
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Bioeng. Biotechnol.
Sec. Biomaterials
Volume 13 - 2025 | doi: 10.3389/fbioe.2025.1546060
This article is part of the Research Topic Advancing Cartilage Regeneration and Repair: Biomaterials and Biomechanical Strategies View all articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Introduction: Investigations on the articular cartilage (AC) frictional properties contribute to a better understanding of knee joint functionality. We identified the need for a tribological setup that allows for friction measurements on curved AC surfaces, without disrupting its structural integrity, under orthogonal contact conditions and controlled normal force application. Therefore, a robotic-based tribometerthe TriBotwas developed and validated in a two-part proof-of-concept study.Methods: First, the friction coefficients of polyoxymethylene pins on three different polyamide (PA) shapes were determined for validation purposes. Second, the frictional properties on porcine tibial plateaus were investigated. Trajectories on the medial and the lateral tibial surface were tested in the intact cartilage state and after inducing an anteromedial local defect.Results: No significant differences in the friction coefficients of the PA samples were found. Inducing an anteromedial cartilage defect significantly increased friction on the affected trajectories (+ 30 %, p < 0.05). Discussion: Our findings showed that the robotic tribometer is suitable for friction measurements on complexly shaped samples and that the system can detect differences in cartilage friction due to structural tissue damage. Overall, the robotic tribometer has the potential to advance our understanding of the knee joint's friction-related functionality.
Keywords: Friction, articular cartilage, robotic, Tribometer, Tissue integrity, Osteoarthritis
Received: 16 Dec 2024; Accepted: 21 Mar 2025.
Copyright: © 2025 de Roy, Moritz, Schwer, Schlickenrieder², Ignatius and Seitz. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Andreas Martin Seitz, Institute of Orthopedic Research and Biomechanics, Faculty of Medicine, University of Ulm, Ulm, 89081, Germany
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.