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Humanwalking is highly adaptable, allowing individuals tomaintain efficiency and
stability across diverse conditions. However, how gait adapts to functional
asymmetry remains poorly understood. This study addresses this gap by
employing a within-subject design to isolate the effect of functional
asymmetry using a unilateral knee constraint to emulate hemiparetic gait. This
approach eliminates inter-individual variability present in previous studies. A
dataset of 19 participants walking across 30 conditions was used to examine
these adaptations in step length and push-off force in both absolute terms and
symmetry metrics. Results reveal that functional asymmetry disproportionately
impacts propulsion, with constrained-leg force decreasing significantly at higher
speed, while step length symmetry remains stable. This suggests a prioritisation of
spatial over kinetic symmetry, likely to optimise walking energetics and maintain
anterior-posterior balance. Statistical models demonstrated good within-dataset
performance but limited generalisability across dataset predictions, emphasising
the challenges of applying models across studies of different designs. These
findings highlight critical limitations in applying statistical models trained on
healthy persons to patient populations and provide insights into key
biomechanical adaptations that could inform individualised biofeedback
strategies for hemiparetic patients. Understanding individual compensations
for unilateral deficits could help refine rehabilitation interventions that target
propulsion deficits and optimise gait symmetry.

KEYWORDS

functional gait asymmetry, statistical gait modelling, step length adaptations, push-off
force dynamics, cross-dataset gait predictions

1 Introduction

Human walking is remarkably versatile, driven by complex adaptation mechanisms that
allow individuals to maintain efficiency, stability, and control in a variety of conditions.
Healthy individuals generally prefer to walk at a speed that minimises energy expenditure
per unit of distance traveled (Ralston, 1958; Molen et al., 1972). To achieve this, they actively
adjust gait variables, including step width (Donelan et al., 2001), step length (Minetti et al.,
1995), step time (Ellis et al., 2013), and push-off force (Reimann et al., 2018), while avoiding
penalties associated with asymmetries (Ellis et al., 2013). These adjustments vary with
walking speed: changes in step width support lateral balance (Orendurff et al., 2004; Bruijn
and Dieen, 2018), while changes in step length accommodate the increased demands of
push-off (Donelan et al., 2002; Yanez et al., 2023), all while maintaining a sufficient margin
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of stability (Hak et al., 2013a). This adaptability allows people to
seamlessly walk on slopes (Franz and Kram, 2012; Xie and Chien,
2024), in the presence of lateral perturbations (Frame et al., 2020;
Bruijn and Dieen, 2018), or with physical changes of aging (Owings
and Grabiner, 2004; Dean et al., 2007).

In contrast, hemiparetic individuals walk with slower speeds
(Brandstater et al., 1983; Olney and Richards, 1996) and higher
energetic cost (Stoquart et al., 2012) while exhibiting spatio-
temporal asymmetries. These include the extended stance phase
on the non-paretic side, prolonged swing phase on the paretic side
(Kim and Eng, 2003), and reduced paretic propulsion (Bowden et al.,
2006). The said asymmetries manifest in both spatio-temporal
asymmetry (Wall and Turnbull, 1986; Hsu et al., 2003; Patterson
et al., 2010) and asymmetries in push-off force and impulse (Lewek
et al., 2018; Padmanabhan et al., 2020). Consequently, some patients
take longer paretic steps while others take shorter ones (Kim and
Eng, 2003). However, despite these differences and additional effort
they need to exert to adapt, hemiparetic individuals can still
independently adjust gait parameters, relying on strategies that
include increased non-paretic propulsion or wider steps (Hak
et al., 2013b; Lewek et al., 2014) to maintain stability and
forward progression.

While much is known about gait adaptations in both healthy
and patients, significant gaps remain. Many studies rely on
speed-matching or age-matching healthy and patient groups,
which fails to account for intrinsic biomechanical differences
(Lim et al., 2022; Booij et al., 2021). Such approaches can mask
critical insights by overlooking how baseline differences, such as
muscle weakness, pain, or comorbidities, alter gait dynamics
independently of age or walking speed. Moreover, walking
speed alone is a limited indicator of gait function and
recovery, providing an incomplete picture of metrics like step
length and forward propulsion (Roelker et al., 2019). These
limitations challenge the validity of using matched-group
analyses or statistical models trained in healthy populations to
explain or predict patient gait, as such models tend to overfit
dataset-specific dynamics.

To address this gap, this study investigates how healthy
individuals adapt their gait parameters across varying speeds and
cadences under imposed functional asymmetry (i.e., a difference in
the number of freely moving joints or their available range of motion
between the two legs). Specifically, we leverage a within-subject
design and a unilateral passive knee constraint—two key
methodological features of the dataset described in (Baček et al.,
2024). The within-subject design ensures that each participant
serves as their own control, isolating the mechanical effects of
functional asymmetry on step length and push-off force (forward
propulsion) without the influence of neurological deficits common
in patient populations. The unilateral knee constraint serves as a
model for hemiparetic gait by restricting sagittal-plane knee
movement, emulating the reduced knee flexion observed in
stroke survivors (Ali et al., 2014). While this approach does not
replicate neurological factors found in hemiparetic patients, such as
spasticity, proprioceptive deficits, or altered neuromuscular control,
it provides a controlled experimental setting for analysing
compensatory gait adaptations. By systematically studying these
adaptations, this work offers insights into rehabilitation strategies
that target propulsion deficits and gait symmetry in stroke patients.

Step length and push-off force are key to understanding
anterior-posterior balance (Bruijn and Dieen, 2018) and the
metabolic and mechanical costs of walking (Donelan et al., 2002).
These parameters are increasingly used as biofeedback targets in
hemiparetic rehabilitation (Yanez et al., 2023), making it crucial to
understand their interplay and adaptability across conditions. In
studying this interplay, this work addresses three key research
questions: (i) How does a unilateral knee constraint affect step
length and push-off force at different walking speeds? (ii) Do
individuals prioritise kinetic (propulsion) or spatial (step length)
symmetry when adapting to asymmetry? (iii) To what extent can
statistical models trained in free-walking data predict gait
adaptations under constrained conditions, and what are the
limitations of applying these models to clinical populations?
Through this systematic analysis, this study provides new insights
into gait compensation mechanisms, with potential applications in
individualised biofeedback-based gait rehabilitation for
stroke patients.

2 Materials and methods

To address the three research questions, we analysed walking
data from a publicly available dataset that includes both free and
constrained walking conditions. The following section details the
experimental design, data processing and analysis methods, and the
definitions of key gait metrics examined.

2.1 Walking dataset

A publicly available dataset from (Baček et al., 2023) was used to
investigate the effects of functional gait asymmetry on step length
(SL) and peak push-off force (PO) in this paper. We refer to this
dataset as B24. In this context, functional asymmetry refers to a
constrained condition in which a knee brace was used to unilaterally
restrict knee joint movement. The dataset comprises data from
21 neurotypical young adults (age 30 ± 8 years, body mass 72.7 ±
12.3 kg, height 1.72 ± 0.09 m), all of whom were free of any lower-
extremity injury and wore low-profile shoes during the trials. Two
participants (Subjects 7 and 12 in the original dataset) only
completed the first data collection session and were excluded
from this analysis. No data were missing for the remaining
19 participants analysed in this paper. The anthropometric
characteristics of participants in the B24 dataset are given in the
Appendix (Supplementary Table A1). The human study from
(Baček et al., 2024) used in this analysis was approved by the
ethics committee of The University of Melbourne, where the
study was conducted (reference number: 2021-20623-13486-3).

The trials were conducted on a dual-belt instrumented treadmill,
with each lasting 5 min. Participants completed a total of 30 trials:
15 without any constraints (hereafter referred to as Free) and 15 with
their left knee joint fully extended via a passive knee brace (hereafter
referred to as Constrained). In both conditions, participants walked
at three speeds (0.4, 0.8, and 1.1 m/s) and five step frequencies peer
speed, guided by a metronome (90%, 95%, 100%, 110%, and 120% of
the preferred cadence, presented in random order). The 30 trials
took place across two sessions on separate days, with 15 trials per
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day. The five cadences at each speed were organised into a
continuous 25-min walking bout with no breaks between
cadences. Bouts were arranged such that no two consecutive
bouts involved the same walking conditions (either Free or
Constrained) within a session, and all three speeds were included
in each session. Marker data were collected at 100 Hz and ground
reaction force (GRF) data at 1,000 Hz. Supplementary Figure A9 in
Appendix gives an overview of the study design; a detailed
description of the study is provided in (Baček et al., 2024).

The knee joint orthosis was designed in-house and consisted of
two 3D-printed cuffs–one for the thigh and one for the
shank–connected by two metal bars via a double-hinge joint. The
cuffs were available in multiple sizes and could slide along the bars,
allowing for quick manual adjustments to optimise fit and comfort
relative to the participant’s knee joint. Each cuff was secured with
two Boa straps, ensuring stability, and the orthosis was always worn
on the left leg. To replicate the restricted knee flexion commonly
observed in hemiparetic gait, the orthosis was locked in full
extension (corresponding to a biological knee joint angle of 0°)
using bolts at the hinge joints. However, due to soft tissue
compliance, some residual knee flexion was observed across
participants. The maximum recorded knee flexion angle during
the swing phase at 1.1 m/s reached 15°, compared to the typical
unconstrained knee flexion of 75° during swing. Supplementary
Figure A10 in Appendix gives an overview of the study design; more
detailed description and visualisation of the knee orthosis can be
found in (Baček et al., 2024).

For this analysis, we separated the B24 dataset into four groups,
corresponding to the left and right legs in each of the two conditions
(Free and Constrained). We refer to the data from the left leg during
unconstrained walking as Free Left and the data from the right leg as
Free Right. Similarly, Constrained Left represents data from the left
leg during constrained walking and Constrained Right refers to the
data from the right leg during constrained walking. Note that it is
always the left leg that is constrained during all Constrained walking
in the experiment. Hence, Constrained Right is the data of the
unconstrained right leg in the Constrained walking condition. Given
the strong correlation of gait parameters between Free Left and Free
Right, we use Free Left as the baseline for the Free condition.

2.2 Data processing and analysis

All data processing–including filtering, segmenting, and
grouping–was performed using custom-written scripts in Matlab
2024a. Raw GRF data were filtered using a low-pass Butterworth
filter with a 6 Hz cut-off frequency (Winter 2009). The vertical
component of the GRF signal was used to segment data into gait
cycles, with a threshold set at 5% of the peak amplitude (e.g., for a
75 kg person, the threshold would be 75 × 9. 81 × 0.05 = 37 N). In
our analysis, the same number of cycles was used for both legs, and
all gait metrics represent an average over the last 60 s of each
5-min test.

Statistical modelling was done in Python 3.10.10 using statsmodels,
scipy, and numpy packages, with a Linear Mixed Models (LMM)
approach (Lindstrom and Bates, 1988). Each participant’s data was
treated as a distinct group to account for constant anthropometric
variables within each group while allowing variations in their gait

metrics. Data from the left and right legs were modelled separately,
treating peak push-off force (PO) and step length (SL) as response
variables (model outputs), and walking speed, its square, and
anthropometric data (sex, age, mass, leg length) as explanatory
variables (model inputs). To account for multiple cadences per
speed—a characteristic of the used dataset—we added additional
model input to each model. In the case of PO model, we added
cadence as this is the dataset’s defining feature and the leading
difference between conditions at the same walking speed. In the case
of SLmodel, we could not add cadence due to its direct relationshipwith
speed and SL; instead, we added trailing limb angle (TA) due to its direct
relationship with push-off force (Lewek et al., 2018). Both PO and SL
models include a fixed effect for speed given the known relationship
between the speed and the two response variables (Fukuchi et al.,
2019a). Models also include a quadratic effect of speed, similar to the
models in (Yanez et al., 2023), to account for non-linear relationship
between speed and PO and SL, and a fixed intercept. In addition to these
fixed effects, both models include a random slope for speed to account
for the repeated measures structure of the B24 dataset and variability
across participants. We report the best performing PO and SL models
with speed variance, reflecting the average individual effect of speed.

Model estimation quality across combinations of independent
variables (model inputs) was assessed using the Akaike Information
Criterion (AIC), and we report AIC values for all models, along with
the parameters for the best model for each model output. From the
list of all models produced, we select ones with the lowest AIC values
as final prediction models for those are the models of the highest
estimation quality. We evaluate the predictive model performance
using several complementary metrics, including R-Squared (R2),
Mean Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE)1. The accuracy of the predictive model was evaluated on the
B24 dataset and further tested on an independent, publicly available
dataset by (Fukuchi et al., 2018a; Fukuchi et al., 2018b) (details
in Appendix).

Statistical data analyses were conducted in Python 3.10.10 using
scipy package. The effects of speed, cadence, and condition (free vs
constrained) on gait variables were assessed using two-way repeated
measures ANOVA (RMANOVA) at a significance level of p = 0.05.
Where statistically significant differences were found, pairwise post
hoc analyses were carried out using Tukey’s honestly significant
difference (HSD) test, with Bonferroni corrections applied. We
categorise statistical significance as follows: weak significance
(0.01< p ≤ 0.05), moderate significance (0.001< p ≤ 0.01), and
strong significance (p ≤ 0.001).

2.3 Gait metrics

A gait cycle is defined as the time between two successive heel
strikes of the same leg. Peak push-off force (PO) represents the

1 R-Squared: represents the proportion of variance in the dependent

variable predictable from the independent variables. MAE: provides the

average magnitude of prediction errors, disregarding direction. MAPE:

measures accuracy as a percentage, offering an intuitive view of model

performance.
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maximum amplitude of the fore-aft component of the GRF during
the stance phase, which spans from heel strike to toe-off of the same
leg. Step length (SL) is the fore-aft distance between the two
calcaneous (heel) markers at the time of the leading leg’s heel
strike. Symmetry is defined as the percentage ratio between the
two legs: left vs right for PO (100% indicating symmetry) and left vs
left plus right for SL (50% indicating symmetry).

Trailing limb angle (TA) is defined as the maximum hip
extension angle. The hip joint angle trajectory was calculated
following the methods outlined in Research Methods in
Biomechanics (Robertson et al., 2013) and according to
International Society of Biomechanics (ISB) guidelines (Wu et al.,
2002). Leg length was measured as the distance from the anterior
superior iliac spine (ASIS) to the ipsilateral medial malleolus during
static calibration in a standing position.

3 Results

3.1 Statistical modelling (absolute
gait metrics)

3.1.1 Model estimation quality
We trained models for peak push-off force (PO) and step length

(SL) using combinations of walking speed and its square (v and v2)
along with anthropometric variables (age, sex, mass, and leg
Length). Additionally, we included step frequency (f) for the PO
model and trailing limb angle (TA) for the SL model (using speed
and cadence as SL model inputs would not be an estimate but a
closed form solution due to SL � v/f). We define three model types:
Model1, trained with v and v2 only; Model2, trained with v, v2, and
eitherf or TA; andModel3, trained with v, v2, eitherf or TA, and all
four anthropometric variables. Models incorporating individual
anthropometric variable are not presented here, as analysis
indicated that no single variable consistently achieved significance
across multiple models.

Table 1 provides Akaike Information Criterion (AIC) values for
both model outputs (PO, SL), including all three model levels and
four data groups. As the table shows, walking speed and either
cadence (for PO model) or TA (for SL model) were the only model
inputs that significantly improved model estimation quality (as
indicated by low AIC values), while adding anthropometric
variables as model inputs had minimal to no impact. For this
reason, all further modelling of PO and SL is performed using
Model2. Table 2 presents non-standardised weights of each model
variable for the best overall model (Model3), specifically for the Free

Right condition in the case of PO and the Constrained Left condition
for SL. This is useful as it allows real-world interpretability of the
effect of each model variable. For example, the speed coefficient
(weight) in PO model corresponds to the change in peak push-off
force in [N/kg] for a 1 [m/s] increase in speed. To understand the
relative importance of each model variable, we also present
standardised weights in Table 3. To do this, we calculated z-score
for peak push-off force, step length, and continuous predictors to
standardise them; sex is a categorical variable, so it does not need to
be standardised. A more detailed analysis of model estimation
quality can be found in the Appendix.

3.1.2 Model prediction quality
Figure 1 illustrates the prediction of PO using amodel trained on

the Free Left data (left leg during free walking). The model accurately
predicts PO of the contralateral (right) leg in free walking across all
three speeds (Free Right; Figure 1, left), achieving a Mean Absolute
Error (MAE) of 0.16 N/kg and a Mean Absolute Percentage Error
(MAPE) of 14.3%. However, prediction accuracy decreases when
applied to constrained walking (Constrained Right; Figure 1, right),
particularly at higher walking speeds, where the model sometimes
underestimates the measured force. This is reflected in lower R2 and
higher errors (MAE = 0.21 N/kg and MAPE = 15.5%) compared to
the Free condition. Notably, the right leg remains unconstrained in
both cases, showing minimal change in PO on the right leg even
when the left leg is constrained. In all models below, each datapoint
represents one test per participant.

Figure 2 shows the PO prediction across the two conditions
(from free to constrained and vice versa). Amodel trained on the free
walking data (Free Left) performs well in predicting PO in
constrained walking (Constrained Left; Figure 2, left) at slow
speed, though its accuracy decreases as speed increases. At higher
speeds, the model tends to overestimate measured force, which is
reflected in lower R2 and higher error (MAE = 0.29 N/kg and
MAPE = 28.3%). A similar, albeit less pronounced, trend appears
when predicting free walking (Free Left) using a model trained on
constrained walking data (Constrained Left; Figure 2, right). Here,
higher walking speeds lead underestimation of the measured push-
off force, resulting in denser data distribution. This model performs
slightly better overall, as indicated by a higher R2 and lower errors
(MAE = 0.28 N/kg and MAPE = 20.2%.).

Prediction of SL on the contralateral leg using a model trained
on the free walking data (Free Left) is shown in Figure 3. The model
predicts SL with comparable accuracy in both free walking (Free
Right; Figure 3, left) and constrained walking (Constrained Right;
Figure 3, right), though with slightly reduced accuracy in the latter.

TABLE 1 AIC values [−] for PO and SL model estimation (Lower values mean better quality model).

Data group Push-off force (PO) Step length (SL)

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Free Left −162.18 −260.44 −270.64 −782.61 −1008.58 −1036.79

Free Right −192.03 −270.77 −283.26 −752.03 −958.57 −985.08

Constrained Left −13.265 −94.35 −94.11 −709.44 −1036.96 −1055.63

Constrained Right −93.86 −175.76 −182.54 −746.34 −853.99 −870.60
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The difference is reflected by lower R2 and higher errors in
constrained walking (MAE = 0.048 N/kg and MAPE = 10.4% vs
MAE = 0.059 N/kg and MAPE = 13.2%). Unlike the PO prediction,
walking speed does not appear to influence SL prediction accuracy.
Note that the right leg remains unconstrained in both cases.

Figure 4 illustrates SL prediction across conditions. Predicting
SL for the constrained leg (Constrained Left) using a model trained
on free walking data (Free Left; Figure 4, left) yields the best SL
prediction performance, as reflected by the highest R2 and lowest
errors (MAE = 0.056 and MAPE = 13.7%). Predicting SL in the
opposite direction–using a model trained on constrained walking
data (Constrained Left) to predict free walking (Free Left; Figure 4,
right) – is only slightly less good, with slightly lower (albeit still high)
R2 and lower errors (MAE = 0.044 and MAPE = 9.4%). Similar to SL

predictions within the free walking condition, walking speed does
not significantly affect prediction quality in this context.

3.2 Spatial and kinetic asymmetries (relative
gait metrics)

3.2.1 Peak push-off force (PO) symmetry
As shown in Figure 1, the right leg generates peak push-off force

(PO) consistent with predictions from a model trained on free
walking, even when participants walked with constraints on their
contralateral leg. Conversely, Figure 2 shows that this symmetry
does not hold for the left leg during constrained walking, where the
peak push-off force (PO) is lower than predicted by a model trained

TABLE 2 Non-standardised weights for the model that best fit PO and SL overall (Model3).

Intercept
[N/kg]
or [m]

v [m/s] v2

[m/s]2
Cadence

[steps/min]
or TA [deg]

Leg
length
[m]

Sex
[M=0
or F=1]

Age
[years]

Mass
[kg]

v variance
[m/s]

PO [N/kg] 0.84 1.668 0.338 −0.008 −0.417 0.036 0.006 −0.002 0.026

SL [m] −0.197 0.74 −0.332 −0.012 0.201 0.03 0.003 −0.001 0.004

Cadence only used in PO model, and TA only in SL model. Weights are non-standardised.

TABLE 3 Standardised weights for the model that best fit PO and SL overall (Model3).

Intercept v v2 Cadence or TA Leg length Sex Age Mass v variance

PO 0.026 1.035 0.208 −0.413 −0.085 −0.099 0.055 −0.094 0.017

SL −0.094 1.595 −1.027 −0.482 0.162 0.357 −0.015 0.086 0.017

Cadence only used in PO model, and TA only in SL model. Weights are standardised.

FIGURE 1
PO prediction of contralateral (i.e., right) leg using model trained on Free Left walking (Model2; model inputs: v, v2, f). Right leg is unconstrained in
both cases (Left) Predicting right leg’s PO in Free walking (Right) Predicting right leg’s PO in Constrained walking.

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Baček et al. 10.3389/fbioe.2025.1550710

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1550710


on free walking. This discrepancy suggests a change in PO
symmetry, particularly at higher walking speeds.

Figure 5 (top) illustrates PO symmetry across conditions,
supporting the observations discussed above. During free walking
(blue bars), participants on average displayed strong symmetry in
their propulsive forces at 0.8 m/s (101.2±11.7% across cadences;
mean±standard deviation) and 1.1 m/s (100.9 ± 7.5% across
cadences), with slightly higher PO in their left leg at 0.4 m/s

(109.4 ± 14.9% across cadences). Cadence had no statistically
significant effect on PO symmetry at any speed; however, there
were weak statistically significant differences in PO symmetry across
the speeds when averaging across cadences: p � 0.03 between
1.1 and 0.4 m/s and p � 0.04 between 0.8 and 0.4 m/s.

Applying a knee brace on the left leg affected PO symmetry,
particularly at 0.8 and 1.1 m/s. At the slowest speed (0.4 m/s), the
constraint increased PO symmetry variability, although average PO

FIGURE 2
PO prediction across conditions (Free→Constrained, and vice versa) usingModel2 (model inputs: v, v2, f) (Left) Predicting Constrained Left leg using
model trained on Free Left leg data (Right) Predicting Free Left leg using model trained on Constrained Left leg data.

FIGURE 3
SL prediction of contralateral (i.e., right) leg using model trained on the Free Left walking data (Model2; model inputs: v, v2, TA). Right leg is
unconstrained in both cases (Left) Predicting right leg’s SL in Free walking (Right) Predicting right leg’s SL in Constrained walking.
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FIGURE 4
SL prediction across conditions (Free→Constrained, and vice versa) usingModel2 (model inputs: v, v2, TA) (Left) PredictingConstrained Left leg using
model trained on the Free Left leg data (Right) Predicting Free Left leg using model trained on the Constrained Left leg data.

FIGURE 5
PO and SL symmetry. Data are average across all participants. Three walking speeds are separated by vertical dashed lines, and two conditions (free,
constrained) are colour-coded. Horizontal dashed lines indicate perfect symmetry. Note different definitions of the symmetry between PO and SL (Top)
Peak push-off force symmetry (values below 100 indicate more force by the right leg) (Bottom) Step length symmetry (values below 50 indicate shorter
left step).
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symmetry remained similar to that during free walking (blue vs red
bars; p > 0.99), with an average PO symmetry of 108.2 ± 36.7%
across cadences. At 0.8 and 1.1 m/s, PO symmetry on average
decreased by approximately 20 percentage points compared to free
walking, with the left leg producing less peak propulsive force; across
cadences, PO symmetry averaged 79.9 ± 15.8% at 0.8 m/s and 77.7 ±
16.1% at 1.1 m/s. Similar to free walking, cadence had no statistically
significant effect on PO symmetry at either of the two speeds.
Furthermore, there were no statistically significant differences in
PO symmetry between 0.8 and 1.1 m/s during constrained walking,
although both speeds were statistically significantly different from
0.4 m/s (strong significance, p < 0.001).

3.2.2 Step length (SL) symmetry
The modelling of SL, depicted in Figures 3, 4, indicated there

should be no major asymmetries in SL across speeds in either free or
constrained walking. The SL symmetry visualisation in Figure 5
(bottom) confirms this observation. During free walking (blue bars),
participants on average walked with strong SL symmetry across all
three speeds (50.3 ± 2.1% at 0.4 m/s, 50.1 ± 1.3% at 0.8 m/s, and
50.01 ± 0.9% at 1.1 m/s, averaged across cadences), with cadence
having no statistically significant effect on SL symmetry at any
speed. Unlike PO symmetry, SL symmetry was unaffected by the
knee constraint (p > 0.59 across all comparisons; notably, the only
statistically significant difference, albeit a weak one, was between
0.4 and 0.8 m/s in constrained walking: p � 0.04). Although SL
symmetry variability increased across all three speeds, particularly at
0.4 m/s, the overall symmetry remained stable. On average across
participants and cadences, SL symmetry during constrained walking
remained close to strong symmetry: 49.4 ± 6.7% at 0.4 m/s, 50.2 ±
2.9% at 0.8 m/s, and 50.1 ± 2.4% at 1.1 m/s.

4 Discussion

In this study, we investigated how healthy young adults adapt their
step length and push-off force across varying speeds and cadences
during both unconstrained (free) walking andmechanically constrained
(emulated hemiparetic) walking. Using statistical models, we quantified
these adaptations in absolute terms and evaluated the predictive
capacity of these models using an independent, publicly available
dataset. Furthermore, we examined how step length (SL) and peak
push-off force (PO) symmetries evolved under different conditions,
offering insight into the underlying biomechanical strategies governing
gait adjustments.

A key finding of this study is that, despite the imposed
asymmetry, participants largely preserved SL symmetry, while PO
symmetry was significantly reduced. This suggests that when neural
control remains intact, individuals prioritise maintaining a
consistent spatial gait pattern at the expense of kinetic symmetry.
This contrasts with observations in hemiparetic gait, where step
length asymmetries are more pronounced (Hsu et al., 2003; Kim and
Eng, 2003), highlighting the distinct biomechanical trade-offs in
neurologically intact versus impaired populations. Furthermore, we
found that the extent of asymmetry adaptation varied across speeds
and cadences, demonstrating that functional asymmetry does not
induce uniform compensatory strategies but rather context-
dependent adjustments.

Another novel contribution is the evaluation of model
generalisability. Models trained on free-walking conditions
performed well within their respective datasets but showed
reduced predictive accuracy when applied to constrained
conditions. This underscores the importance of dataset-specific
characteristics in gait prediction and suggests that current
statistical models may not fully capture the complexity of
functional asymmetry adaptations. Our findings highlight the
need for hybrid approaches that refine statistical models through
broader training datasets and enhanced parameterisation to
improve robustness across diverse walking conditions.

4.1 Walking dataset

Human gait is often analysed by comparing adaptations
between groups, such as speed- or age-matched designs (Dean
et al., 2007; Frame et al., 2020). However, these approaches do not
account for biomechanical variations independently of speed or
age, a limitation that is particularly relevant in patient populations
(Ali et al., 2014). The dataset used in this study (Baček et al., 2024)
overcomes this by employing a unique within-subject design,
isolating gait adaptations due to functional asymmetry from
external factors such as muscle weakness. To achieve this,
participants walked with a unilateral passive knee brace that
restricted left knee flexion, limiting ankle plantarflexion during
push-off and prompting compensatory gait adjustments similar to
those observed in hemiparetic patients (Baček et al., 2022). Given
that higher walking speeds naturally demand greater joint mobility
(Mentiplay et al., 2018), we expected increasing speed to pose a
greater challenge–an expectation confirmed by our results. While a
metronome guided step frequency, participants were allowed small
adjustments in step length (SL), step time (ST), and their
symmetries, provided their overall stride length and time
matched the treadmill-imposed speed.

4.2 Statistical modelling of step length (SL)
and peak push-off force (PO)

We developed models to predict the absolute amplitude of
peak push-off force (PO; a component of the GRF in the anterior-
posterior direction) and step length (SL) using gait speed and
anthropometric variables. Additionally, cadence was included in
the PO model, and trailing limb angle (TA) in the SL model.
Previous studies have developed similar models for SL (Park
et al., 2021), SL and PO (Yanez et al., 2023), or alternatively, for
joint angles and moments (Lelas et al., 2003; Fukuchi et al.,
2019b; Fukuchi and Duarte, 2019). However, these studies
primarily focused on free walking, aiming to predict gait
variables or develop biofeedback targets for clinical
applications as alternatives to normative values based on age
and sex (Chao et al., 1983; Oberg et al., 1993). In contrast, our
study examined the effects of functional asymmetry on SL and
PO and explored whether these variables adapt differently across
walking speeds.

During free walking, model accuracy was predominantly
influenced by speed and speed squared, with anthropometric

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Baček et al. 10.3389/fbioe.2025.1550710

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1550710


variables contributing minimally (see Table 1). This finding was
consistent for both SL and PO and aligns with results reported by
(Yanez et al., 2023). A comparison to (Park et al., 2021) was not
possible, as their modelling was limited to a fixed speed. Due to
the dataset’s unique design, which included five cadences per
speed, our models also benefited from additional inputs–cadence
for PO and trailing limb angle for SL–allowing them to account
for enforced variations in SL (and consequently, PO) at the same
walking speeds.

Models trained on free walking (Free Left) demonstrated high
accuracy in predicting PO (Figure 1, left) and SL (Figure 3, left) for
the contralateral leg (Free Right). This suggests that both legs exhibit
similar behaviours at a given speed and cadence. Notably, these
models also predicted PO (Figure 1, right) and SL (Figure 3, right)
for the unconstrained contralateral leg during constrained walking
(Constrained Right) with only a slight reduction in accuracy, as
measured by R2, MAE, and MAPE.

This result is particularly interesting, as it suggests that the
unconstrained (right) leg remains largely unaffected by the knee
brace applied to the left leg. The most noticeable reduction in
prediction accuracy happens at higher speeds in PO, indicating
that participants relied more on their unconstrained leg as walking
became more challenging. This aligns with findings in hemiparetic
patients, where reliance on the unaffected leg increases, albeit
independently of speed (Roelker et al., 2019). Conversely, SL
prediction accuracy remained stable across speeds, with increased
data dispersion across all speeds contributing to minor reductions in
prediction quality. Our findings also revealed a lower prediction
accuracy for SL compared to PO, consistent with (Yanez et al., 2023),
despite their evaluations being based on an independent
walking dataset.

We further evaluated model prediction accuracy for PO and SL
in the left leg between conditions–transitioning from free to
constrained walking and vice versa. As shown in Figure 2 (left),
the model trained on free walking (Free Left) accurately predicted
PO for the constrained leg (Constrained Left) at slow speeds.
However, as speed increased, the model progressively
overestimated PO of the constrained (left) leg, indicating that
participants produced lower-than-predicted peak push-off forces
under constraint. Since the same individuals contributed data for
both conditions, this reduction is likely due to the mechanical
restriction of the extended knee rather than musculoskeletal
limitations such as weakness or impaired neuromuscular control.

This adaptation resembles, though is not identical to, the
concept of a propulsive reserve observed in elderly individuals
(Franz and Kram, 2012) and hemiparetic patients (Lewek et al.,
2018) at their preferred walking speeds. It is plausible that all three
groups–hemiparetic patients, elderly individuals, and healthy young
adults walking with functional asymmetry (as in this study) – adopt
a strategy of generating lower-than-available push-off forces as a
preferred compensatory response to impairment, aging, or imposed
constraints.

Unlike PO, SL prediction remained unaffected by the
addition of the knee constraint (Figure 4). This is unexpected
given the critical role that SL modulation plays in maintaining
gait stability in the sagittal plane (Hak et al., 2013a; Bruijn and
Dieen, 2018); as we’ve shown in (Baček et al., 2025), adaptations
in step width are not the source of this. The fact that the knee

constraint did not affect absolute SL in the constrained leg
compared to the free leg suggests that participants did not
rely on SL modulation to adjust stability in the sagittal plane.
Instead, they may have prioritised walking energetics over
stability. At increasing speeds, humans typically increase both
step length and step frequency (Kuo, 2001) to avoid the
metabolic penalties associated with disproportionately
increasing one over the other (Donelan et al., 2002). If the
imposed constraint led to a decrease in stability, participants
may have adopted alternative strategies for fore-aft stability
modulation (Reimann et al., 2018), or the stability reduction
may have remained within tolerable limits, supporting the
notion that humans prioritise sufficient rather than maximal
gait stability (Hak et al., 2013a).

4.3 Spatial (SL) and kinetic (PO) gait
symmetries

Healthy young adults typically exhibit kinetic symmetry at
walking speeds below 1.5 m/s. This includes symmetry in vertical,
braking, and propulsive GRF components (Polk et al., 2017), as
well as in propulsive and vertical impulses (Seeley et al., 2008).
Our findings align with this: during free walking, participants
displayed strong symmetry in peak push-off force at 0.8 and
1.1 m/s, with a slightly higher force on the left leg at 0.4 m/s
(Figure 5). Notably, this symmetry persisted across varying step
frequencies, even when they walked at non-preferred stride
lengths and times (i.e., 90, 95, 110, and 120% of
preferred cadence).

Similarly, participants exhibited symmetry in forward
(propulsive) and vertical (weight support) impulses, calculated
as the ratio of left to right impulses (100% = symmetric). During
free walking, weight bearing impulse symmetry showed a slight
right-leg dominance (97.65 ± 2.4% across all speeds; see
Supplementary Figure A1 in Appendix), while propulsive
impulse symmetry showed a consistent left-leg dominance
(102.57±14.85% across all speeds; Supplementary Figure A2 in
Appendix). Despite minor deviations, these results reinforce the
broader notion that healthy adults maintain strong kinetic
symmetry across speeds.

Young adults also exhibit strong symmetry in spatial and
temporal step parameters. As speed increases, step length (SL)
and step time (ST) increase concurrently, likely to optimise
metabolic efficiency (Donelan et al., 2002). In the absence of
musculoskeletal impairments, humans select an optimal
combination of stride time and stride length at any given speed
to minimise metabolic cost (Ralston, 1958) by maintaining equal SLs
and STs across both legs, thus avoiding metabolic penalties
associated with step asymmetry (Ellis et al., 2013; Stenum and
Choi, 2021). Our results align with these findings: during free
walking, participants exhibited strong SL symmetry across all
speeds and cadences (Figure 5, bottom). Based on the symmetry
criteria from (Allen et al., 2011) – where SL is considered symmetric
if it falls within the range of 46.5%–53.5% using the same symmetry
definition as in this study–all but one participant (at 0.4 m/s)
exhibited symmetric SL (see Supplementary Figure A3 (left) in
Appendix). Similarly, participants also exhibited strong ST
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symmetry across speeds and conditions2, suggesting that metabolic
efficiency remained a key gait priority.

During constrained walking, significant changes in peak push-
off (PO) symmetry were observed. At 0.4 m/s, PO symmetry varied
considerably across individuals. Notably, three participants shifted
from a longer left step (PO symmetry >100%) to a shorter left step
(PO symmetry <100%), while two showed the opposite trend. At
0.8 and 1.1 m/s, PO symmetry significantly decreased, with nearly all
participants showing reduced left-leg propulsion. For instance, at
0.8 m/s, nine participants had higher left push-off forces during free
walking, but all except one (Subject 13 in the original dataset)
showed lower left push-off under constraint. Similarly, at 1.1 m/
s, 13 participants exhibited higher left push-off in free walking, but
only Subject 13 retained this pattern in constrained walking. No
participants shifted their PO symmetry in the opposite direction. For
clarity, individual PO symmetry changes are not shown in Figure 5.

The reduction in left-leg propulsion mirrors findings in stroke
patients, where lower paretic propulsion–analogous to the
constrained left leg–is compensated by greater non-paretic
propulsion, corresponding here to the right leg. With an average
PO asymmetry of 80% (Figure 5, top) and a propulsive impulse
asymmetry of 72% (see Appendix), our participants resemblemild to
moderate stroke patients classified by (Bowden et al., 2006). In their
study, mild stroke patients had a propulsive impulse asymmetry of
49%, moderate patients 36%, and severe patients 16% (calculated as
the paretic propulsive impulse divided by the total impulse). When
converting our symmetry calculation to match (Bowden et al., 2006),
PO asymmetry comes to ≈45% and impulse asymmetry to ≈42%.
The preferred walking speeds of mild to moderate stroke patients in
(Bowden et al., 2006) (0.4–1.3 m/s) overlap with the speeds
examined here, further reinforcing the potential relevance of
these findings to clinical populations.

Functional asymmetry had the least impact on SL symmetry at
1.1 m/s and the highest at 0.4 m/s. At 1.1 m/s, variability in SL
symmetry increased slightly. At 0.4 m/s, SL symmetry shifted on
average from slightly longer left steps (symmetry >50%) to slightly
shorter left steps (symmetry <50%), with increased inter-person
variability (4.5 percentage points). Anecdotally, participants
reported feeling less stable and walked with the smallest margin
of stability at 0.4 m/s (Baček et al., 2025), potentially explaining these
changes. At 0.8 m/s, they slightly increased SL asymmetry,
transitioning from near-perfect symmetry in free walking to
longer left steps under constraint, with variability doubling at
this speed.

Consistent with patient populations (Balasubramanian et al.,
2007; Allen et al., 2011), most participants walked with equal or
longer steps on the constrained (left) leg. However, unlike the slow
speeds typically preferred by stroke patients with higher paretic SL
(Allen et al., 2011), our participants with SL asymmetry above 52.5%
predominantly walked at 0.8 and 1.1 m/s (7/11 subjects;
Supplementary Figure A3). This suggests that increasing speed
tends to amplify SL asymmetry, with participants taking longer
steps on the constrained leg. Interestingly, deviations in SL

symmetry, while remaining within a few percentage points of
perfect symmetry (50%), mirrored changes in PO symmetry:
participants with reduced constrained-leg propulsion (PO
symmetry <100%) were more likely to take longer left steps.
Consequently, the two symmetries correlate (see Supplementary
Figure A3 in Appendix), similar to patient population
(Balasubramanian et al., 2007).

This suggests a mechanical relationship between step length and
propulsive forces, achieved through coordinated control of trunk
progression via the stance leg and the timing and positioning of the
swing leg. For our participants–most of whom took equal or longer
left steps despite PO asymmetry–it appears that both mechanisms
were engaged. At faster speeds (0.8 and 1.1 m/s), participants took
longer steps with their constrained leg. Concurrently, as shown in
(Baček et al., 2025), increased right-leg PO in our study facilitated
forward CoM progression during the right-leg stance phase, a
strategy also employed in patient populations to maintain SL
symmetry above 50% despite propulsive deficits.

While propulsive deficits are common in patient
populations–regardless of step length asymmetry–forward CoM
progression is primarily used when walking with longer paretic
steps. Alternative strategies, such as bilateral hip compensation, are
often employed to maintain symmetric steps (Allen et al., 2011).
Although our study did not analyse joint moments or powers,
anecdotal reports of hip fatigue among participants with
symmetric SL suggest that they may have adopted similar
compensatory mechanisms. Further investigation would be
needed to confirm this hypothesis.

4.4 Cross-dataset predictions of step length
and gait propulsion forces

Statistical gait models, as argued by (Yanez et al., 2023), can
serve as individualised biofeedback targets for patients, offering
insights into gait pattern deficits. Unlike machine learning
models, statistical models provide transparency by revealing not
only if, but how, independent gait variables influence the dependent
outcome. However, model performance reflects both model design
and underlying gait dynamics, necessitating multiple cross-dataset
predictions to disentangle these factors.

Models developed by (Yanez et al., 2023) were trained on the
same F18 dataset as used here3. Their model evaluations done using
Akaike Information Criterion (AIC) found that gait speed alone is
sufficient to predict peak push-off force (PO). Our findings confirm
this for both F18 and B24 datasets (Supplementary Table A2).
Importantly, we show that including different gait parameters
and participant cohorts significantly affects model estimation
quality. For example, constrained walking data from B24 and the
Elderly cohort from F18 posed significant challenges for model
estimation, whereas models trained on B24 free walking performed
best. This improvement was most pronounced when accounting for

2 Temporal gait aspects, including step time, swing time, and double stance

time, as well as their symmetries will be analysed in our future work.

3 Note that (Yanez et al., 2023) included the full range of speeds and

combined Young and Elderly data in all models.
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multiple cadences per speed (Model1→Model2), highlighting the
utility of cadence as a model input variable.

Cross-dataset predictions of PO presented herein (B24→F18,
and vice versa; Supplementary Figure A5) deliver slightly worse
performance as measured by R2 compared to the result presented in
(Yanez et al., 2023) (R2 = 0.76). However, several important points
must be considered. First, our models were trained on a narrower
range of speeds and evaluated on fewer data points, likely reducing
R2. Second, our cross-dataset predictions separated F18 Young and
Elderly groups, which posed distinct modelling challenges
(Supplementary Table A2). Third, when models were trained on
and tested using the full F18 dataset–similar to (Yanez et al., 2023),
i.e., combining Young and Elderly cohorts and using the full range of
speeds–the results were comparable: F18 predicting B24 achieved R2

values of 0.70 using speed alone (Model1) and 0.79 using speed and
cadence (Model2) but dropped to 0.68 using Model3. However,
predicting full F18 from B24 resulted in much lower accuracy: R2

values of 0.28 forModel1, 0.38 forModel2, and 0.39 forModel3 (note
that these predictions are not visualised in this paper). When we
predicted F18 within the range of speeds present in B24 but still
combined Young and Elderly cohorts, the R2 only slightly increased
(to 0.4 forModel1 and 0.38 forModel2 andModel3), suggesting that
differences in population cohorts have a greater impact than speed
range on prediction accuracy.

Similar to PO models, SL model estimation performed well with
speed alone as a model input, with AIC evaluations confirming that
anthropometric variables add minimal value (Supplementary Table
A4). The inclusion of trailing limb angle (TA) as an additional
variable (Model2) improved SL model estimation in B24, where
multiple cadences per speed were tested–an improvement analogous
to the role of cadence in PO modelling. These findings align with
(Yanez et al., 2023), which also found speed to be a primary
predictor for SL while identifying modeling challenges for the
Elderly cohort. Unlike PO estimation, constraints had less impact
on SL estimation quality. Interestingly, the B24 Constrained Right
dataset (Model2 and Model3) yielded the most accurate SL models
across all conditions, outperforming models trained on F18 data.
This suggests that SL dynamics may be less sensitive to constraints
than PO, possibly due to compensatory mechanisms that stabilise
spatial gait parameters even under altered gait conditions.

SL predictions within the F18 dataset, from Young to Elderly
and vice versa, performed similarly to cross-dataset predictions in
(Yanez et al., 2023), with R2 values around 0.7 (Model1,
Supplementary Figure A6). Cross-dataset predictions from B24 to
F18 using Model1 performed slightly worse when predicting the
Elderly cohort (R2 = 0.66) but achieved much better accuracy when
predicting the Young cohort (R2 = 0.86; Supplementary Figure A7).
Predicting the combined Young and Elderly cohorts from a B24-
trained Model1 yielded intermediate accuracy (R2 = 0.77), aligning
with SL prediction in (Yanez et al., 2023) when speed ranges were
consistent between training and testing datasets. Notably, the
discrepancy in SL prediction accuracy between the Young and
Elderly cohorts, absent in PO models, prompted additional
analyses with age as a variable.

As shown in Supplementary Figure A8, age did not improve
predictions between B24 and F18 Young cohorts (or vice versa), as
expected due to the similar age distributions. Surprisingly, adding
age worsened B24 → F18 Elderly predictions, consistent with other

cases where anthropometric variables reduced cross-dataset
accuracy (results omitted for space). However, adding age
significantly improved predictions from F18 Elderly to B24,
suggesting that age plays a more critical role when training
models on elderly cohorts, likely reflecting age-related changes in
SL dynamics.

Overall, these findings demonstrate that while statistical models
can effectively predict SL and PO across datasets, their performance
depends on the range and characteristics of the training data.
Variations in population dynamics (e.g., age, cadence variability)
and experimental design (e.g., speed ranges, constraints) highlight
the need for diverse and representative datasets to improve model
generalisability. Importantly, the findings also caution against over-
reliance on anthropometric variables, which may enhance
estimation metrics like AIC but often degrade cross-dataset
performance, underscoring the need for rigorous model evaluation.

4.5 Limitations

This study provides invaluable insights into human gait
adaptations, but it does not come without limitations. First,
our cohort comprises only healthy young adults, limiting the
generalisability of the presented findings. Although our
experimental design intentionally excludes confounding
factors common in patient populations, such as reduced
strength or neuromuscular control, it is possible that elderly
participants or individuals with other impairments would
respond differently to imposed functional asymmetry. Second,
the passive knee brace used to induce asymmetry and emulate
hemiparetic gait does not replicate the biomechanical
complexities of pathological conditions, such as stroke, where
spasticity and sensory deficits play a significant role in gait
adaptations. Third, while the study examines a wide range of
walking speeds and cadences, it excludes extreme speeds typically
found in clinical populations (e.g., 0.2 m/s and 1.3 m/s), where
distinct gait dynamics are known to govern gait patterns. Finally,
our focus on short-term gait adaptations within 5 minutes of each
condition leaves longer-term compensatory strategies and motor
learning unexplored and unknown. Addressing these limitations
in future research would enhance the clinical relevance and
broader applicability of these findings.

5 Conclusion

This study explored how healthy young adults adapt their gait in
response to functional asymmetry induced by a unilateral knee
constraint, focusing on step length (SL) and push-off force (PO)
across varying walking speeds and cadences. The findings reveal
distinct adaptation strategies, with participants prioritising spatial
over kinetic symmetry, particularly at higher speeds. While SL
remained relatively stable across conditions, propulsive force on
the constrained leg decreased significantly, prompting
compensatory increases in the non-constrained leg’s propulsion.
These adaptations align with patterns observed in hemiparetic
populations, suggesting shared biomechanical strategies for
managing asymmetry.
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The results underscore the importance of understanding
individual gait adaptations to functional asymmetry, offering
valuable insights for rehabilitation strategies in clinical
populations. By isolating the effects of a constrained joint on
walking dynamics, this study provides a framework for future
investigations into the mechanisms underlying asymmetrical gait
and highlights the role of biomechanical trade-offs in maintaining
efficiency and stability during walking.

Future research should explore how these findings translate to
clinical populations. As a next step, our upcoming study–recently
approved by the ethics board–will replicate the walking conditions
from (Baček et al., 2024) in hemiparetic patients to assess the
relevance of the observed compensatory mechanisms in real-
world rehabilitation settings. Additionally, this study did not
examine joint and limb moment or power analysis, which are
crucial for refining these insights and broadening their
applicability to diverse patient populations. Investigating longer-
term adaptations to functional asymmetry and the role of
neuromuscular factors could further enhance gait retraining
strategies and support individualised interventions.
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