
compositions of the HAMAO and SeHAMAO coatings were
determined by X-ray photoelectron spectroscopy (XPS, Thermo
Fisher Nexsa, United States). Ionic components of the coatings and
electrolytes were quantified using inductively coupled plasma optical
emission spectroscopy (ICP-OES, Agilent 5,110, United States). The
wetting properties of the coating surfaces were measured with a
contact angle meter (SDC-350KS, China), and surface roughness
was evaluated using atomic force microscopy (AFM, Bruker
Dimension Icon, Germany).

2.3 Cell culture of rBMSCs and Cal27

Rat bone marrow mesenchymal stem cells (rBMSCs) were
isolated and purified from the long bone marrow of 3-week-old
Sprague Dawley (SD) rats. The SD rats were sourced from the
Animal Centre of the Ninth People’s Hospital of Shanghai Jiao Tong
University, with all procedures approved by the institutional animal
ethics committee. Second to fourth passage rBMSCs were used for
subsequent experiments. Both Cal27 cells and rBMSCs were
cultured and expanded in Dulbecco’s Modified Eagle’s Medium
(DMEM, Gibco, United States) supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin/streptomycin (Gibco, United States).

2.4 Preparation of HAMAO and
SeHAMAO extract

Ion Release: Titanium plates from the HAMAO and SeHAMAO
groups were immersed in equal volumes (5 mL) of deionized water
and placed in a 37°C shaker at 75 rpm. The solution was extracted on
days 1, 3, 5, and 7. After each extraction, an equal volume of fresh
deionized water was added to continue the immersion process. The
concentrations of Ca, P, and Se in the extracts were analyzed using
inductively coupled plasma optical emission spectroscopy
(ICP-OES).

Selenium-Containing Extract: Titanium plates from the
HAMAO and SeHAMAO groups were immersed in 5 mL of
Dulbecco’s Modified Eagle’s Medium (DMEM) and placed in a
37°C shaker at 75 rpm for 1 day. The original extract, referred to as
“1,” was collected and divided into 20 aliquots for subsequent
experiments.

2.5 Live/dead fluorescence staining and cell
counting Kit-8 (CCK-8) assay

To evaluate the effects of the coatings on Cal27 and rBMSCs,
2.5 × 105 Cal27 cells and 5 × 104 rBMSCs were seeded onto the
titanium plates from each group. After 24 h of incubation, cells were
treated with a Calcein/PI Live/Dead Viability/Cytotoxicity Assay Kit
(Beyotime, China) and observed using confocal laser scanning
microscopy (CLSM, Leica, Germany).

To determine the optimal synergistic concentrations of the extracts
in vitro, 5 × 104 Cal27 cells and 1 × 104 rBMSCswere seeded into 96-well
plates and treated with different concentrations of the extracts, divided
into 20 groups. After 24 h, the medium was mixed with CCK-8 reagent
(DOJINDO, Japan) in a 10:1 ratio, added to the wells, and incubated for
2 h. Absorbance wasmeasured at 450 nm using a microplate reader. All
experiments were performed in triplicate.

To explore the time-dependent effects of the extracts, equal
concentrations of HAMAO and SeHAMAO extracts were applied to
Cal27 cells for 6, 12, 18, 24, and 48 h. Cell viability was then assessed
using the CCK-8 assay.

2.6 Alkaline phosphatase (ALP) staining

The osteogenic properties of the coating materials were evaluated
using alkaline phosphatase (ALP) staining. Third-passage (P3) rBMSCs
were seeded onto the surfaces of three sets of titanium slices, with fresh
medium replaced regularly. In parallel, rBMSCs were treated with
extracts under the same conditions. After 5 days, the culture
medium was aspirated, and the samples were washed with
phosphate-buffered saline (PBS) and fixed in 4% paraformaldehyde
for 30min. Following fixation, the samples werewashed againwith PBS.
ALP staining solution was then added, and the samples were incubated
for 30 min. After the staining solution was aspirated, the samples were
washed with PBS, and the reaction was terminated by placing them on a
shaker with gentle shaking for 3 min. Finally, the stained rBMSCs were
photographed to observe ALP activity.

2.7 Immunofluorescence staining

The osteogenic ability of the extract was examined by
immunofluorescence staining with ALP (RD, AF2910,
United States) and OCN (RD, MAB1419, United States). rBMSCs
were inoculated at a density of 5 × 104 in 35 mm confocal dishes and
the solution was changed every 2 days. After 5 days, the culture was
aspirated and discarded, washed with phosphate buffer, and fixed for
0.5 h by adding a fixative. And then, 0.5% Triton (Sigma,
United States) was permeabilized at room temperature for
20 min, followed by adding 5% fetal bovine serum for 2 h. The
primary antibody was added and placed in the refrigerator at four
degrees overnight. The fluorescent secondary antibody (Alexa Fluor
594, 1: 200, Yeasen, Shanghai, China) was added the next day and
protected from light for 1 h at room temperature. Finally, FITC
(Yeasen, Shanghai, China) staining and DAPI (Yeasen, Shanghai,
China) staining were performed to determine the cytoskeletal
morphology and cytosolic status of rBMSCs. Follow-up
fluorescence photography was performed using a laser scanning
confocal microscope (Leica, Germany).

2.8 Osteogenic gene expression

rBMSCs were seeded into 6-well plates at a density of 2 × 105

cells/well and allocated into four groups according to the culture
medium: DMEM, osteogenic medium (OM), HAMAO extract (ex-
HAMAO), and SeHAMAO extract (ex-SeHAMAO). Fresh medium

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Wen et al. 10.3389/fbioe.2025.1552661

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1552661


was replaced regularly. After 5 days of culture, the expression levels
of osteogenesis-related genes in each group of rBMSCs were
analyzed using quantitative PCR (qPCR). The primer sequences
used in these experiments are listed below: rGAPDH forward: CAG
GGCTGCCTTCTCTTGTG, reverse: AACTTGCCGTGGGTAGAG
TC; rBmp2 forward: ACCGTGCTCAGCTTCCATCAC, reverse:
TTCCTGCATTTGTTCCCGAAA; rCol1 forward: CATGTTCAG
CTTTGTGGACCT, reverse: GCAGCTGACTTCAGGGATGT;
rOPN forward: GAGGAGAAGGCGCATTACAG, reverse: ATG
GCTTTCATTGGAGTTGC; rRUNX2 forward: CCTTCCCTC
CGAGACCCTAA, reverse: ATGGCTGCTCCCTTCTGAAC.

2.9 Flow cytometry of Cal27

Cal27 cells were seeded into 6-well plates at a density of 2 × 105

cells/well and divided into three groups: DMEM, ex-HAMAO, and
ex-SeHAMAO. After 48 h of culture, cell viability was assessed by
flow cytometry using an Annexin V-FITC Apoptosis Detection Kit
(BD Biosciences, United States), following the manufacturer’s
instructions. In parallel, Cal27 cells were seeded into confocal
culture dishes at a density of 1 × 104 cells/dish. After 48 h of
culture under the same conditions, the cells were treated as described
above and then observed using a laser confocal microscope.

2.10 Detection of reactive oxygen species

Cal27 and rBMSCs were seeded into 6-well plates at a density of
2 × 105 cells/well and allocated into four groups: DMEM, ROS, ex-
HAMAO, and ex-SeHAMAO. After 48 h of culture, cells were
treated with a Reactive Oxygen Species Assay Kit (Yeasen,
Shanghai) according to the manufacturer’s instructions, then
observed and photographed under a fluorescence microscope. In
parallel, Cal27 and rBMSCs were also seeded into 96-well plates
(Corning, 3875, United States) at a density of 1 × 104 cells/well. After
48 h, cell viability was assessed using the CCK-8 assay, followed by
ROS detection using the ROS Assay Kit. Fluorescence intensity was
measured with a microplate reader, and the average intracellular
ROS fluorescence intensity was calculated.

2.11 Statistical analysis

Data from this study were analyzed using one-way ANOVA in
GraphPad Prism to determine statistical significance. ImageJ and
Origin software were used to generate figures. Statistical significance
levels were set at *P < 0.05, **P < 0.01, ***P < 0.001, and
****P < 0.0001.

3 Results

3.1 Characterization

Micro-arc oxidation (MAO) successfully produced a coating on
the titanium surface. Among the three groups tested, the two groups
subjected to MAO formed a uniformly distributed, micron- and

nano-scale porous structure (Figure 1A). Energy-dispersive X-ray
spectroscopy (EDS) analysis of the titanium surface and its coatings
confirmed the successful incorporation of Ca, P, and Se into the
coatings (Figure 1B). In the SeHAMAO group, the primary
elemental atomic percentages were approximately Ca 84.25%, P
15.39%, and Se 0.36%. To reduce measurement errors, the elemental
composition was further quantified using X-ray photoelectron
spectroscopy (XPS), which detected O, Ti, Ca, P, C, and Se in
the SeHAMAO group. The three main elements identified by XPS
were Ca (42.27%), P (45.43%), and Se (12.3%) (Figure 1C). Analysis
of binding energies revealed that C exhibited three peaks at
286.73 eV, 284.80 eV, and 288.94 eV; Ca had two peaks at
347.66 eV and 351.23 eV; P had a single peak at 133.79 eV; and
Se had a single peak at 59.28 eV (Figure 1C).

The contact angles of the Ti, HAMAO, and SeHAMAO groups
were 53.17° ± 1.39°, 14.16° ± 1.56°, and 6.59° ± 1.22°, respectively
(Figures 2A, B). Compared with the Ti group, the HAMAO-treated
group exhibited a smaller contact angle. Moreover, the Se-doped
coating (SeHAMAO) demonstrated an even smaller contact angle
and stronger hydrophilicity. Ion release measurements showed that
Ca, P, and Se concentrations increased linearly and gradually over
time, indicating continuous ion release from the coating. After
7 days, the ion concentrations in the SeHAMAO extract were
458.37 μg/mL for Ca, 0.08 μg/mL for P, and 0.21 μg/mL for Se.
In contrast, the HAMAO extract contained 432.10 μg/mL of Ca and
9.47 μg/mL of P (Figure 2C). Two-dimensional and three-
dimensional atomic force microscopy (AFM) images of the three
groups confirmed these findings (Figure 2D).

3.2 Cytotoxicity and proliferation

Live-dead cell staining of rBMSCs and Cal27 cells cultured on
the three groups of samples revealed that, except for a large number
of dead Cal27 cells on the SeHAMAO group, cells in all other groups
remained viable (Figure 3A). When treated with the extracts, the
CCK-8 proliferation assay demonstrated that extracts containing
selenium had a significant inhibitory effect on rBMSCs after
surpassing a certain concentration (Figures 3B,C). In contrast, for
Cal27 cells, the inhibitory effect increased continuously with the
concentration of the selenium-containing extract (Figures 3D,E).
Statistical analysis identified a selenium concentration of 0.2 μg/mL
as suitable for testing on Cal27 cells. Over a 48-h period, Cal27 cell
viability declined with time when compared to the control
group (Figure 3F).

3.3 Effect of coating surface on osteogenesis

After confirming that the coating material was non-toxic to
rBMSCs, we examined its effects on osteogenic differentiation.
Compared with the control, cells treated with the selenium-
containing extract showed elevated ALP expression, although this
increase was less pronounced than that observed in cells cultured
with osteogenic medium (Figures 4A, B). ALP staining of rBMSCs
grown on the material’s surface indicated that both HAMAO and
SeHAMAO coatings enhanced ALP expression, with the Se-
modified coating exerting a stronger effect (Figure 4C).
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FIGURE 1
(A) Scanning electron microscopy images showing the morphological structures of the three groups of materials. (B) Elemental distribution and
proportions in the three groups ofmaterials, as determined by EDS. (C) X-ray photoelectron spectroscopy (XPS) analysis of the SeHAMAOgroup, showing
the binding energies of each element.
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We next examined OCN expression in rBMSCs.
Immunofluorescence staining revealed that OCN expression was
significantly enhanced in cells treated with the selenium-containing
extract, although it remained lower than that observed in cells
cultured with osteogenic medium (Figure 5A). Semi-quantitative
gene expression analysis showed that the relative expression levels of
BMP2, Col1, OPN, and RUNX2 were all elevated in the selenium-
containing extract group (Figures 5B–E).

3.4 Reactive oxygen species detection and
apoptosis flow cytometry

To investigate the underlying reasons for the differential
effects of the selenium-containing extract on cells, we

measured ROS levels in both cell types. Cal27 cells treated
with the selenium-containing extract exhibited abnormal cell
morphology and increased intracellular ROS levels, whereas
no significant changes were observed in the other groups
(Figures 6A, D, E). Flow cytometry analysis of apoptosis in
Cal27 cells further revealed that the selenium-containing
extract led to a marked increase in apoptotic and necrotic
cells compared with normal conditions (Figures 6B, C).

4 Discussion

Currently, coating modifications on titanium surfaces are
predominantly applied in implants, enhancing osseointegration
and reducing infection and inflammation (Wu et al., 2021; Costa

FIGURE 2
(A, B)Contact angles of the four groups ofmaterials. (C) Ion release profiles of three groups at 1, 3, 5, and 7 days (D) Two-dimensional (2D) and three-
dimensional (3D) atomic force microscopy (AFM) images of the three groups. **P < 0.01 and ****P < 0.0001 indicate statistically significant differences.
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et al., 2023; Feng et al., 2023) However, in cases of bone defects
resulting from maxillofacial tumor surgeries, both bone repair and
the prevention of postoperative tumor recurrence are necessary. In
recent years, materials with dual antitumor and bone regeneration
properties have primarily targeted osteosarcoma (Li et al., 2020b;
Jing et al., 2024). Given the epidemiological and structural
characteristics of the head and neck, squamous cell carcinoma
frequently invades the jaw (Yao, 2020). Therefore, we combined
selenium-doped hydroxyapatite, previously shown to be effective
against osteosarcoma, with titanium plates to successfully produce a
selenium-modified hydroxyapatite titanium coating. Furthermore,

we demonstrated its capacity to inhibit head and neck squamous cell
carcinoma and promote bone regeneration in vitro.

Micro-arc oxidation (MAO) facilitates the incorporation of
electrolyte-derived elements into the surface coating of titanium
substrates. In this study, sodium selenite was added to the
electrolyte. Although flocculation was observed within the
solution, we proceeded to analyze the electrolyte composition
using inductively coupled plasma-optical emission spectroscopy
(ICP-OES), which revealed the following concentrations: Ca
1,600 mg/L, P 421 mg/L, and Se 225 mg/L. Subsequently, the
elemental composition present on the titanium surface was

FIGURE 3
(A) Live-dead staining of rBMSCs and Cal27 cells cultured on three different titanium surfaces. (B) The effects of various extract concentrations on
rBMSC viability. (C) Fitting curves and IC₅₀ values for rBMSCs under different extract concentrations. (D) The effects of various extract concentrations on
Cal27 cell viability. (E) Fitting curves and IC₅₀ values for Cal27 cells under different extract concentrations. (F) Time-dependent changes in Cal27 cell
viability at an extract concentration containing 0.2 μg/mL of Se.
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examined by X-ray photoelectron spectroscopy (XPS). The binding
energy (BE) of the P 2p peak was measured at 133.79 eV, indicating
that phosphorus predominantly exists in the form of phosphate.
Similarly, the BE of the Se 3d peak, at 59.28 eV, confirmed that
selenium is present as selenite (Figure 1C). (Zhang et al., 2017;
Chubar, 2023)

MAO can create a multi-porous coating on the titanium surface,
facilitating cell adhesion (Figure 2D). When we seeded cells on the

coated material, the SeHAMAO group showed greater cytotoxicity
towards Cal27 cells. Considering that rBMSCs are of mesenchymal
origin while Cal27 cells are epithelial in origin, their structures and
morphologies differ. To exclude the influence of the porous
structure on the cells, we applied the material extract directly and
obtained similar results. Thus, we believe that selenite plays a crucial
role in tumor suppression. Consistent with previous findings,
selenite exerts significant antitumor effects, including reduced

FIGURE 4
(A) Immunofluorescence staining showing ALP expression. (B) ALP staining of rBMSCs treated with different media. (C) ALP staining of rBMSCs
cultured on different substrates.
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cancer incidence, inhibition of tumor invasion and metastasis, and
potential clinical applications in combination with radiation and
chemotherapy (Kim et al., 2021). Clinical studies have also indicated
that selenite can be employed as an anticancer agent with low drug

resistance (Brodin et al., 2015). As observed, selenite is more toxic to
cancer cells (Figure 3A). Previous studies (Radomska et al., 2021)
suggest that cancer cells, characterized by high metabolic activity,
tend to absorb more selenium, which may contribute to their higher

FIGURE 5
(A)OCN expression in rBMSCs as detected by immunofluorescence staining. (B–E) Relative expression levels of osteogenesis-related genes (BMP2,
Col1, OPN, and Runx2) in rBMSCs. **P < 0.01 and ****P < 0.0001 indicate statistically significant differences, while ns denotes no significant differences
between groups.
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FIGURE 6
(A) Fluorescence detection of intracellular ROS in rBMSCs and Cal27 cells. (B) Annexin V-FITC flow cytometry analysis of Cal27 cells, showing the
proportion of apoptotic cells and the distribution of intracellular fluorescence. (C) Statistical analysis of percentage of apoptotic cells in Cal27. (D)
Statistical analysis of the mean fluorescence intensity of ROS in Cal27 cells. (E) Statistical analysis of the mean fluorescence intensity of ROS in rBMSCs.
*P < 0.05 and ****P < 0.0001 indicate statistically significant differences, while ns denotes no significant differences between groups.
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sensitivity to selenium toxicity, whereas normal cells exhibit lower
uptake and are less affected. It has been reported that high ROS
levels induce cancer cell death, (Hayes et al., 2020), while low levels
of ROS can be used as signal molecules to enhance osteogenic
differentiation of MSCs (Bai et al., 2021). Unexpectedly, under the
same Se concentration, Cal27 cell viability appeared unchanged
(Figure 3F). To determine whether this result reflects inhibited
proliferation or induced cell death, we performed apoptosis flow
cytometry on Cal27. This analysis revealed a significant increase in
both apoptotic and necrotic cells (Figures 6B,C). We suspect that Se
suppresses tumours by promoting apoptosis in Cal27 cells. Previous
reports show that sodium selenite induces apoptosis in cervical
cancer cells via ROS generation and in breast cancer cells through
endoplasmic reticulum stress and oxidative stress (Cao et al., 2021;
Lv et al., 2024). Our results suggest that Se also promotes apoptosis
in HNSCC. Furthermore, high doses of Se compounds inhibit
neoplastic growth by producing ROS, (Wallenberg et al., 2014),
consistent with our findings (Figure 6A).

The formation of a multi-porous (nano-micron scale) structure
on the titanium surface increases surface roughness, alters its
hydrophobicity, and provides more binding sites for cells (Jemat
et al., 2015; Lorenzetti et al., 2015). Studies have also reported that
the pore size of tissue engineering scaffolds can regulate stem cell
fate. When the pore size exceeds 250 μm, it promotes the terminal
differentiation of BMSCs (Swanson et al., 2021). In our study, even
without selenium, the HAMAO coating enhanced ALP expression
in rBMSCs (Figure 4C), which may be attributed to its pore size. At
the gene expression level, the selenium-containing medium also
promoted the osteogenic differentiation of rBMSCs. In the classical
signal pathway of MSCs during osteogenic differentiation,
BMP2 functions as a pivotal initiating factor that mediates the
upregulation of RUNX2 via the BMP/Smad, thereby modulating
the expression of downstream osteogenic genes such as COL1 and
OPN (Hwang et al., 2023). Ultimately, the progression of osteogenic
differentiation can be assessed by evaluating the expression levels of
ALP and OCN (Figures 5B–E). It is well known that selenite can
exert anti-oxidative stress effects, for instance, by protecting
rBMSCs from oxidative stress through activation of the
Nrf2 pathway (Rahimi et al., 2023). One potential mechanism
involves the Nrf2 (nuclear factor erythroid 2-related factor 2)
pathway, a key regulator of oxidative stress. Under high ROS
conditions, Nrf2 activation is impaired, leading to reduced
antioxidant and increased apoptosis in cancer cells. Conversely,
in normal cells such as rBMSCs, controlled ROS levels may act as
secondary messengers to promote differentiation via pathways such
as Wnt/β-catenin or BMP/Smad signal. Excessive oxidative stress
damages osteoblasts, but reducing such stress enhances
osteogenesis (Yang et al., 2023). We also found that ROS levels
in rBMSCs slightly decreased compared with the control group
(Figure 6E), which may protect the cells and further support
osteogenesis.

To further establish the clinical potential of this material, the
vivo studies are essential to evaluate its long-term
biocompatibility, osseointegration, and tumor-suppressive
effects in a physiological environment. While our research
sheds light on the role of selenium in modulating ROS
production and apoptosis, the precise molecular mechanisms
driving its osteogenic and antitumor effects remain unclear.

Future research should delve deeper into the specific signal
pathways involved, which would strengthen the foundation for
clinical translation. Addressing these gaps will help advance
selenium-modified titanium coatings toward practical
applications, providing a dual-functional biomaterial for
maxillofacial reconstruction in HNSCC patients.

5 Conclusion

In this study, we successfully fabricated a selenium-modified
hydroxyapatite coating on titanium using micro-arc oxidation.
We verified that this coating possesses favorable surface physical
properties, enhances the osteogenic differentiation of MSCs, and
promotes the apoptosis of head and neck squamous cell
carcinoma cells. Thus, selenium-modified hydroxyapatite
titanium coatings offer a promising strategy for repairing jaw
defects following tumor surgery. Nonetheless, further
investigation is required to elucidate the specific molecular
mechanisms and signaling pathways by which selenium exerts
its effects, potentially guiding novel therapeutic approaches in
the future.
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