![Man ultramarathon runner in the mountains he trains at sunset](https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png)
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Bioeng. Biotechnol.
Sec. Biosensors and Biomolecular Electronics
Volume 13 - 2025 | doi: 10.3389/fbioe.2025.1547248
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The rapid and accurate detection of SARS-CoV-2 remains a critical challenge in biosensing technology, necessitating the development of highly sensitive and selective platforms. In this study, we present a mathematical modeling approach to optimize a MoSe₂based Surface Plasmon Resonance (SPR) biosensor for detecting the novel coronavirus at nM scale. Using the Transfer Matrix Method (TMM), we systematically optimize the biosensor's structural parameters, including silver (Ag), silicon nitride (Si₃N₄), molybdenum diselenide (MoSe₂), and thiol-tethered single-stranded DNA (ssDNA) layers, to enhance sensitivity, detection accuracy, and optical performance. The results indicate that an optimized 45 nm Ag layer, 10 nm Si₃N₄ layer, and monolayer MoSe₂ configuration achieves a resonance shift (Δθ) of 0.3° at 100 nM, with a sensitivity of 197.70°/RIU and a detection accuracy of 5.24 × 10⁻².Additionally, the incorporation of a 10 nm ssDNA functionalization layer significantly enhances molecular recognition, lowering the limit of detection (LoD) to 2.53 × 10⁻⁵ and improving overall biosensing efficiency. Sys₅ (MoSe₂ + ssDNA) outperforms Sys₄ (MoSe₂ without ssDNA) in terms of specificity and reliability, making it more suitable for practical applications. These findings establish the MoSe₂-based SPR biosensor as a highly promising candidate for SARS-CoV-2 detection, offering a balance between high sensitivity, optical stability, and molecular selectivity, crucial for effective viral diagnostics.
Keywords: Surface Plasmon Resonance, MoSe2, silicon nitride, SARS-CoV-2, biosensor, TMM Approach
Received: 19 Dec 2024; Accepted: 11 Feb 2025.
Copyright: © 2025 Vacacela Gomez, Tene, Bonilla, Marcatoma Tixi, Dávalos Villegas and Bellucci. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Cristian Vacacela Gomez, National Laboratory of Frascati (INFN), Frascati, Italy
Talia Tene, Universidad Técnica Particular de Loja, Loja, 1101608, Loja, Ecuador
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.