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Introduction: Atherosclerosis is a complex disease influenced by biological and
mechanical factors, leading to plaque formation within arterial walls.
Understanding the interplay between hemodynamics, cellular interactions, and
biochemical transport is crucial for predicting disease progression and evaluating
therapeutic strategies.

Methods:We developed a hybrid in-silico model integrating computational fluid
dynamics (CFD), mass transport, and agent-based modeling to simulate plaque
progression in coronary arteries. The model incorporates key factors such as wall
shear stress (WSS), low-density lipoprotein (LDL) filtration, and the interaction
between smooth muscle cells (SMCs), cytokines, and extracellular matrix (ECM).

Results: Our simulations demonstrate that the integration of CFD, transport
phenomena, and agent-based modeling provides a comprehensive framework
for predicting atherosclerotic plaque growth. The model successfully captures
the mechanobiological interactions driving plaque development and suggests
potential mechanisms underlying lesion progression.

Discussion: The proposed methodology establishes a foundation for developing
computational platforms to test therapeutic interventions, such as anti-
inflammatory drugs and lipid-lowering agents, under patient-specific
conditions. These findings highlight the potential of hybrid multi-scale in-
silico models to advance the understanding of atherosclerosis and support the
development of personalized treatment strategies.
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1 Introduction

Atherosclerosis is a pathology resulting from the accumulation
of lipids, inflammatory cells, and extracellular matrix in the arterial
wall due to damage in the endothelium, which triggers an immune
response leading to the growth and remodeling of the arterial wall
(Jebari-Benslaiman et al., 2022; Pederiva et al., 2021). This change in
the vessel morphologymay result in both blood flow obstruction and
outward wall growth that silently develops into a dangerous plaque
(Schoenhagen et al., 2001). Atherosclerosis is recognized as the
leading cause of cardiovascular diseases (CVDs), accounting for
approximately 32% of all global deaths according to the World
Health Organization (WHO) (Roth et al., 2020; Wilkins et al., 2017;
World Health Organization, 2021). The development of
atherosclerosis is a multifactorial process influenced by genetic,
environmental, and lifestyle factors, including dyslipidemia,
hypertension, smoking, diabetes, and obesity (Pederiva et al.,
2021; Poznyak et al., 2022; Martin et al., 2014;
Hasheminasabgorji and Jha, 2021; Ito et al., 2019). All these risk
factors may affect endothelial cells, increasing their tendency to
switch to a mesenchymal-like phenotype, altering their shape, and
leading to the appearance of pores in the endothelial barrier (Chen
et al., 2015; Yoshimatsu and Watabe, 2022; Esper et al., 2006; Malek
et al., 1999).

From a mechanical point of view, disturbed blood flow leads to
low wall shear stress (WSS), which is mechano-sensed by endothelial
cells, also affecting their shape, turning them into a more circular
form, and causing the release of soluble factors that initiate an
immune response (Hartman et al., 2021; Caro et al., 1971).

Atherosclerosis starts with the infiltration of low-density
lipoprotein (LDL) molecules into the intimal layer of the arterial
wall. These LDL molecules undergo oxidation, becoming oxidized
LDL molecules (oxLDL), which trigger an inflammatory response.
Endothelial cells (ECs) express adhesion molecules attracting
circulating monocytes, which migrate to the damaged intima and
differentiate into macrophages (MCs). TheseMCs ingest oxLDL and
secrete various soluble factors such as pro-inflammatory cytokines.
When the excess of oxLDL surpassesMCs’ absorption capacity, MCs
lose most of their cellular functions and are reclassified as foam cells
(FCs), which are lipid-laden cells that form the core of the
atheromatous plaque (Libby et al., 2019; Lusis, 2000).

As part of the immune response, vascular smooth muscle cells
(vSMCs) initially located in the media layer in a contractile
phenotype (cSMCs)—inactive and out of the cell cycle, with the
sole function of contracting and relaxing to provide tone to the
vessel—become activated. They change their phenotype to a
synthetic phenotype (sSMCs) and acquire the ability to migrate,
proliferate, and produce extracellular matrix (ECM). The
continuous accumulation of foam cells and the immune response
mediated by sSMCs contribute to the growth of the plaque, leading
to arterial wall thickening and luminal narrowing (Gomez and
Owens, 2012; Sukhovershin et al., 2016; Nakano-Kurimoto et al.,
2009; Bennett et al., 2016).

One of the main clinical complications of atherosclerosis is that
the fibrous cap of the plaque may rupture, releasing the lipidic
content into the bloodstream, and leading to the formation of a
thrombus that can eventually cause a heart attack (Finn et al., 2010;
Stefanadis et al., 2017). The mechanisms of plaque rupture have

been extensively studied over the years, with the mechanical
approach being one of the most common, as the rupture is
ultimately a mechanical problem (Peña et al., 2021; Libby, 2013;
Virmani et al., 2006; Caballero et al., 2023; Latorre et al., 2023).
However, incorporating biological rules that model pathophysiology
can make a significant difference in predicting plaque initiation and
progression, or explaining patient-to-patient variability caused by
emergent phenomena from cell-cell and cell-environment
interactions.

Computational modeling has emerged as a powerful tool in
atherosclerosis research, providing insights into the disease’s
progression and aiding in the development of therapeutic
interventions (Çap et al., 2023). Traditional experimental
methods, while invaluable, are often limited by ethical, technical,
and financial constraints. In contrast, computational models offer a
flexible and cost-effective approach to simulate various aspects of
atherosclerosis, from molecular and cellular interactions to
tissue mechanics.

Several types of in silico models have been employed to study
atherosclerosis. These include continuous models such as CFD (Ai
and Vafai, 2006; Liu et al., 2021; Malvè et al., 2014), FEA (Gu and
Bennett, 2022; Tziotziou et al., 2023; Wentzel et al., 2023), transport
phenomena (Filipovic et al., 2011; Calvez et al., 2010; Filipović and
Kojić, 2004; Olgac et al., 2008; Hernández-López et al., 2021), and
discrete models such as agent-based models (ABMs) (Bhui and
Hayenga, 2017; Corti et al., 2020).

Continuous models usually solve partial differential
equations to describe hemodynamics, the transport of
substances within the arterial wall, and the stresses and strains
caused by blood pressure. These models are particularly useful for
simulating the convection-diffusion-reaction processes that
govern the distribution of LDL, oxLDL, and other molecules
within the vessel wall.

ABMs, on the other hand, provide a discrete and stochastic
framework to simulate the behavior of individual cells. ABMs are
well-suited for capturing the heterogeneity and spatial complexity of
cellular processes. By representing each cell as an autonomous agent
with specific rules of behavior, ABMs can simulate the dynamic and
emergent properties of atherosclerotic plaque development due to its
bottom-up approach that facilitates the implementation of
biological rules inspired by experimental studies.

Recently, the possibility of coupling these two types of models
together, combining the strengths of each, has been explored (Corti
et al., 2020). These models are known as hybrid models and integrate
different multi-scale approaches to capture the main temporal and
spatial scales influencing the initiation and progression of
atherosclerosis. This merging of continuous and discrete models
has shown great potential, providing a more realistic and detailed
representation of the plaque.

To the best of our knowledge, there are only a few studies on
hybrid models applied to atherosclerosis to date. First, the study
developed by Bhui and Hayenga (2017) presented a novel ABM to
reproduce the transendothelial migration of leukocytes and the
progression of atherosclerosis in coronary arteries, simulating the
complex interactions between hemodynamic factors and biological
processes. This model used a fixed patch size of 100μm, which, while
computationally feasible, might overlook finer spatial variations in
substance concentrations, WSS, or the complete intima layer, given
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that the intima thickness is approximately 10 − 20 μm. Also Corti
et al. (2020) proposed a fully coupled CFD and ABM framework to
simulate the development and progression of atheromatous plaque
in the superior femoral artery (SFA). Their model provides insights
into arterial wall remodeling and plaque formation driven by a
disturbed flow, particularly focusing on WSS. However, this study
only includesWSS as a trigger for vessel remodeling. This could pose
a problemwhen attempting to incorporate calcifications or therapies
that block macrophage activity to reduce inflammation, as some of
the key cellular processes involved in the immune response are not
modeled. According to our understanding, if the ultimate goal of
developing hybrid models is to test different therapies in various
scenarios or to explain the variability in patient responses to similar
stimuli, it is vital to model the pathophysiology in greater detail. This
includes incorporating additional factors such as the transport of
plasma and LDL molecules within the wall, the immune response
provided by MCs and sSMCs, like sSMCs’ migration and
proliferation, or the secretion of growth factors leading to plaque
progression.

By enhancing the model to include these elements, hybrid
models can more accurately simulate the progression of
atherosclerosis and its response to treatments. This
comprehensive approach will provide better insights into
personalized therapeutic strategies, ultimately improving
patient outcomes.

In this work, we present a fully coupled framework that begins
with an idealized healthy artery and simulates the development of
atheroma plaque under pathological conditions driven by WSS and
oxLDL concentration. This hybrid model integrates two different
approaches: a continuous approach previously developed by our
research group (Hernández-López et al., 2021), which computes
hemodynamics and substance transport to determine WSS and
oxLDL levels, and a discrete approach, where an ABM responds
to the continuous model’s inputs to simulate cellular dynamics.

Specifically, the CFD analysis performed on a 3D idealized
coronary artery model provides hemodynamic input to multiple
2D ABMs, which simulate the cellular behavior driving plaque
progression. The models are coupled through a semi-automated
methodology, reconstructing the 3D vessel from the growth data of
2D cross-sections.

This integration enables a more accurate representation of
plaque development by dynamically updating the artery’s
geometry as the plaque grows, capturing variations in WSS and
oxLDL concentration over time.

Furthermore, a sensitivity analysis focused on the most
influential variables is carried out to evaluate how changes in
input parameters affect the model’s behavior. This analysis tests
the model’s robustness in estimating the progression of
atherosclerosis in the coronary artery, providing critical insights
into its predictive accuracy.

FIGURE 1
Workflow diagram of the fully coupled multi-scale framework for plaque growth reproduction. The process begins with a 3D geometry of a healthy
artery. CFD simulations calculate WSS. Mass transport simulations determine oxLDL distribution. An ABM simulates cellular dynamics to compute plaque
growth and vessel remodeling. The iterative process updates the 3D geometry until the final simulation time is reached.
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2 Methods

We developed a fully coupled methodology starting from an
idealized 3D geometry of a coronary artery, on which we performed
a CFD study to obtain the WSS (Figure 1). Using the WSS profile as
input, we fed a mass transport model, which predicted the
concentration of oxLDL in the wall through convection-
diffusion-reaction equations. In areas under higher risk for
atherosclerosis due to its oxLDL concentration, we selected five
cross-sectional slices where we calculated wall growth using an
agent-based model.

2.1 3D coronary artery geometry

We built an idealized 3D geometry of the lumen of a healthy
coronary artery. The artery diameter was assigned based on data
from the literature for different types of coronary arteries (MacAlpin
et al., 1973; Dodge Jr et al., 1992; Ohayon et al., 2008). Based on these
data, we selected representative constant diameter values of ϕint �
3.6mm and ϕext � 5.0mm with a constant wall thickness of 0.7mm.

2.2 CFD-based hemodynamic study

Due to the substantial evidence supporting the role of WSS as a
critical factor in the initiation and progression of atherosclerosis
(Caro et al., 1971; Liu and Tang, 2010; Filipovic et al., 2013; Olgac
et al., 2008; Hartman et al., 2021), which correlates regions of low
WSS with areas prone to lipid accumulation, endothelial
dysfunction, and subsequent plaque formation, we utilized the
WSS as the main trigger of plaque growth in our predictive
model. For this purpose, we conducted a CFD study on a 3D
idealized geometry of the lumen of a coronary artery using
COMSOL Multiphysics 5.6 (COMSOL AB, 2020), solving the
Navier-Stokes equations (Equations 1, 2) under the assumptions
of laminar, Newtonian, incompressible, and stationary flow. The
mesh resolution was carefully chosen based on a mesh sensitivity
analysis conducted by our group (Hernández-López et al., 2021),
ensuring that the grid resolution was appropriate for accurately
capturing the flow dynamics and WSS values.

ρ
∂ub

∂t
+ ρb ub · ∇( )ub � ∇ · −PbI + μb ∇ub + ∇ub( )T( )[ ] + Fb, (1)

ρb∇ · ub � 0, (2)

Boundary conditions included a no-slip condition of blood flow
along the endothelium, a specified mass flow rate at the inlet, and
pressure conditions at the outlet, following Murray’s law (Murray,
1926). Table 1 summarizes the parameters used in this model.

2.3 Mass transport model

We extracted several cross-sections along with their
corresponding WSS data from the 3D idealized geometry used in
the CFD model. For each cross-section, we defined the different
layers of the vessel wall, incorporating the internal elastic lamina
(IEL) as a 20μm offset from the endothelium (Prati et al., 2010). The
remaining wall thickness corresponds to the media layer, with the
external elastic lamina (EEL) as the outer boundary. The adventitia
was not modeled due to its negligible impact on atherosclerosis.
Although the endothelium, IEL, and EEL were modeled as a single
2D line in our model their real thicknesses, which are crucial for
accurately calculating plasma and LDL filtration, were incorporated
into the relevant equations to ensure a realistic representation of the
filtration process. The geometrical data of each layer is summarized
in Table 2.

In this model, WSS is utilized to compute the concentration of
oxLDL along the arterial wall. The mass transport process initiates
with the filtration of plasma through the endothelium. This filtration
is driven by changes in endothelial porosity, which are directly
correlated with the magnitude of WSS. Decreased WSS leads to
altered permeability, facilitating the translocation of plasma and
substances such as LDL, into the intima (Hartman et al., 2021; Caro
et al., 1971). Once LDL molecules penetrate the arterial wall, they
undergo oxidation, transforming into oxLDL (Libby et al., 2019;
Lusis, 2000). Inside the arterial wall, oxLDL molecules continue to
move due to both convective effects, caused by plasma filtration, and
diffusive effects, driven by concentration gradients within the wall.

TABLE 1 Blood flow parameters and boundary conditions for CFD study.

Parameter Description/Boundary condition Value References

μb Blood dynamic viscosity 0.0035 Pa · s Milnor (1989)

ρb Blood density 1050 kg/m3 Milnor (1989)

Boundary conditions Value

Inlet mass flow 1.603 · 10−3 kg/s

Output pressure 1 110 mmHg

Output pressure 2 110 mmHg

TABLE 2 Properties of coronary artery layers.

Layer Thickness (µm)

Endothelium 2.0

Intima 20.0

Internal Elastic Lamina (IEL) 2.0

Media 676.0
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This establishes the concentration gradient of oxLDL across the
intima layer, setting the stage for further biological interactions
within the arterial wall. Our research group previously developed
this model (Hernández-López et al., 2021) and it has been adapted
for this work. All the parameters needed for the computation of the
mass transport model are summarized in Table 3.

2.3.1 Plasma filtration
Plasma filtration along the wall was modeled using Darcy’s law

(Equation 3), which computes the filtration velocity (up) based on
the permeability of the medium (K), the dynamic viscosity of
plasma (μp), and the pressure drop across the medium (∇P).

up � −K
μp

∇P (3)

We set the plasma velocity filtrating across the endothelium and
the pressure at the EEL as boundary conditions.

The flow of plasma across the endothelium was calculated using
a modified version of Starling’s law (Equation 28, Supplementray
Appendix SA1.), which neglects osmotic pressure (Tedgui and
Lever, 1984) (Equation 4).

Jv � LpΔP (4)

We determined the plasma filtration flow across the
endothelium based on the three-pore theory (Michel and
Curry, 1999). This theory considers different pathways for
substances such as plasma or LDL to cross the endothelium:
normal junctions (nj), leaky junctions (lj), and vesicular
pathways (vp) (see Figure 2). Normal junctions are the tight
spaces between healthy endothelial cells and usually have an
approximate size of 2 − 4 nm. However, in areas with oscillatory
or disturbed blood flow, the mechano-sensing of endothelial cells
is altered. This leads to a change in their shape, making them
more circular and forming leaky junctions, which are believed to
have an approximate size of 20 nm.

Then, we can apply the three-pore model to Equation 4 and
compute the total flow across the endothelium as the sum of the flow
across each pore type (Equation 5):

Jv � Jv,nj + Jv,lj + Jv,vp (5)

We considered the plasma flow across the vesicular pathways to
be negligible (Olgac et al., 2008), so the equation to compute the

TABLE 3 Parameters for plasma and LDL flow through the wall.

Parameter Description Value References

Physical Properties

kint Intima permeability 2.2 · 10−16 m2 Ai and Vafai (2006)

kmed Media permeability 2.0 · 10−18 m2 Ai and Vafai (2006)

ϵint Intima porosity 0.983 Ai and Vafai (2006)

ϵmed Media porosity 0.258 Ai and Vafai (2006)

Lp,snj Normal junction conductivity 2.0193 · 10−8 cm
s·mmHg* Tedgui and Lever (1984)

μp Plasma dynamic viscosity 0.001 Pa · s Milnor (1989)

ρp Plasma density 1050 kg
m3

Milnor (1989)

Dfree Free LDL diffusion coefficient 5 · 10−10m2

s
Dabagh et al. (2009)

DLDL LDL diffusion coefficient in the wall 1 · 10−9m2

s
Prosi et al. (2005)

Dimensions

Aunit Unit area 0.64 mm2 Olgac et al. (2008)

lij Length of a leaky junction 2 μm Weinbaum et al. (1985)

Rcell Endothelial cell radius 15 μm Weinbaum et al. (1985)

wl Half-width of a leaky junction 20 nm Weinbaum et al. (1985)

rLDL LDL radius 11 nm Tarbell (2003)

Pressures

PEEL Pressure at the EEL 30 mmHg Ai and Vafai (2006)

ΔPEnd Pressure drop in the endothelium 21.6364 mmHg** Tedgui and Lever (1984)

Concentrations

Cl LDL concentration in the lumen 4.914 mol
m3 Reiner et al. (2011)

*The value of the parameter is dependent on the considered artery (Table value for coronary arteries).

**The value of the parameter is dependent on the intraluminal pressure (Table value of 110 mmHg).
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plasma flow across the endothelium can be expressed as follows
(Equation 6):

Jv � Jv,nj + Jv,lj � Lp,njΔPend + Lp,ljΔPend (6)

where Lp,nj and Lp,lj represent the hydraulic conductivities of
the membrane attributed to normal junctions and leaky junctions,
respectively. Pressure drop at the endothelium was obtained from
the experimental study conducted by Tedgui and Lever (1984),
which analyzed the pressure drop in vessels with and without
endothelium. The study observed that the presence of
endothelium resulted in a pressure drop of 21mmHg. For a
more detailed explanation of how these variables are calculated,
refer to Supplementray Appendix SA1.

2.3.2 LDL filtration
The flux of LDL in the wall (NLDL) was computed through

Equation 7:

NLDL � −DLDL∇CLDL + upCLDL (7)

In this equation, the first term represents the diffusion of LDL, and
the second term accounts for LDL convection. Here, DLDL is the
diffusion coefficient, and CLDL is the LDL concentration. The
temporal evolution of LDL concentration in the artery wall was

modeled using the convection-diffusion-reaction equations
(Equation 8):

∂CLDL

∂t
+ ∇ · −DLDL∇CLDL( ) + klag,LDL · up · ∇CLDL

� fCLDL / , CLDL,/( ) (8)

where klag,LDL is a coefficient that quantifies the solute lag in the
arterial wall. The first term in Equation 8 corresponds to the
temporal variation of LDL concentration in the arterial wall,
while the second and third terms represent the diffusion and
convection of LDL, respectively. Lastly, the reactive term
accounts for the oxidation of LDL within the wall. CLDL is the
concentration of LDL and DLDL its diffusion coefficient in the
arterial wall, assumed as isotropic and with a value of 1e − 9m2/s
(Table 3). The convection of LDL in a free medium is not the same as
in a porous one like the arterial wall. Thus, klag,LDL limits the
convection in the arterial wall related to the convection in a free
medium, and it is named the solute lag coefficient of the considered
substance in the arterial wall (Dabagh et al., 2009; Olgac et al., 2008;
Sun et al., 2006).

As boundary conditions for the filtration process of the LDL we
defined a specific flux at the endothelium based on the three-pore
theory combined with the Kedem-Katchalsky equations (Kedem

FIGURE 2
Structure of the coronary artery wall, highlighting the three types of pores in the endothelium: vesicular pathways, tight junctions, and
leaky junctions.
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and Katchalsky, 1958), and a determined LDL concentration
at the EEL.

To compute the LDL flux across the endothelium, we used an
expression proposed by Kedem and Katchalsky (1958), which
highlights that the total solute flux is the combination of a
diffusive and a convective flow (Equation 9):

Js � PLΔC︸��︷︷��︸
diffusive
term

+ Jv 1 − σf( )�C︸�����︷︷�����︸
convective

term

(9)

where PL is the permeability of the endothelium, ΔC is the
difference of concentration between the lumen and intima, σf a
membrane reflection coefficient (σf), representing the membrane’s
resistance to solute passage, and �C is the mean of the concentration
between lumen and intima. We used a variant of Equation 9 that has
also been used by other authors (Patlak et al., 1963; Tarbell, 2003),
expressing Equation 9 in terms of the Peclet number (Equation 10):

Js � PLΔC
Pe

ePe − 1
{ } + Jv 1 − σf( )�C (10)

FIGURE 3
Workflow diagram of the ABM. The process begins with the 2D cross-section from themass transport model. For each loop until the simulation time
of the ABM is reached, if there is a pathological concentration of oxLDL, the model computes the probability of production of MCs and their dynamics.
The formation of FCs leads to the appearance of a necrotic-lipidic core, and the secretion of cytokines triggers the vSMC activity.
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where the Peclet number is a dimensionless number expressing
the ratio of convective to diffusive transport. It is defined as
(Equation 11):

Pe � Jv 1 − σf( )
P

(11)

Due to the size of LDL molecules (20 nm), the transport across
normal junctions is zero. In addition, some studies have shown that
the transport of LDL across the vesicular pathways is approximately
10% of the transport across the leaky junctions (Cancel et al., 2007)
(Equations 12–14).

Js � Js,nj + Js,lj + Js,vp (12)
Js � 1.1Js,lj (13)

Js,lj � PL,ljΔC
Pelj

ePelj − 1
{ } + Jv,lj 1 − σf,lj( )�C (14)

Further explanation for the computation of the flix of LDL can
be seen in Supplementray Appendix SA1.

Taking all this into account, we computed the oxLDL
concentration solving in 2D Equations 7, 8 for the arterial wall
using a time-dependent simulation.

2.4 Agent-based model (ABM)

The ABM was developed in NetLogo 6.1 (Wilensky, 2019) to
simulate the cellular processes involved in atherosclerosis and to
compute the growth of the arterial wall. The workflow of the ABM
(Figure 3) begins by importing the geometry and oxLDL
concentration from the 2D mass transport model (Figure 1). The
domain consists of a regular grid measuring 130 × 130 μm,
discretized into square cells of 20μm.

The cellular agents considered are ECs, MCs, FCs, and
vSMCs. Both agents and lattice sites have predefined settings
and behaviors depending on their type. For example, MCs can
phagocytize and move, whereas FCs cannot. From now on, we
will refer to the lattice sites as patches, following Netlogo’s
nomenclature. Additionally, we will distinguish between
simulated time (the time representing pathology in our model)
and real simulation time (the actual computation time required
by our machine).

The amount of oxLDL in the arterial wall is crucial for sustaining
the immune response, so oxLDL is updated at each coupling
interval. The models are coupled every 2 years of simulated time
to balance accuracy and computational cost. After each 2-year
interval, the current geometry is segmented and used to
reconstruct the 3D geometry.

The ABM operates in a temporal loop where each iteration
represents 1 day of simulated time. At the end of each day, the
probabilities of various cellular events and the concentrations of all
substances are recalculated. This process repeats until the total
simulated time reaches 10 years, which is sufficient to observe
both tissue growth and remodeling.

Regarding computational efficiency, simulating 10 years of
pathology required 135 h of real simulation time on an Intel(R)
Core(TM) i7-10700K CPU @ 3.80 GHz.

Due to the stochastic nature of most expressions describing the
biological processes in the ABM (e.g., probabilities of SMC
proliferation and migration), all output values were averaged over
multiple simulations. The number of simulations (N) was selected to
balance variability among ABM runs and computational cost.
Specifically, 10 simulations were performed to minimize the
standard deviation while efficiently managing
computational resources.

2.4.1 Initialization of the ABM
The geometric features of the ABM were derived from the 2D

geometry of the mass transport model, representing a healthy cross-
section of the coronary artery. In the mass transport model
membranes like endothelium, IEL, and EEL were represented by
lines, whereas in the ABM they were considered monolayers due to
the nature of a discrete model. Thus, the first row of cells in the
lumen adjacent to the intima was designated as the endothelium,
and the first row of vSMCs in the media layer adjacent to the intima
was designated as the IEL. The oxLDL concentration, imported from
the mass transport model, remains constant until the next coupling
event. During this interval, it does not undergo diffusion or
elimination from the system. To align the continuous and
discrete models, a mesh-matching process was applied, averaging
patch values where multiple values from the continuous model
overlapped.

Based on the resolution limit of the OCT imaging technique
(10–20 μm) (Prati et al., 2010), the simulation domain was divided
into square cells measuring 20 × 20 μm. Each cell can contain either
one EC, FC, or vSMC. Additionally, each cell can simultaneously
host 1 MC, ECM, and soluble substances such as oxLDL and
cytokines. MCs are allowed to share the space with other cell
types due to their crucial role in tissue remodeling. Under
pathological conditions, these MCs migrate to the damaged area
and differentiate into FCs, driving tissue remodeling.

Therefore, we determined the membrane (endothelium, IEL,
EEL) or layer (intima or media) to which each set of patches belongs.
Patches belonging to the endotheliumwere seeded with ECs. Patches
in the intima layer initially contained no cells, only oxLDL and ECM
concentrations. The media layer was filled with vSMCs in their
contractile phenotype (cSMCs).

TABLE 4 Initial ABM parameters.

Parameter Value

Patch size (μm × μm) 20 × 20

Step time (day) 1

Inner radius (μm) 1,800

Outer radius (μm) 2,500

Monocyte concentration in blood (mol/m3) 550 × 109

Initial ECM density (kg/m3) 2.35 × 10−5

Diffusion coefficient of cytokines 0.3

Diameter of macrophages (μm) 10

Diameter of foam cells (μm) 20
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For substances not imported from the mass transport model,
such as collagen density and cytokine concentration, initial values
were set based on literature (Hernández-López et al., 2021)
(ECMt�0 � 2.35 × 10−5 kg/m3 and 0mol/m3, respectively),
reflecting a healthy baseline where pro-inflammatory cytokines
are not yet present. The initial values of the parameters to
initialize the model are summarized in Table 4. Cytokines
diffusion on the ABM was modeled using a finite difference
discretization of the diffusion equation in two dimensions, using
an explicit method for approximating the partial differential
equation (Equation 15).

Ct+Δt
cyto,i,j � Ct

cyto,i,j +DΔt
Ct

cyto,i+1,j − 2Ct
cyto,i,j + Ct

cyto,i−1,j
Δx2

(
+C

t
cyto,i,j+1 − 2Ct

cyto,i,j + Ct
cyto,i,j−1

Δy2
) (15)

2.4.2 Cellular processes and behavioral rules
The modeled cellular events included the recruitment of

monocytes and their differentiation into MCs, the
phagocytosis of oxLDL by MCs, the secretion of cytokines by
MCs, the differentiation of MCs into FCs and their subsequent
death, the activation and phenotype change of vSMCs,
their migration, proliferation and apoptosis, and the
generation and degradation of ECM. Each cellular event was
governed by specific rules, which were categorized into
deterministic and stochastic.

Deterministic rules calculate the amount of a specific substance
at a given patch and time point, based on generation or degradation
ratios. Stochastic rules, on the other hand, determine the probability
of a cellular event occurring. The different probabilities were
calculated using sigmoid functions, which outputted a value
between 0 and 1 (Allen, 2010; Banks, 2013; Albano et al., 2022).

These rules were often modulated by ratios derived from
experimental studies. For instance, if the differentiation rate of
cSMCs into synthetic sSMCs under atheroprone conditions was
0.4, the sigmoid function was adjusted to reflect a maximum
probability of 0.4, incorporating the differentiation ratio in the
numerator. In the sigmoid function, the slope (k) was calibrated
using data from experimental studies and our own experimental
experience. Variable C represents the concentration of a substance,
depending on the specific cellular event being modeled.Table 5

2.4.2.1 Monocyte recruitment and differentiation into
macrophages

Monocytes are recruited to areas with high oxLDL
concentrations and differentiate into MCs as an immune
response. This process was modeled using the probability of an
MC appearance in the pathological area, represented by a sigmoid
function (Equation 16).

pproduceMC �
md

1 + e−k· CoxLDL−CoxLDL0( ) (16)

Here, md is the differentiation ratio from monocytes to
macrophages, k is the slope of the transition in the sigmoid
function, computed using the recruitment ratio of monocytes
(mr) and the concentration of monocytes in the blood
(Cmono−blood). CoxLDL is the concentration of oxLDL, and CoxLDL0

is the reference concentration.

2.4.2.2 Macrophages’ activity
Macrophages updated their lifetime 1 day every step-time.

While they were alive, they engulfed oxLDL and produced
cytokines according to deterministic rules (Equation 17) based on
a phagocytosis ratio (rphago) and a secretion ratio (rsecrcyto)
respectively.

TABLE 5 Global ABM parameters.

Parameter Description Value References

rdiff (1/d) Monocytes differentiation rate 1 Cilla et al. (2012)

rprolif (1/d) Proliferation rate 0.24 Boyle et al. (2011)

rapop (1/d) Apoptosis rate 1.9008 × 10−5 Escuer et al. (2019)

rgenECM (kg/d) ECM generation rate 2.1384 × 10−16 Zahedmanesh et al. (2014)

rdegECM (1/d) ECM degradation rate 1/30 -

Cmono_blood (mol/m3) Monocytes in blood 550 × 109 Khan and Khan (2009)

mr (m4/(oxLDL · d)) Monocyte recruitment rate 6.636 × 10−4 Steinberg et al. (1997)

md (1/d) Monocyte differentiation rate 9.94 × 10−2 Bulelzai and Dubbeldam (2012); Hernández-López et al. (2021)

rsecrcyto (cyto ·m3/(MC · cyto · d)) Secretion rate of cytokines 2.592 × 10−5 Hernández-López et al. (2021)

rdegcyto (1/d) Degradation rate of cytokines 2 Zhao et al. (2005); Hernández-López et al. (2021)

rsecrMMPs Secretion rate of MMPs 2.592 × 10−6 -

rdegMMPs Degradation rate of MMPs 2 -

oxLDLMCmax Maximum oxLDL for macrophages 6.7 × 10−15 -

rphago Phagocytosis rate 2.1168 × 10−18 -
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if tlife < tlifespan
oxLDLt

MC � oxLDL t−1( )
MC + rphago · oxLDL t−1( )

patch

cytot � cyto t−1( ) + rsecrcyto · oxLDL t−1( )
patch

⎧⎨⎩
(17)

where oxLDL(t−1)patch is the oxLDL concentration at a specific cell
site in the previous step time.

In addition, MCs eventually died through two possible
mechanisms. The first mechanism was natural death, which
occurred when an MC reached its lifespan of 100 days
(Equation 18). The second mechanism occurred when MCs
reached the maximum amount of oxLDL they could handle,
becoming foam cells, losing their cellular functions, and
releasing metalloproteases (MMPs) to the environment
(Equation 19).

if tlife > tlifespan die{ (18)

if oxLDLMC > oxLDLMCmax,
releaseMMPs
switch to FCs

{ (19)

Cytokines produced by MCs were able to diffuse according to a
chemical gradient, so this discrete diffusion of cytokines was
implemented in the ABM.

2.4.2.3 Smooth muscle cell behavior
cSMCs were initially located only in the media layer. These cells

were in a senescent phenotype, inactive, and out of the cell cycle,
with their main function being to contract and stretch, providing
tone to the vessel and assisting in vasoconstriction and vasodilation.
However, in regions with a pathological concentration of pro-
inflammatory cytokines, cSMCs could become activated and re-
enter the cell cycle. This activation enabled them to proliferate,
migrate, and generate extracellular matrix by transitioning to a
synthetic phenotype.

To model the probability of phenotype switching (pdiff), we
developed a rule based on the differentiation ratio from cSMCs to
sSMCs (rdiff), the concentration of cytokines (Ccyto), and the
distance to the target cell site (distance) and a differentiation
ratio (Equation 20).

pdiff � rdiff

1 + e Ccyto−Ccyto0( )+distance (20)

The proliferation probability (pprolif) was influenced by the
concentration of cytokines, the distance to the damaged area, and a
proliferation ratio (rprolif) derived from experimental studies
(Equation 21).

pprolif � rprolif

1 + e Ccyto−Ccyto0( )+distance (21)

Similarly, the rule to compute the probability of migration
(pmigrate) was defined as follows (Equation 22):

pmigrate � 1

1 + e Ccyto−Ccyto0( )+distance (22)

Since sSMCs were now in the cell cycle, they could eventually
undergo apoptosis. The rule for this cellular event was uniquely
based on an experimental ratio (rapop) (Equation 23).

papop � rapop (23)

Lastly, the generation of ECM was based on a production ratio
(rgenECM) (Equation 24).

ECMt � ECMt−1 + rgenECM (24)

Following the principle of minimum energy (Garbey et al.,
2015), both migration and tissue remodeling when new cells
were born, were based on an algorithm to find the shortest path
to an objective. The shortest path algorithm used in our model was a
modified version of the A* algorithm (Hart et al., 1968), designed to
avoid obstacles in the path.

2.4.3 A* algorithm
The A* algorithm is a pathfinding and graph transversal

algorithm widely used to find the shortest path between nodes in
a graph (Hart et al., 1968). In our model, A* was adapted to facilitate
the migration of sSMCs and tissue remodeling. The key features of
the A* algorithm in our context are explained below.

2.4.3.1 Heuristic function
A* uses a heuristic function to estimate the cost from a given site

to the target site. In our model, we used this within the sSMC
migration rule and the remodeling module, where the heuristic
function was designed to minimize the energy required for a cell to
migrate avoiding obstacles in the path or to find an empty site that
met specific characteristics.

2.4.3.2 Cost function
The cost function in our adaptation of A* includes

several factors.

• Cytokine concentration (Ccyto): The concentration of
cytokines influenced cell behavior. Higher concentrations
promoted migration and proliferation, thus reducing the
perceived ”cost” of moving through areas with high
cytokine levels, simulating the effects of chemotaxis.

• ECM density: ECM density affected cell migration. Higher
ECM density increased resistance to movement, making
migration more challenging in areas with denser ECM.

• Distance to damaged area: Cells were more likely to migrate
towards the damaged area. The algorithm prioritized paths
that minimize the distance to the target.

• Obstacles: The modified A* algorithm included logic to detect
and avoid obstacles, ensuring that cells did not migrate
through impenetrable regions, such as the lipid pool.

2.4.3.3 Algorithm steps
1. Initialization: Start with an initial site (current position of the

sSMC) and add it to the open list, which contains sites to
be evaluated.

2. Evaluation: For each site in the open list, calculate the total cost
f(n) as the sum of the cost to reach the site g(n) and the
heuristic estimate to the target h(n).

f n( ) � g n( ) + h n( )

3. Selection: Select the site with the lowest total cost from the open
list and move it to the closed list, indicating it has
been evaluated.
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4. Expansion: Expand the selected site by evaluating its
neighboring sites. For each neighbor:
• Calculate the tentative cost to reach the neighbor.
• If this tentative cost is lower than any previously recorded
cost for this neighbor, update the cost and set the current site
as its parent.

• If the neighbor is not in the open list, add it.
5. Termination: Repeat the evaluation and selection steps until

the target site is reached or the open list is empty.

2.5 Model coupling

The simulationwas run iteratively updating themodel every 2 years
with a total simulation time of 10 years. Each iteration involved the
segmentation of the ABM outputs to identify the different layers in the
arterial wall after growth, reconstruction of the 3D geometry, and re-
running the CFD and mass transport simulations with the updated
geometry. This process captured the continuous interaction between
wall remodeling, hemodynamics, and oxLDL filtration.

FIGURE 4
Idealized geometry of a coronary artery, illustrating theWSS distribution. Multiple cross-sectional planes are shown: CS0, located in a healthy region,
to evaluate the model under homeostatic conditions, and CS1 to CS5, positioned in regions of pathological growth, to analyze behavior under disease
conditions.
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3 Results

Given that both mechanical and chemical stimulus conditions
can vary along the blood vessel, we analyzed two distinct regions
(Figure 4). The first was located far from the bifurcation, an area
where a parabolic flow, similar to the inlet boundary condition, was
expected, representing a region less prone to atherosclerosis. To
examine this region, we focused on a single cross-sectional plane
(CS0). In contrast, to analyze the atherogenic region, we studied the
evolution of five cross-sectional planes downstream of the
bifurcation (CS1 to CS5).

3.1 Model response under homeostatic
conditions

As CS0 is located upstream of the vessel bifurcation and due to
CFD boundary conditions, the minimum WSS on this plane was
1.8Pa. Since WSS values below 1Pa are considered pathological in
coronary arteries, this magnitude can be regarded as atheroprotective.
Based on this WSS, the transport model produced a constant oxLDL
concentration of 2.47mol/m3. Under such conditions, the ABM
predicted no growth, demonstrating the model’s capability to
maintain homeostatic conditions (Top of Figure 4).

FIGURE 5
Temporal evolution of oxLDL distribution in the cross-sectional planes located in the pathological region (CS1 to CS5).
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3.2 Model response under pathological
conditions

Cross-sectional planes CS1 to CS5, located downstream of the
bifurcation, showed the lowest WSS, with minimum values of
0.0528Pa, 0.0234Pa, 0.005Pa, 0.024Pa, 0.0463Pa respectively.
Regarding oxLDL concentrations, these planes showed values of
18.31mol/m3, 18.45mol/m3, 18.65mol/m3, 17.56mol/m3,
16.66mol/m3 respectively (Figure 5). With these atherogenic
conditions, the ABM predicted different plaque growth in each
CS (Bottom of Figure 4). Over time, growth in CS1, CS2, and
CS3 disrupted the flow, leading to increased filtration in CS4. This

disturbance caused that CS4, initially growing slower, eventually
accelerated and resulted in significant plaque
development (Figure 6).

The change of phenotype of SMCs from contractile to synthetic,
migration, and proliferation of sSMCs, combined with the eccentric
growth of the necrotic lipid core, resulted in an outward expansion.
Additionally, cellular activity in the inner region of the necrotic lipid
core, considering its impermeability, led to a higher concentration of
oxLDL in this area, driving a faster inward progression of the plaque.
As depicted in Figure 6, CS3 was the cross-section with the highest
growth, reaching a stenosis ratio (SR) of 20% after 10 years, whereas
CS5 was the cross-section with the lowest SR, reaching a maximum

FIGURE 6
Temporal evolution of growth in the cross-sectional planes located in the pathological region (CS1 to CS5).
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of 8% after 10 years. Within cross-sections CS1 to CS5, a
circumferential gradient of oxLDL was observed, attributed to
differences in endothelial permeability driven by mechano-sensed
WSS (Figure 5). Focusing on CS3, 50% of the cross-section
experienced WSS below 0.5 Pa at t = 0 years (sectors 5–8)
(Figure 7). This pathological scenario was further highlighted by
circumferential gradients in pressure and oxLDL. Sectors with
pathological WSS showed a strong correlation with higher oxLDL
concentrations.

SR � 1 − Al

Al,init
( ) · 100 (25)

LR � Alipid

Aintima + Alipid
( ) · 100 (26)

FR � Afibrotic

Aintima + Alipid
( ) · 100 (27)

3.3 Temporal evolution of the environment

Figure 8 shows the temporal evolution of several output
variables for each cross-section. These include the stenosis ratio
(SR), defined as the ratio of the current lumen area (Al) to the initial
lumen area (Al,init) (Equation 25); the lipid ratio (LR), which
represents the proportion of lipid area (Alipid) relative to the

total area of the intima and lipid plaque combined (Aintima +
Alipid) (Equation 26); and the fibrous cap ratio (FR) which
reflects the proportion of fibrotic tissue area (Afibrotic) relative to
the same combined area. Additionally, the total number of smooth
muscle cells (nsSMCs) (Equation 27) is given as the sum of sSMCs in
each cross-section, along with the total extracellular matrix (ECM)
density and the total cytokine concentration in the same
cross-section.

SR shows an overall increasing trend across all sections, with a
pronounced steepening of the curve in CS4. This steep increase is
driven by plaque displacement resulting from the growth of sections
CS1, CS2, and CS3. Specifically, CS3 underwent rapid growth during
the first 6 years, primarily due to lipid-core expansion and sSMC
proliferation, ultimately reaching an SR of 19% after 10 years. In
CS1, CS2, and CS3, LR increased quickly during the first 6 years,
with values reaching 10%, 12%, and 17%, respectively, before
stabilizing, while both SR and FR continued to rise. This trend
suggests a correlation between sSMC proliferation and SR, driven by
cytokine-induced proliferation in the vessel. CS4 exhibited
prolonged growth, with the highest rate of expansion occurring
after year 8. In contrast, CS5 did not develop a necrotic core, as
expected. Regarding FR, all sections showed an upward trend, with
CS3 and CS5 demonstrating the most significant fibrotic tissue
development relative to the intima area.

The nsSMCs in the system increases rapidly during the first year
and then continues to grow at a slower rate. It reaches its maximum

FIGURE 7
Temporal evolution ofWSS, pressure and oxLDL in CS3. A two-dimensionalmap of distribution of these variables. For analysis, the cross-sectionwas
divided in eight sectors.
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value at the end of the study, suggesting that if the study had
continued, the nsSMCs would have kept increasing due to the
persistent pathological stimulus, leading to a thicker fibrous cap.

ECMdensity also increases throughout the study, indicating that
the system has not yet reached equilibrium. Since ECM is produced
by sSMCs and degraded by MMPs (generated by FCs), the
increasing nsSMCs and high cytokine concentrations suggest that
sSMCs continue to perceive the need to generate ECM. ECM
production would likely cease once the pro-inflammatory
stimuli subside.

Cytokine concentrations are closely linked to oxLDL levels, as
macrophages release cytokines in response to elevated oxLDL. As
the concentration of pro-inflammatory cytokines rises, sSMCs
become activated and begin producing ECM. However, the
increased death of MCs results in higher MMP concentrations,
which degrade ECM. In regions lacking sSMCs, this degradation
weakens the fibrous cap. Cross-sections CS1 to CS5 developed
higher levels of pro-inflammatory cytokines than CS0, with the
maximum cytokine concentration observed in the most damaged
area of CS3 after 10 years.

3.4 Coupling CFD, mass transport and ABM

This fully coupled methodology enables the dynamic updating
of WSS and oxLDL as the geometry evolves. Vessel narrowing leads

to flow acceleration, which increases WSS and subsequently
decreases LDL filtration into the wall. However, the emergence of
a protrusion in the lumen due to growth alters the downstream flow
distribution, translating the plaque downstream as WSS decreases
significantly. This phenomenon is evident in CS4, which initially
experienced lower oxLDL levels compared to CS3, but, as
CS3 continued to grow, CS4 increased its oxLDL concentration,
leading to accelerated growth and ultimately achieving SR and LR
values comparable to those of CS3, demonstrating the importance of
coupling these three models.

In addition, sections with faster growth during the initial years,
such as CS1 and CS2, exhibited a decrease in growth rate over time.
For instance, for CS1 the rate decreased from ΔSR � 2% per year
during the first 8 years to ΔSR � 0.3% per year after year 6.

3.5 Sensitivity analysis

3.5.1 Sensitivity to coupling time
In this analysis, we compared the impact of coupling time in the

results. To do so, we examined three different coupling intervals in
CS3: 3 months, 2 years, and 5 years. As shown in Figure 9A), both
the 3-month and 2-year coupling intervals exhibited comparable
performance in estimating growth. In contrast, the 5-year coupling
interval predicted faster growth during the initial 5 years, followed
by controlled growth in subsequent years after coupling. This

FIGURE 8
Temporal evolution of stenosis ratio (SR), lipid ratio (LR), fibrous cap ratio (FR), number of smooth muscle cells (sSMCs), extracellular matrix (ECM)
density, and cytokine concentration for cross-sections CS1 to CS5. The results are obtained from N = 10 simulations, showing the mean and
standard deviation.
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FIGURE 9
Sensitivity analysis. (A) Temporal evolution of SR, LR, and FR as a function of the coupling frequency between the continuous and discrete models.
Coupling intervals of 3months, 2 years, and 5 years were analyzed. (B) Temporal evolution of SR, LR, and FR as a function of the order of magnitude of the
parameters studied (rsecrcyto , rdiff , and rprolif ). (C) Partial Rank Correlation Coefficients (PRCC) of the parameters studied against the response variables SR,
LR, and FR. The p-values corresponding to each correlation are displayed on the bars, indicating the statistical significance of the relationships. The
results are obtained from N = 10 simulations, showing the mean and standard deviation.
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behavior may be attributed to the variation of stenosis ratio (ΔSR),
where values around 5% are considered to have a significant impact
on WSS. Such SR variations occur approximately every 2 years
under the specific conditions of this model, making the 2-year
coupling interval the optimal choice for this scenario.

3.5.2 Sensitivity to parameters magnitude
To assess the model’s sensitivity to parameter variations, we

selected rsecrcyto, rdiff, and rprolif due to their pivotal roles in the
cellular mechanisms driving plaque growth. These parameters
regulate cytokine-mediated signaling, cellular proliferation, and
spatial diffusion processes, which are fundamental to
atherosclerotic progression.

Figure 9B shows the temporal evolution of SR, LR and FR for
every variation in the selected parameters. A reduction of cytokine
secretion rate by one order of magnitude resulted in a total stenosis
ratio after 10 years that was halved. This was primarily due to a 50%
reduction in lipid growth and an almost complete absence of fibrous
cap formation. The main reason for this behavior was the lack of
cytokines in the system producing a pro-inflammatory response,
leading to a significantly reduced nsSMCs in the system.
Consequently, there was insufficient ECM generation and sSMC
proliferation to contribute to intimal thickening. In contrast,
increasing the cytokine secretion rate by an order of magnitude
resulted in a drastic increase in SR due to hyperplasia in the intima,
driven by a stronger pro-inflammatory signal. Varying the
differentiation rate of cSMCs to sSMCs had minimal impact on
most analyzed variables, except for the LR. This was likely because
the increase in the nsSMCs primarily arose from proliferation, as this
cellular event is responsible for hyperplasia in response to pro-
inflammatory stimuli. However, LR was affected because it
represents the proportion of the intima occupied by lipids, so
with a smaller intimal area, the same amount of lipids occupied
a relatively larger proportion. Variations in the proliferation rate
produced effects similar to those observed with a reduced cytokine
secretion rate. This similarity is likely explained by the direct
relationship between cytokines and the proliferation of sSMCs, as
these cells respond to cytokine concentrations as a signal indicating
the need to reinforce the tissue, thereby initiating proliferation.
Table 6 summarizes the relationships between the analyzed
parameters and cellular behaviors identified in this
sensitivity analysis.

3.5.3 Multi-parametric sensitivity analysis
To assess the global influence of key model parameters—rsecrcyto,

rdiff, and rprolif—a comprehensive multi-parametric analysis was
performed. Latin hypercube sampling (LHS) was employed to
generate a robust set of 50 random parameter combinations (N =
50), ensuring an efficient and systematic exploration of the
parameter space. This sampling strategy facilitated the
identification of both individual and interactive effects of the
selected parameters, laying the foundation for the subsequent
global sensitivity analysis.

To quantify the correlation between the model parameters and
the target outputs (i.e., SR, LR, FR), Partial Rank Correlation
Coefficients (PRCC) were computed. PRCC was chosen because
it accounts for nonlinear but monotonic relationships while
controlling for the influence of other parameters, providing a

robust measure of sensitivity in complex biological models
(Marino et al., 2008).

Figure 9C shows the PRCC analysis, revealing that rsecrcyto is the
most influential parameter across the three outputs (SR, LR, and
FR), exhibiting high positive correlations (approximately 0.62 for
SR, 0.49 for LR, and 0.68 for FR) with p − value< 0.05, which
underscores its statistically significant impact on the model. In
contrast, rprolif shows moderate positive correlations
(approximately 0.43 for SR, 0.40 for LR, and 0.38 for FR) with
p − value< 0.05, indicating that while its effect is significant, it is less
pronounced than that of rsecrcyto. Notably, rdiff exhibits only a
marginal correlation (PRCC = 0.11–0.12 for SR and FR, and
nearly 0 for LR with PRCC = −0.01), with p-values (e.g.,
0.2194 for SR and 0.9288 for LR) that are not statistically
significant. These findings suggest that, when controlling for the
influence of other variables, the model outputs are predominantly
driven by the parameters related to secretion and proliferation,
whereas the parameter related to smooth muscle cell differentiation
does not exert a direct significant effect.

3.6 Model validation

This methodology, integrating CFD, mass transport, and ABM
to simulate plaque growth in coronary arteries under atherosclerosis,
was validated against an experimental study involving individuals at
high risk for atherosclerosis (Insull Jr 2009). The study focused on
the population of New Orleans, a region with one of the highest
cardiovascular disease (CVD) risk rates worldwide. Plaque
progression data across different age groups were averaged to
represent mean progression over time, allowing direct
comparison with our model’s predictions. To be able to compare
our model prediction against the results from the experimental
study, we performed the computation until 30 years with the same
coupling time.

Figure 10 compares our predictions on SR, LR and FR with the
experimental data. The results demonstrate that the model performs
well, showing robust predictive capabilities. In terms of LR, the
model closely matches experimental trends, achieving similar lipid-
core stabilization over time. For SR and FR, the model predicts a
comparable trend, accurately reflecting the proportionally lower
growth of FR relative to SR. However, the model underestimates
overall growth compared to the experimental study. This
discrepancy may stem from differences in the pathological
stimuli considered. In our model, pathological conditions are
induced by performing CFD on an idealized coronary artery,
with a bifurcation and initial conditions triggering a pathological
scenario. In contrast, the experimental study accounts for
pathological stimuli from the high-fat diet prevalent in the New
Orleans population.

4 Discussion

The study of hemodynamics using CFD was performed to
calculate the WSS. Our CFD model identified the area of lowest
WSS located near the bifurcation (Figure 4). This observation is
linked to the idealized geometry and symmetric boundary
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conditions. Despite its limitations, the purpose of this geometry was
to replicate the flow conditions of a healthy coronary artery
subjected to a pathological stimulus. This was achieved by
simulating flow in a bifurcation, creating sufficient flow
disturbances to induce a low WSS capable of damaging the
endothelium, thereby allowing substances like LDL to penetrate.
Furthermore, over the years simulated within the model, we
observed a phenomenon commonly found in patients with
atherosclerosis: the presence of small plaques often leads to
additional flow disturbances, promoting the growth of new
plaques downstream. This behavior is particularly evident in the
temporal evolution of CS4. Although the reasons for plaque growth
near bifurcations in patient-specific arteries may vary, such as
differences in artery caliber or pressure, our model consistently
predicts the area of lowest WSS in a coherent region. However, it is
important to consider not only the location of the WSS region but
also its magnitude. And, as can be observed in Figure 4, the areas of
lowest WSS show values much lower than 1 Pa, which implies a
severe risk factor for plaque development.

Transport phenomena are strongly linked to endothelial
damage. Disturbances in WSS alter the shape of endothelial cells,
increasing their permeability and allowing both plasma and LDL
molecules to infiltrate the vessel wall. The oxLDL concentration
obtained under homeostatic conditions in our model (2.47 mol/m3)
aligns closely with the values reported in the study by Hernández-
López (2023). This agreement suggests that the model accurately
replicates physiological transport processes and lipid dynamics
within coronary arteries under non-pathological conditions. The
presence of sSMCs observed after 10 years of simulation (Figure 4) is
attributed to the pathological threshold for oxLDL being set at 0. As
a result, any presence of oxLDL in the system triggers an immune
response. However, unless the oxLDL concentration reaches
sufficiently high levels for a sustained period, this immune
response does not lead to significant growth or the formation of
a lipid core.

As illustrated in Figure 7, regions with lower WSS exhibit higher
pressure, indicating a reduced pressure drop across the endothelium.
Consequently, increased permeability correlates with greater
pressure drops. These damaged regions also provide easier
pathways for LDL molecules to transmigrate across the
endothelium, leading to localized areas with elevated
concentrations of oxLDL within the vessel wall.

None of the figures display oxLDL concentrations in the media
layer. This choice was made to enhance the clarity of the figures,
given the small thickness of the intima. However, it is important to
emphasize the sharp decrease in oxLDL concentration from the
intima to the media layer, which underscores the significant barrier
posed by the IEL to oxLDL molecule transport. These findings are
consistent with the fact that the intima layer is more permeable than
the IEL, causing LDL molecules to primarily move circumferentially
rather than radially once they reach the IEL.

With the proposed rules about MCs’ dynamics, the model
successfully mimicked the process of oxLDL phagocytosis in the
damaged area, leading to the formation of FCs. In contrast, in
healthy areas, MCs underwent natural cell death, preventing the
formation of FCs. During the phagocytosis process, MCs secreted
pro-inflammatory cytokines, which play a crucial role in the
activation of sSMCs, as well as in their migration and proliferation.

Once these cells switch phenotype to sSMCs, they migrate,
proliferate, and produce ECM. However, as the lipid core grows
due to the formation of FCs, MMPs are released, leading to ECM

TABLE 6 Summary of the sensitivity analysis results and parameter influence on cellular behavior.

Parameter Effect on model Main observations

rsecrcyto ↓ Decreased SR, FR 50% reduction in LR, fewer sSMCs, lack of ECM

rsecrcyto ↑ Increased SR Hyperplasia due to stronger pro-inflammatory signal

rdiff ↑ or ↓ Minimal impact Only LR affected due to relative lipid proportion

rprolif ↓ Decreased SR, FR Fewer sSMCs, reduced ECM, lower SR and FR

WSS ↓ Increased oxLDL filtration Promotes lipid accumulation and inflammation

oxLDL ↑ More cytokines Drives macrophage recruitment and inflammation

Cytokine ↑ More sSMC proliferation Leads to hyperplasia, increased ECM production

ECM density ↑ Restricts cell migration Influences plaque stability and remodeling

FIGURE 10
Comparison of the growth predictions from the model with the
experimental data from the study conducted by Insull Jr (2009). The
results are obtained from N = 10 simulations, showing the mean and
standard deviation.
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degradation. The transformation of MCs into FCs and the presence
of MMPs prevent the formation of a significant fibrous cap until the
growth of the lipid core stabilizes. Across all the cross-sections
analyzed, once the lipid core stabilizes, the fibrous cap begins to
thicken. This phenomenon also occurred in the model developed by
Corti et al. (2020).

During their migration process, sSMCs utilized a shortest path-
finding algorithm to identify andmove toward the damaged patch in
need of repair. The adaptation of the A* algorithm to successfully
find the shortest path allowed the effective implementation of the
minimum-energy principle, intrinsically present in cell remodeling
(Garbey et al., 2015). According to the minimum-energy principle,
the immune response exerted by sSMCs should be influenced by
distance, as closer cells are more likely to sense the damage signals
from the damaged area. Consequently, incorporating distance into
the computation of the probabilities for different cellular events is
crucial for accurately simulating this response. For instance, in the
proliferation process, the proximity to the damaged area plays a
critical role, with cells nearer to the damage exhibiting a higher
probability of hyperplasia. This dynamic underscores the significant
impact of localized damage on promoting cellular proliferation in
the surrounding tissue, contributing to the overall progression of the
wall growth.

The remodeling algorithm revealed a natural and organic
appearance of Glagov’s remodeling (Glagov et al., 1987). To the
best of our understanding, this is the first in silico framework where
Glagov’s remodeling is observed without being hard-coded.

According to the temporal evolution of SR, the nsSMCs, and the
total concentration of cytokines, we observed that the increase in SR
within the model is primarily driven by the proliferation of sSMCs,
which is stimulated by cytokine concentration. Additionally, the
development of the lipid core plays a significant role in SR
progression.

The collagen increment was most pronounced in the areas
immediately surrounding the necrotic core and the fibrous
cap. This localized increase in collagen concentration contributed
to the mechanical stability of the plaque, reducing the likelihood of
rupture in regions with higher collagen deposition.

As a consequence of the stochastic rules developed in this model,
it predicts the formation of an irregular fibrous cap, with significant
variability in its thickness, which aligns with clinical observations of
real atheromatous plaques. This irregularity in the fibrous cap is
critical, as it can influence plaque stability and the risk of rupture.

To balance accuracy and computational cost, performing a
sensitivity analysis on the coupling interval is essential. The
highest accuracy would be achieved by coupling the models daily,
updating the geometry, WSS, and oxLDL at the end of each
simulation step of the ABM. However, this approach is
computationally impractical. Therefore, it is necessary to find a
trade-off between accuracy and computational efficiency. To address
this, we analyzed coupling intervals of 3 months, 2 years, and 5 years.
The results demonstrated the robustness of the model when
coupling every 2 years, achieving performance comparable to 3-
month coupling while significantly reducing computational costs.
We suggest that, since WSS changes with vessel growth, a coupling
interval triggered by at least a ΔSR � 5% is advisable. In our model,
this ΔSR � 5% is reached approximately every 2 years, consistent
with the observations reported in Hernández-López (2023).

In a model, it is common to find that certain parameters have a
greater influence on the final outcome. Since ourmodel was designed to
replicate plaque growth, parameters directly affecting growth are
expected to have the highest impact. To assess this, we analyzed the
model’s sensitivity to variations of one order of magnitude in the
cytokine secretion rate, vSMC differentiation rate, and sSMC
proliferation rate. This analysis highlighted that rsecrcyto and rprolif
have comparable impacts on the model’s response, as both
parameters are part of the same chain of cellular events: cSMCs
sensing cytokine gradients, undergoing phenotype switching,
migrating, and proliferating in response to cytokine concentrations.
In contrast, rdiff had a much smaller influence on growth, as
hyperplasia in our model was found to be primarily driven by the
proliferation of sSMCs rather than their phenotypic transition.

Overall, this analysis highlights the critical role of cytokine
dynamics and ECM-related processes in driving the observed
growth patterns, emphasizing the need for accurate calibration of
these parameters to achieve realistic predictions.

Nevertheless, several important limitations remain. First, while
most current atherosclerosis studies utilize patient-specific
geometries, our model relies on an idealized geometry, which was
necessary for the initial development of the framework. It is well
recognized that results derived from idealized geometries may differ
when applied to realistic ones. For instance, a notable feature of our
model’s predictions is that most plaques grow symmetrically, a
consequence of the absence of tortuosity in the geometry used.
As such, employing an idealized coronary artery geometry may limit
the model’s applicability to patient-specific conditions. Future work
should focus on integrating patient-specific geometries to enhance
the model’s clinical relevance.

Additionally, assumptions such as steady-state flow andNewtonian
fluid behavior may not fully capture the complexities of in-vivo blood
flow. Incorporating the cardiac cycle into the CFD model and more
complex rheological properties could enhance accuracy. This could be
further improved by utilizing atheroprone markers such as time-
averaged wall shear stress or the oscillatory shear index.
Nonetheless, these simplifications are widely used by most authors
in the development of atherosclerosis models.

The iterative nature of the model, particularly the coupling
between the CFD and ABM components, and the computation of
the short-path finding algorithm, requires significant
computational resources, which may limit its accessibility for
widespread use.

Currently, many researchers are investigating additional factors
that may influence plaque growth apart from the magnitude ofWSS.
Although the most widely accepted biomechanical marker by the
scientific community has been the magnitude ofWSS, other markers
such as the Oscillatory Shear Index (OSI), transverse WSS
(transWSS), WSS direction, and gradient are being proposed. In
this study, we assumed the widely accepted hypothesis that
endothelial cells change shape, making the endothelial barrier
more porous. This shape change follows a model based on
experimental data provided by Levesque et al. (1986), considering
WSS as the main driver of endothelial damage. Future work could
involve adjusting this model to include other variables such as OSI,
but this remains a topic for further research.

We established a constant concentration ofmonocytes in the lumen
of 500 · 109mol/m3, according to Khan and Khan (2009). This
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concentration was used to compute the probability of producing MCs
in the intima. However, the concentration of monocytes in blood could
be another variable worth studying. As suggested by Gu et al. (2019),
hematopoiesis of immune cells in the blood is influenced by the
environment, including conditions such as hypercholesterolemia.
This highlights the importance of considering blood monocyte levels
when evaluating the production of MCs in the intima, as the systemic
environment significantly impacts immune cell generation.

This study enhances the level of detail in modeling atheroma
plaque progression. A key innovation compared to other works in
the field is the inclusion of greater specificity in the types of cells and
cellular events modeled. This feature could provide a foundation for
future research to evaluate the effectiveness of different therapies in
slowing plaque progression.

Despite its limitations, the model serves as a powerful tool for
predicting initiation and progression of the plaque, detecting high-
risk regions and investigating potential therapeutic strategies. Future
research should focus on refining the model and validating its
predictions with clinical data to pave the way for its use in
personalized medicine.

5 Conclusion

In this study, we developed a fully coupled model that serves as an
innovative tool for investigating the underlying mechanisms of
atherosclerosis, offering valuable insights for developing therapeutic
and preventive strategies. This model simulates complex interactions
between hemodynamics, mass transport, and cellular responses,
providing a holistic understanding of disease progression. Although
not yet validated against experimental or clinical data, it establishes a
detailed framework for understanding atherosclerosis mechanisms and
exploring potential therapeutic strategies. The findings serve as a
foundation for future work, including model validation and
refinement based on experimental data. Additionally, the integration
and adaptation of the A* algorithm effectively modeled the complex
migration and remodeling behavior of sSMCs in response to injury and
cytokine signaling, providing a robust framework for understanding
cellular dynamics in vascular pathology.
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