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Existing evaluation criteria for pedestrian head impact injuries focus only on single
impacts, with less attention given to repetitive traumatic brain injury (rTBI), which
is common in motor vehicle collisions, falls, and sports. Improving pedestrian
collision protection safety requires a complete understanding of the tolerance of
the repeated collisions of the human brain to injury. Therefore, this study aimed to
collect data from 72 pedestrian collisions that were reconstructed using
MADYMO and THUMS finite element head models (version 4.0.2). The
evaluation metrics for rTBI were developed by integrating brain injury criteria
based on time-domain features, including the head injury criterion (HIC), brain
injury criterion (BrIC), diffuse axonalmulti-axial general evaluation (DAMAGE), and
maximum principal strain (MPS), with frequency-domain features obtained from
wavelet packet transform energy analysis of head motion responses. The
proposed brain tolerance for mild and severe rTBI was estimated through
parametric survival analysis and presented as injury risk curves based on the
selected injury metrics. The results showed a significant difference in brain injury
tolerance between repetitive and single collisions. For the 50% probability of mild
and severe brain injury in real accidents, the thresholds for rTBI metrics based on
BrIC and DAMAGE were 1.085 and 1.513 and 0.494 and 0.678, respectively, all
higher than the thresholds of single-impact reported in previous studies.
However, the thresholds for repetitive head injury criteria based on MPS were
0.604 and 0.838, which were lower than the thresholds of single impact reported
in previous studies, implying that the prediction of tolerance to repetitive brain
more consistent with tissue-level than head kinematics level. This study
developed injury risk functions (IRFs) for rTBI by integrating the
amplitude–frequency characteristics of head responses and brain injury
criteria. This knowledge further provides crucial support for understanding the
tolerance to rTBI and enhancing pedestrian safety.
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1 Introduction

Traumatic brain injury (TBI) has always been a significant public
health issue. Among various types of traffic accidents, pedestrian
collisions are considered one of the most typical and high-risk.
According to statistics from the World Health Organization (WHO,
2023), approximately 1.19 million people die in road traffic accidents
each year, with 21% of these deaths resulting from pedestrian–vehicle
collisions. In pedestrian collision incidents, most pedestrians struck by
vehicles subsequently come into contact with the ground, so it is
essential to consider the risk of injury caused by ground impact
(Guillaume et al., 2015; Shang et al., 2020). When designing safer
vehicle front-end structures to protect these vulnerable road users, it is
crucial to have a deep understanding of head biomechanical tolerance in
real-world pedestrian collisions.

Over the past half-century, numerous studies have focused on
developing injurymetrics associatedwith externalmechanical loads and
establishing injury risk functions (IRFs) to assess human biomechanical
tolerance to TBI (Gurdjian et al., 1966; Takhounts et al., 2013;Wu et al.,
2020). These injury metrics are primarily based on empirical formulas
or fundamental principles of mechanics related to external head
kinematics, which are further derived into IRFs. Historically, these
IRFs mainly targeted time-domain information for a single impact. The
earliest research on the injury mechanisms of concussion and skull
linear fractures was conducted through cadaveric experiments and led
to the development of the Wayne State Tolerance Curve (WSTC;
Gurdjian et al., 1966). This curve primarily considers linear acceleration
and duration of the head kinematics to describe the head injury.
Subsequently, a logistic regression model was used to establish an
IRF for the head injury criterion (HIC, Prasad and Mertz, 1985) based
on the resultant linear acceleration of the head. In recent years, the
development methods of IRFs have gradually shifted toward using
survival analysis (Petitjean et al., 2009; Petitjean and Trosseille, 2011;
Wu et al., 2021;Wu et al., 2022), and brain injury criteria have also been
established based on rotational kinematics, such as brain injury criterion
(BrIC, Takhounts et al., 2013), universal brain injury criterion (UBrIC,
Gabler et al., 2018), and diffuse axonal multi-axial general evaluation
(DAMAGE, Gabler et al., 2019), for assessing injury metrics. With a
deeper understanding of brain injury mechanisms, it is recognized that
given the incompressibility of brain tissue, deformation due to rotating
head kinematics is the main cause of brain injury (Alshareef et al., 2020;
Gennarelli et al., 1972). The censoring status (e.g., exact/uncensored,
left, and right) provided by survival analysis improves the reliability and
accuracy of data, while a well-fitted IRF distribution ensures zero risks of
injury for zero stimuli (Di Domenico and Nusholtz, 2005; Jean et al.,
2014). However, these kinematic-based and tissue-level metrics only
represent the tolerance to brain injury in single collisions. The metric
and tolerance for repetitive traumatic brain injury (rTBI) caused by
pedestrian collisions have yet to be reliably established through data
and methods.

Several innovative approaches have been proposed to develop
assessment metrics for rTBI through kinematic events. For instance,
metrics such as risk-weighted exposure (RWE, Stemper et al., 2019)
and cumulative head impact indices (CHIIs, Daneshvar et al., 2023)
have been developed to evaluate repetitive mild traumatic brain
injuries (rmTBIs) by quantifying the number of head impacts and
the intensity of linear and rotational accelerations. However, these
studies often employ linear superposition methods within a

nonlinear injury framework and limitations in the fidelity of data
acquisition (O’Connor et al., 2017). Current impact tests mainly rely
on measuring head kinematic responses of dummies equipped with
internal sensor arrays (Kanianthra et al., 1996). These dummies
simulate the connective tissue between the skull and the brain using
discrete mechanical components, such as springs and dampers,
while brain deformation is represented as a resonant mechanical
system operating at specific natural frequencies (Laksari et al., 2015;
Wu et al., 2020). However, it is crucial to recognize that the time and
frequency domains of head response can collectively describe the
characteristics of brain injury (Laksari et al., 2018; Li et al., 2024).
The maximum strain induced by brain surrogate materials is closely
related to the frequency characteristics of the kinematics applied to
the head (Laksari et al., 2015). Although time-domain correlated
information is vital for understanding subsequent injuries, it is not
the sole determining factor.

This study aims to develop a novel method to evaluate human
tolerance to repetitive mild and severe TBI by combining brain
injury criteria with wavelet packet transform (WPT) characteristics.
First, we used MADYMO and finite element (FE) modeling
techniques to reconstruct the pedestrian collision injury data.
Based on six degrees of freedom (6DOF) kinematics data of
pedestrian collision, the frequency domain characteristics of head
motion response are obtained by WPT. This method has strong
time–frequency localized decomposition ability and can accurately
extract the features of high- and low-frequency components. Then,
the rTBI metrics were established by combining the brain injury
criteria and tissue-level index, and their correlation was evaluated.
Second, we evaluated the discriminatory power of the rTBI metrics
included in the survival analysis using the area under the receiver
operating characteristic (ROC). Finally, we estimated human
tolerance to rTBI by developing IRFs through survival analysis
using the selected kinematic and tissue-level metrics. The
findings of this study will provide critical scientific evidence for
reinforcing rTBI criteria and formulating pedestrian safety
guidelines.

2 Materials and methods

2.1 Repetitive traumatic brain injury data

The data in this study are based on the depth reconstruction of
pedestrian collision accidents. A total of 72 accident cases were
collected from the video database of the Institute of Transportation
Medicine at the Chinese Army Medical University and the
Changsha Vehicle Accident Depth Investigation Database. All of
them were pedestrian collisions, and pedestrians collided with the
ground after colliding with the vehicle during the collision. The
selection criteria for the accident cases and their details are provided
in Supplementary Tables A1, A2.

2.2 Accident reconstruction

Two methods were employed to calculate the pre-impact speed
of vehicles in pedestrian collisions, namely, video frame rate analysis
and an initial estimate based on the kinetic energy theorem (the
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impact speed v (km/h) is given by v � 3.6 ×
�����
2μgL

√
, where μ is the

friction coefficient, g = 9.8 m/s2, and L is the braking distance; Li
et al., 2021). Using MADYMO software, multibody modeling was
conducted to reconstruct the kinematics of vehicles and pedestrians
in the 72 selected cases (Figure 1). Each multibody vehicle model’s
geometry was developed based on blueprints or actual
measurements of the respective accident vehicles, while the
stiffness characteristics of the components were derived from
crash block test data and subsystem test ratings reported in
previous studies (Peng et al., 2014; Li et al., 2021). The
pedestrian multibody models were scaled to match the height
and weight of the victims.

The initial conditions for the head prior to impact with the
vehicle and the ground were defined using the output data from
multi-body kinematic reconstruction (Figure 2). These included the
head’s triaxial linear and angular velocities and the relative center of
gravity position to the impact points. Among the 72 cases, the
vehicle types involved mainly consisted of SUVs, sedans, andMPVs.
To match the FE vehicle models as closely as possible to the
dimensions of the actual accident vehicles, three different FE
vehicle front models were utilized for the head-to-vehicle impact

simulations (Shi et al., 2018). The ground was simulated as a rigid
asphalt surface. All FE simulations were conducted using LS-DYNA
software (Ver. MPP R9.3.0, LSTC). In MADYMO, the body is used
to determine the head kinematics; in order to obtain the calculation
results quickly, only the head model extracted from the THUMS
AM50 V4.0 human body model was used for the head impact
simulations. The THUMS headmodel has been validated for its high
biofidelity (Iwamoto et al., 2015; Shi et al., 2020), ensuring reliability
and accuracy in this study.

2.3 Head injury metrics

To assess head injury, standard brain injury criteria were
utilized, including HIC based on linear acceleration, BrIC based
on angular velocity, and DAMAGE based on rotational acceleration.
The constraints and critical values for these injury metrics are
adapted from the corresponding studies (Prasad and Mertz, 1985;
Takhounts et al., 2013; Gabler et al., 2019), and a brief description of
each metric is provided in “Supplementary Appendix B.” The
calculation of these three brain injury criteria was automated

FIGURE 1
Comparison of reconstruction kinematics and video records.

FIGURE 2
THUMS finite element head model (version 4.0.2). Vehicle and ground collision boundary condition loading mode.
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using the MATLAB code (MATLAB v8.4.0, the MathWorks Inc.,
Natick, MA). The brain tissue level-based injury criterion, MPS, was
calculated using the LS-DYNA code.

2.4 Development of repetitive traumatic
brain injury metrics

The head impact causes mechanical resonance in the brain,
amplifying the relative motion between the brain and the skull, and
brain deformation is most sensitive in the low-frequency range.
Moreover, shear strain in brain tissue caused by low-frequency
exercise is considered to be the main cause of concussion and
diffuse axonal injury (Laksari et al., 2015; Laksari et al., 2018).
Therefore, we adopt WPT, also known as an optimal sub-band tree
structure, which is an efficient method to solve non-stationary
signals and low-frequency transient effects (Wang et al., 2019). It
further enhances the performance of the wavelet transform by
subdividing the high- and low-frequency components, thus
providing an improved time–frequency resolution to fully capture
the frequency characteristics of head movements. A detailed
description is provided in Supplementary Appendix B.

In pedestrian collision analysis, representing repetitive brain
damage is crucial, so it is necessary to preserve the traces of brain
injury caused by the pedestrian–vehicle impact to assess the severity
caused by the second impact with the ground. There is a significant
correlation between the wavelet packet transform energy (WPTE)
characteristics in the frequency domain and the head injury criteria
in the time domain (Li et al., 2024). We have utilized frequency-
domain characteristics to establish a connection between pedestrian
head impacts with vehicles and ground collisions. The contribution
of ground impact and vehicle impact to brain injury is independent
and can be accumulated. Based on the brain injury assessment value
calculated from the first impact, the ratio of the frequency-domain
total energy during the ground impact to the total energy of the
entire collision process was used as a cumulative weighting factor.
This factor was multiplied by the brain injury assessment value of
the second impact and then added to the initial value, thereby
integrating frequency-domain information into the traditional time-
domain injury assessment framework. Based on the WPTE, we
developed WPTE_HIC, WPTE_BrIC , WPTE_DAMAGE, WPTE_
MPS rTBI metrics, which are formulated as follows:

WPTE −HIC � HICcar +
∑2i−1

j�0 ∫ agroundi,j t( )
∣∣∣∣∣ ∣∣∣∣∣2dt( )

∑2i−1
j�0 ∫ ai,j t( )∣∣∣∣ ∣∣∣∣2dt( ) HICground, (1)

WPTE − BrIC � BrICcar +
∑2i−1

j�0 ∫ αgroundi,j t( )
∣∣∣∣∣ ∣∣∣∣∣2dt( )

∑2i−1
j�0 ∫ αi,j t( )∣∣∣∣ ∣∣∣∣2dt( ) BrICground,

(2)
WPTE −DAMAGE � DAMAGEcar

+
∑2i−1

j�0 ∫ αgroundi,j t( )
∣∣∣∣∣ ∣∣∣∣∣2dt( )

∑2i−1
j�0 ∫ αi,j t( )∣∣∣∣ ∣∣∣∣2dt( ) DAMAGEground,

(3)

WPTE −MPS � MPScar +
∑2i−1

j�0 ∫ αgroundi,j t( )
∣∣∣∣∣ ∣∣∣∣∣2dt( )

∑2i−1
j�0 ∫ αi,j t( )∣∣∣∣ ∣∣∣∣2dt( ) MPSground,

(4)
where i is the number of decomposition levels and j is the number of
sub-bands for the corresponding level. ai,j(t) is the resultant linear
acceleration response of the head during the whole pedestrian
collision, and αi,j(t) is the resultant angular acceleration response
of the head during the whole pedestrian collision. HICcar, BrICcar,
DAMAGEcar, andMPScar represent the assessment of brain injury
in vehicular contact, whileHICground, BrICground,DAMAGEground,
MPSground, agroundi,j(t), and αgroundi,j(t) represent the evaluation of
brain injury in ground contact.

2.5 Statistical analysis

The prediction of the kinematics-based metrics on the tissue-
level metrics (MPS) was assessed using the coefficient of
determination (R2) and the normalized root mean square error
(NRMSE, Takhounts et al., 2013; Gabler et al., 2019), calculated as
RMSE divided by the mean of the dependent variable. 1-NRMSE
values are reported, which range from 0 to 1, with higher values
indicating a better fit. ROC curves and the area under the curve
(AUC) were then used to evaluate the classification ability of rTBI
metrics for pedestrian collisions.

The risk curve of rTBI was obtained through parametric survival
analysis following the procedure outlined by the International
Organization for Standardization (ISO/TS 18506:2014). These
curves are derived from the best metrics of three variables: BrIC,
DAMAGE, and MPS. These variables are considered responses and
include the level of kinematics and tissue. All response data are
uncensored observational data. According to the International
Organization for Standardization (ISO/TR 19222:2021), injury
outcomes were divided into rmTBI with AIS scores of 2 and
3 and repetitive severe traumatic brain injury (rsTBI) with AIS
scores of 4 and 5 (See Supplementary Table SA2). The censored data
are divided according to the injury property description, and data
points that occur precisely within the defined injury cases are
considered uncensored. Those that occur after the measured
stimulus are called left-censored, whereas those that occur before
the measured stimulus are called right-censored. In the rmTBI cases,
AIS scores below 2 are considered right-censored, scores above 3 are
considered left-censored, and scores equal to 2 and 3 are considered
uncensored. In the rsTBI cases, AIS scores below 4 are considered
right-censored, scores above 5 are considered left-censored, and
scores equal to 4 and 5 are considered uncensored.

The cumulative distribution functions (CDFs) for Weibull, log-
normal, and log-logistic distributions are as follows:

Loglogistic: F x; α, β( ) � 1

1 + x
α( )−β, (5)

Lognormal: F x; μ, β( ) � 1
2

1 + erf
ln x( ) − μ

β
�
2

√( )( ), (6)
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Weibull: F x; α, β( ) � 1 − e−
x
α( )β x ≥ 0

0 x < 0

⎧⎪⎨⎪⎩ , (7)

where α is the shape parameter, β is the scale parameter, μ is the
location parameter, and x is the index of the rTBI response. For the
lognormal distribution, “erf” is expressed as the standard Gaussian
error function as follows:

erf t( ) � 2��
π

√ ∫t

0
e−x

2
dx. (8)

Based on the Akaike information criterion (AIC) and quality
index (QI), Weibull, log-normal, and log-logistic distributions were
evaluated, and the candidate metric probability distribution with the
lowest AIC is determined as the optimal distribution function
among the candidates. The positive and negative 95% confidence
intervals (CIs) of the estimated values of the best response variables
were calculated, and the normalized confidence interval sizes
(NCISs) quantified the average CI (u) curve and upper CI (UCI)
and lower CI (LCI) curve discrete probabilities of the points in terms
of NCIS as follows:

NCIS � UCI − LCI

u
( )

RiskLevel%
. (9)

The lower NCIS correlates more closely with the confidence
interval at the chosen probability level, which is calculated at the
seven risk levels, namely, 5%, 10%, 25%, 50%, 75%, 90%, and

95%. The DFBETA statistics were used to identify cases with
excessive effects. Distributional assumptions were checked using
Q–Q plots to test distributions graphically (“Q” stands for
quantile) and plot the cumulative risk calculated from
survival analysis for a given distribution against the
cumulative risk calculated from non-parametric maximum
likelihood estimation (NPMLE) for consistency assessment.
All survival statistical analyses described above were
performed using RStudio software (R, v.4.3.3).

3 Results

3.1 Assessment of tissue-level and
kinematics-based rTBI metrics

All pedestrian collision data (n = 72, Supplementary Table
SA3) were used to establish rTBI evaluation indicators according
to Equations 1-4, and the correlation analysis results based on
kinematic indicators (BrIC, DAMAGE, and HIC) and tissue level
indicators (MPS) are shown in Figure 3A. The correlation and
goodness-of-fit between WPTE_DAMAGE and WPTE_MPS are
high (R2 = 0.9443 and 1-NRMSE = 0.749), followed by WPTE_
BrIC (R2 = 0.9425 and 1-NRMSE = 0.740). However, the
correlation and goodness-of-fit for WPTE_HIC are poor (R2 =
0.6681 and 1-NRMSE = 0.183); therefore, it is not recommended.
Considering this, the rTBI metrics based on BrIC, DAMAGE, and

FIGURE 3
(a) Correlation and metric accuracy analysis of rTBI kinematics-based metrics WPTE_HIC, WPTE_BrIC, and WPTE_DAMAGE relative to the tissue-
level rTBI metrics WPTE_MPS. (b) ROC curve of rTBI metrics; rmTBI is shown on the left, and rsTBI is shown on the right. (c) Differences between the
assessment indicators in this study and existing criteria for real pedestrian collisions. For each box, the central band is the median, and the central
‘pentagram’ marker is the mean.
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MPS were mainly used in this study to develop IRFs. Figure 3B
shows the ROC curves for the classification of real pedestrian
collisions, with WPTE_MPS exhibiting the best accuracy, while
WPTE_DAMAGE and WPTE_BrIC show similar accuracy.
Finally, the differences between the rTBI metrics in this study
and the existing brain injury criterion assessment value were
compared (Figure 3C).

3.2 Statistical modeling: development of
repetitive brain injury risk curves

3.2.1 Assessment of the injury risk function
distribution assumption

Substantially different results can be obtained when
extrapolating outside the range of the observed data. In order
to recommend the most suitable method for predicting the
distribution of IRFs, we developed three CDFs based on
rmTBI and rsTBI metrics using survival analysis: Weibull
distribution, log-logistic distribution, and log-normal
distribution (Figure 4). Evaluation using the AIC and NPMLE
methods showed that the Weibull distribution had the lowest
AIC values for WPTE_BrIC and WPTE_DAMAGE, making it
the optimal IRF choice for these two metrics. For rmTBI, log-

normal distribution was found to be the optimal IRF for WPTE_
MPS, while for rsTBI, log-logistic distribution was preferred.
Overall, the IRF of WPTE_DAMAGE exhibited better quality
among all metrics with the lowest AIC value.

3.2.2 Assessment of influential observations and
check on the distribution assumption

When comparing IRF distribution assumptions in rTBI
metrics, Weibull distributions are the most optimal
distributions selected based on AIC values. We examined the
fitting results of the best distribution assumption through
influential observations, Q–Q plots, and the NPMLE method
(Supplementary Figure C1, C2). DFBETA statistics identified
influential samples in each rTBI metric dataset. However, these
samples did not significantly alter the IRF and were retained when
constructing the IRFs. The Q–Q plot showed a slight deviation
between percentile values of the optimal distribution and
corresponding percentile values of the rTBI metrics for WPTE_
DAMAGE and WPTE_MPS, with almost all points falling on a
straight line; however, WPTE_BrIC performed poorly. In
validating model fitting using the NPMLE method, WPTE_
DAMAGE had the highest log-likelihood value and the most
flexible fit, with its survival analysis cumulative risk graph
closely resembling that of NPMLE.

FIGURE 4
Comparison of the distribution of injury risk assumptions for rTBI metrics. Data points by censoring (circle): (a) rmTBI and (b) rsTBI.
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3.3 Injury threshold and quality index

Supplementary Tables C1, C2 provide data on other
probabilities, including the magnitude of NCIS. Figure 5 presents
a bar graph of the optimal distribution of NCIS. In rmTBI, the
quality index for seven risk probability levels is ‘fair’ and ‘good,’
while in rsTBI, the QI for all seven risk probability levels is ‘good.’
Table 1 presents the coefficients and quality index of optimal
distribution IRFs, with WPTE_DAMAGE being the best measure
for this set, and the predicted values of rmTBI and rsTBI 50% injury
risk are 0.494 and 0.678, respectively. The second is WPTE_MPS,
with predicted 50% injury risk values of 0.604 and 0.838,
respectively. The last is WPTE_BrIC, with predicted 50% injury
risk values of 1.085 and 1.513, respectively. In addition, as age
increases, the required metrics for injury occurrence instead
decrease (Figure 6). For Weibull distribution parameter outputs
from the survival analysis, see Supplementary Table C3. The formula
is given as follows:

P rmTBI |WPTEX,Age( ) � 1 − e
− WPTEX

eβ0+β1Age
[ ]λ

, (10)

P rsTBI |WPTEX ,Age( ) � 1 − e
− WPTEX

eβ0+β1Age
[ ]λ

, (11)
where WPTEX is the repetitive traumatic brain injury predictor
variable, β0 and β1 are the coefficients of the intercept and age
covariate, and λ is 1/(scale parameter).

4 Discussion

In this study, we developed a new approach utilizing pedestrian
collision data and WPT to establish metrics for assessing rTBI. The
uniqueness of this study, compared to existing brain injury criteria
(2019; Prasad and Mertz, 1985 Takhounts et al., 2013; Gabler et al.,
2018), lies in simultaneously considering both temporal and
frequency-domain features of 6DOF head kinematics, establishing

FIGURE 5
Normalized confidence interval size of IRFs for the optimal distribution: (a) rmTBI and (b) rsTBI.

TABLE 1 Model coefficient and quality index based on optimal distribution IRFs.

Injury Metric Scale (α,μ) Shape (β) 5% Risk (QI) 25% Risk (QI) 50% Risk (QI) AIC Optimal
distribution

rmTBI WPTE_BrIC 1.231 2.89 0.441 (0.83) 0.8 (0.39) 1.085 (0.24) 85.4 Weibull

WPTE_DAMAGE 0.564 2.778 0.194 (0.86) 0.36 (0.41) 0.494 (0.25) 67.55 Weibull

WPTE_MPS 0.508 −0.504 0.262 (0.67) 0.429 (0.39) 0.604 (0.30) 75.55 Log-normal

rsTBI WPTE_BrIC 1.688 3.349 0.695 (0.48) 1.164 (0.27) 1.513 (0.21) 80.19 Weibull

WPTE_DAMAGE 0.75 3.602 0.329 (0.45) 0.531 (0.25) 0.678 (0.20) 39.3 Weibull

WPTE_MPS 0.178 −0.177 0.496 (0.34) 0.689 (0.20) 0.838 (0.19) 46.95 Log-logistic

QI: based on the study by Petitjean and Trosseille. (2011), we can categorize the quality index of IRFs into four types, namely, ‘good’ (0–0.5); ‘fair’ (0.5–1.0); ‘marginal’ (1.0–1.5);

‘unacceptable’ (>1.5).

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Xiong et al. 10.3389/fbioe.2025.1548265

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1548265


a model for assessing rTBI. By assuming that both time- and
frequency-domain information of head kinematics are equally
important for brain injury assessment (Laksari et al., 2015;
Laksari et al., 2018), we overcome the limitations of evaluating
brain injury solely from a time-domain perspective, ensuring a more
comprehensive assessment of brain injury through the integration of
time-frequency analysis. Finally, three CDFs were used in survival
analysis to establish risk curves for rTBI tolerance assessment. We
examined goodness-of-fit measures through multiple approaches to
establish reliable and well-fitted IRFs.

Many previous studies have evaluated the correlation between
different kinematics-based metrics and MPS. HIC and BrIC are
based on empirical formulas rather than fundamental mechanical
principles. In most studies, HIC has a low goodness-of-fit (low R2,
Östh et al., 2023), which is expected since it is mainly used to predict
skull fracture injuries (Prasad and Mertz, 1985). Although BrIC has
a relatively high goodness-of-fit with MPS to some extent, it only
relies on peak head kinematics (Takhounts et al., 2013; Prasad et al.,
2024a) and cannot account for all possible brain injury scenarios
(Takhounts et al., 2013; Prasad et al., 2024b); it is only associated
with specific types, simplifying the description of brain injury events.
However, many recent research reports have found a high
correlation between DAMAGE, constructed based on second-
order systems, and MPS (Gabler et al., 2019; Östh et al., 2023;
Prasad et al., 2024a;Wu et al., 2022). DAMAGE considers the overall
complexity of head impact events in space and time and predicts

regional brain injury responses, ultimately assessing potential risks
of brain injury (Gabler et al., 2019). The results of this study
indirectly indicate that DAMAGE is the best-fitting metric for
MPS (Figure 3) and shows better predictive ability (Figure 4),
followed by BrIC, while HIC performs poorly. Compared with
other rTBI metrics established by combining frequency
characteristics, DAMAGE is still the most effective index for
quickly assessing the severity of head impact and predicting
brain deformation.

Among the rTBI metrics that combine frequency- and time-
domain characteristics of head kinematics, the DAMAGE- and
MPS-based rTBI metrics showed the best fit in parametric
survival analysis (Figure 4) and demonstrated optimal
distribution results (Supplementary Figure C1). Strain-based
tissue metrics such as MPS and CSDM are considered the most
effective metrics for predicting diffuse brain injury, including
concussion and diffuse axonal injury (DAI). They reflect the
relationship between the strain experienced by the human brain
during impact and brain tissue injury (Gennarelli et al., 1972;
Takhounts et al., 2013; Alshareef et al., 2020). Studies in various
animal models further confirm that head injuries primarily result in
diffuse axonal injury, and repeated impacts can also cause various
neurological injuries, such as traumatic vascular rupture, increased
neuronal excitability, and axonal injury (Fehily and Fitzgerald, 2017;
Daneshvar et al., 2023). These findings underscore the critical role of
strain in brain tissue injury, further supporting the potential

FIGURE 6
Injury probability of rTBI metrics as a function of predictor variables and separated by three age levels. Data points by censoring (circle). Probability of
injury = 1 corresponds to injury, and probability of injury = 0 corresponds to no injury: (a) rmTBI and (b) rsTBI.
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effectiveness of strain-based injury metrics in assessing repetitive
brain injuries. Additionally, frequency-based scaling methods
demonstrate greater superiority compared to scaling methods
based on mass or inertia ratios under biomechanical equivalent
loading conditions (Wu et al., 2020). Frequency loading methods
can more accurately interpret human responses to mechanical
trauma, and combining the frequency domain characteristics
with the strain-based metrics (DAMAGE and MPS) can establish
a potentially optimal method for assessing rTBI tolerance through
survival analysis.

In exploring the relationship between injury prediction factors
and injury risk through reconstructing real-world accidents, many
studies have primarily used simple logistic regression methods
(Prasad and Mertz, 1985; Peng et al., 2014; Li et al., 2021).
However, it is necessary to employ survival analysis for more
detailed injury severity and risk analysis. Takhounts et al. (2013)
derived two risk curves for BrIC from CSDM and MPS risk curves
based on the linear relationship between CSDM-BrIC and MPS-
BrIC in animal data, although the IRFs were a poor predictor (Wu
et al., 2020; Prasad et al., 2024a). Wu et al. (2022) applied survival
analysis to human and animal data to establish IRFs for BrIC,
DAMAGE, and MPS, which enhanced our understanding of human

brain injury tolerance and was applied in US-NCAP and Euro-
NCAP to evaluate the performance of cars. It is undeniable that
there are significant differences in the mechanisms of brain injury
caused by a single impact versus repeated impacts. Existing brain
injury standards also show discrepancies compared to the
assessment results of repeated brain injury measurements
(Figure 3C). However, the injury risk curve established through
parametric survival analysis (Figure 7) reveals that, despite the
mechanistic differences between single and repeated impacts,
there are still certain commonalities in the trend of injury risk
growth for both single and repeated impacts.

Standardizing these trends poses challenges due to variations in
the types of raw data used to establish IRFs for existing brain injury
criteria. In the IRFs of rmTBI (Figure 7A) and rsTBI (Figure 7B)
constructed using BrIC, the 50% thresholds of 1.085 and 1.513
(Table 1) for head injury risk are much higher than those
determined by Takhounts et al. (2013) based on CSDM
thresholds of 0.788 and 1.051, MPS thresholds of 0.529 and
1.059, and Wu et al.’s (2022) thresholds of 0.772 and 1.185.
According to reports, the IRF established by the BrIC mass
scaling method may not be applicable (Wu et al., 2020) because
lower thresholds often substantially overpredict brain injuries

FIGURE 7
Comparison between developed IRFs and those proposed in the literature. (a) Risk curve for mild brain injury based on BrIC. (b) Risk curve for severe
brain injury based on BrIC. (c) Risk curves formild and severe brain injuries based onDAMAGE. (d) Risk curves formild and severe brain injuries based onMPS.
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caused by repeated impacts in real-world scenarios (Prasad et al.,
2024b). For rTBI IRF based on DAMAGE (Figure 7C), the 50%
thresholds of 0.494 and 0.678 (Table 1) for head injury risk are
slightly higher than those predicted by Wu et al. (2022), which are
0.359 and 0.617; the predicted risks of existing threshold brain
injuries are too high compared to real-world experience (Prasad
et al., 2024a). However, differences in data censored in survival
analysis must be acknowledged. Wu et al. (2022) classified the injury
outcome as 1 (left-censored, injury) or 0 (right-censored, no injury).
This study used three outcomes for censoring states (left-censored,
right-censored, and uncensored). Differences in the classification of
data censored can affect the results (Petitjean et al., 2009; Petitjean
and Trosseille, 2011). Differences in diagnostic methods or AIS
scoring schemes and underestimation of injury risk in early NASS-
CDS database entries also influenced the results (Antona-Makoshi
et al., 2018). The severity assessment of injuries in kinematic data is
relatively conservative compared to the complexity and uncertainty
involved in real-world traffic accidents with repetitive collisions and
injury risks (Shang et al., 2020). Moreover, there is still a lack of rTBI
and biomechanical data to support these efforts.

For the rTBI Weibull distribution IRFs based on MPS
(Figure 7D), the thresholds 0.604 and 0.838 (Table 1), as well
as the thresholds 0.628 and 0.867 under the optimal distribution
(Supplementary Table C4), are lower than the thresholds
0.732 and 1.078 reported by Wu et al. (2022). Consistent with
the findings of Stemper et al. (2019), cumulative injury from
consecutive head impacts reduces head tolerance and increases
the risk of injury. Furthermore, age covariates should be
considered for repetitive brain injuries. With increasing age,
there are variations in the risk of a given rTBI (Figure 6).
Although further validation through postmortem human
subject experiments is needed, younger specimens require
greater impact conditions to result in injuries than older
specimens. In short, the IRF of the proposed WPTE_MPS can
be used to predict the risk of repetitive brain injury of a human
surrogate in a motor vehicle crash. With some necessary
optimizations, IRFs have the potential to guide vehicle-to-
pedestrian safety research.

There are several limitations to this study. First, only 72 cases of
traffic accidents were used, which cannot account for all injury
situations in repetitive collisions. Additionally, the study only
utilized the THUMS AM50 head model and did not consider the
actual age and gender differences in brain tissue, nor did it
adequately analyze the effects on the neck and other body parts
(Wu et al., 2020). Due to the complexity of rTBI mechanisms and
their cumulative effects on head injury tolerance, further exploration
is necessary to understand the pathological mechanism of brain
injuries in relation to biomechanics. This will help develop more
precise and effective protective measures to reduce both the
occurrence rate and severity of brain injuries in traffic accidents.

5 Conclusion

This study is the first to combine real-world pedestrian collision
data and WPT techniques to develop a new method that combines
time–frequency domain features of head kinematics and

biomechanical responses to assess human tolerance to TBI. The
findings are summarized as follows:

1) WPTE_MPS based on tissue-level metrics performs the best in
distinguishing the injury degree of rmTBI and rsTBI, followed
by WPTE_DAMAGE, which shows the best correlation and
fitting measures with WPTE_MPS.

2) The risk curves of mild and severe head injury based on
kinematic criteria (WPTE_BrIC and WPTE_DAMAGE)
and histological criteria (WPTE_MPS) were established.
The 50% probability thresholds for mild and severe head
injury were 1.085 and 1.513, 0.494 and 0.678, and
0.628 and 0.838, respectively. In addition, the smaller the
index required for injury to occur with increasing age, the
more the age covariate should be considered.

3) Standardizing these trends is challenging due to the differences
in the original data types used to establish IRFs. The threshold
of the rTBI metric based on BrIC and DAMAGE is higher than
that of a single collision, indicating that the existing literature
may overpredict the risk of brain injury in pedestrian
collisions. However, the threshold of the rTBI metric based
on MPS is lower than that of a single collision, which implies
that the prediction of tolerance to repetitive brain injury is
more consistent with tissue-level than head kinematics level,
and the existing literature may underestimate the risk of brain
injury in pedestrian collisions.
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