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Introduction: Accurate prediction of joint torque is critical for preventing
injury by providing precise insights into the forces acting on joints during
activities. Traditional approaches, including inverse dynamics, EMG-driven
neuromusculoskeletal (NMS) models, and standard machine learning
methods, typically use surface EMG (sEMG) signals and kinematic data.
However, these methods often struggle to reveal the complex, non-linear
relationship between muscle activation and joint motion, particularly with
complex or unfamiliar movements. The generalization of joint torque
estimation models across different individuals faces a significant challenge,
as feature transferability tends to decline in higher, task-specific layers,
reducing model performance.

Methods: In this study, we proposed a CNN-GRU-Attention neural network
model combining a neuromusculoskeletal (NMS) solver-informed (hybrid-
CNN) augmented with transfer learning, designed to predict knee joint
torque with higher accuracy. The neural network was trained using EMG
signals, joint angles, and muscle forces as inputs to predict knee joint torque
in different activities, and the predictive performance of the model was
evaluated both within and between subjects. Additionally, we have
developed a transfer learning method in the inter-subject model, which
improved the accuracy of knee torque prediction by transferring the learning
knowledge of previous participants to new participants.

Results: Our results showed that the hybrid-CNN model can predict knee joint
torque within subjects with a significantly lower error (root mean square error
≤0.16 Nm/kg). A transfer learning technique was adopted in the inter-subject
tests to significantly improve the generalizability with a lower error (root mean
square error ≤0.14 Nm/kg).

Conclusion: The transfer learning-enhanced CNN-GRU-Attention with the NMS
model shows great potential in the prediction of knee joint torque.
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1 Introduction

Accurate estimation of knee joint torque is important not only
for understanding joint function but also for developing effective
rehabilitation strategies and preventing injuries. Electromyography
(EMG) signals provide insight into the electrical activity of muscles
during contraction, which is intrinsically linked to the force
produced by these muscles. Muscle force subsequently
contributes to joint torque via the biomechanical leverage
inherent in the musculoskeletal system, establishing EMG as a
critical indicator of torque generation (Prilutsky and Gregor,
2000). Torque reflects the forces exerted by the surrounding
muscles, making it a key factor in both athletic performance and
the progression of joint conditions such as osteoarthritis (McErlain-
Naylor et al., 2021; Zaman et al., 2022), evaluation of surgical
outcomes (Berning et al., 2021) and design of exoskeletons or
prostheses (Sartori et al., 2018; Yao et al., 2018; Pizzolato et al.,
2019). Traditionally, the accurate measurement of knee joint torque
has required specialized equipment, making it difficult to achieve
real-time applications. Thus, predicting knee joint torque using
electromyography (EMG) signals and advanced computational
models has become an attractive solution.

Current methods for estimating knee joint torque mainly fall
into two categories: EMG-driven neuromusculoskeletal (NMS)
modeling and deep learning techniques. EMG-driven NMS
models aim to capture the complex interactions among muscles,
tendons, and joints by relating muscle activation signals to joint
torque. While these models are highly informative, their application
often involves intricate calibration procedures and the precise
determination of numerous physiological parameters, such as
muscle dynamics and kinematic variables, making their
implementation both intricate and time-consuming. (Jung et al.,
2022; Zhang et al., 2022; Zhao et al., 2023). The NMS model must
first be calibrated through individual experiments to obtain
personalized parameters, such as the optimal fiber length,
optimal feather angle, maximum isometric contraction force, and
tendon relaxation length before the personalized model can be used
to estimate muscle force and joint torque (Serrancolí et al., 2016; Ao
et al., 2022; Ao et al., 2023). Therefore, it is expected that the NMS
model is lack of generalization for inter-subject predictions. This
complexity can make them time-consuming to set up, limiting their
practicality for real-time applications in clinical settings.

To address the time-consuming issues of physics-based
musculoskeletal models, data-driven models have also been
popular. These models can effectively capture nonlinear
relationships between inputs such as joint angles and EMG
signals, and outputs such as joint torques. Several studies used
neural networks for the prediction of knee flexion angles or
torques in able-bodied subjects (Dzulkifli et al., 2018; Xu et al.,
2018; Hajian et al., 2021; Zhang et al., 2021; Schulte et al., 2022).
Huang et al. (2019) proposed a deep-recurrent neural network for
the prediction of knee joint angles in real-time. The model used
EMG signals together with inertial data from different activities and
reported a root mean squared error of 2.93° over a range of
approximately 60° (4.9% error). Gautam et al. (2020) used a
Long-term Recurrent Convolution Network to classify
movements and predict their corresponding knee joint angles,
based on EMG. They reported an average mean absolute error of

8.1% in the knee angle prediction of healthy subjects. Zhang et al.
(2021) developed an artificial neural network for the prediction of
ankle torque from EMG. Root mean squared error (RMSE) values in
a range of approximately 1.5 Nm/kg were found for ankle plantar-
and dorsiflexion. All these studies indicate that machine learning
can be a valuable tool in predicting knee torque or knee angle.
However, machine learning models do not account for the
underlying mechanisms that link EMG signals to torque generation.

To address this issue, we propose a hybrid modeling approach
that combines Convolutional Neural Networks (CNNs), Gated
Recurrent Units (GRUs) and Attention mechanism with the
NMS model. This innovative framework seeks to integrate the
strengths of both NMS modeling and deep learning models,
offering a more effective tool for estimating knee joint torque.
The CNN component excels in extracting features from time-
series data, while the GRU is well-suited for modeling temporal
dependencies in joint movements. The Attention mechanism
enhances the model’s ability to focus on key time points and
significant features, improving prediction accuracy. However, the
effectiveness of generalized models often diminishes significantly
when applied to novel, previously unseen data, highlighting their
limitations in handling unfamiliar scenarios. A notable example of
this phenomenon can be seen in the work of Su et al. who introduced
a Long Short-Term Memory (LSTM) model aimed at forecasting
gait trajectories and phases over several future time frames (Su and
Gutierrez-Farewik, 2020). Their findings indicated a significant
reduction in the model’s performance when subjected to inter-
subject testing, highlighting the challenges associated with
applying the model to unfamiliar data. In response to this issue,
researchers have increasingly turned their attention to transfer
learning techniques in recent years. Soleimani et al. proposed a
transfer learning framework that outperformed in the inter-subject
scenarios. Transfer learning has emerged as an effective technique
that utilizes knowledge from previous tasks to address challenges
such as small sample sizes (Wu et al., 2023). By leveraging pre-
trained models with characteristic parameters, this approach
enhances the generalization capabilities of LSTM models,
improving their performance across diverse and dynamic scenarios.

For addressing two key challenges: 1) the lack of personalized
information in traditional machine learning models; 2) the
performance degradation when testing on unseen data, we have
developed a hybrid deep learning model that integrates transfer
learning, CNN-GRU-Attention, and a musculoskeletal model. The
objectives of this study are: 1) to compare the accuracy of knee joint
torque prediction using a deep learning model integrated with a
calibrated musculoskeletal model versus a standard deep learning
model; 2) to investigate whether incorporating transfer learning
improves the prediction accuracy of the model across subjects.

2 Materials and methods

2.1 Experiment setup

We used the GPOWER software (3.1.9.7) to calculate the sample
size according to pre-experiment, and the sample size was calculated
as 9. Ten healthy volunteers (age: 24 ± 3 years, height:1.74 ± 0.06 m,
weight:70.9 ± 7.0 kg) were recruited for this study finally and the
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power with 10 subjects was 0.86. All participants provided informed
consent prior to participation, and the study was approved by
Capital Medical University. Participants were free of any
musculoskeletal or neurological impairments, and none reported
any recent injuries that could impact gait or knee function. Two
movements were performed by each participant: isometric knee
flexion-extension and walking at varying speeds. A 3D motion
capture system (Vicon, Oxford, United Kingdom) and force
plates (AMTI, USA) were used to record the kinematic and
kinetic data of each task as shown in Figure 1.

Participants performed isometric contractions of the knee
extensor and flexor muscles using a dynamometer (Biodex,
System 4, Shirley, NY, USA). The knee joint was positioned at
30, 45, 60, 75 and 90-degree flexion angles, and participants were
instructed to exert maximal voluntary isometric contraction
(MVIC) for 5 s. A total of 3 trials were conducted with 3-
minute rest intervals between trials. Torque output was
recorded continuously to capture peak isometric strength and
time-to-fatigue. We placed seven EMG electrodes on the medial
gastrocnemius, lateral gastrocnemius, biceps femoris,
semitendinosus, rectus femoris, vastus medialis, and vastus
lateralis using a wireless surface EMG system at a 1,500 Hz
sampling frequency in the two types of movements. Following
the isometric tests, participants walked on an instrumented
treadmill at three different speeds (0.8 m/s, 1.2 m/s, and

1.4 m/s). Each walking trial lasted 3 min, and participants
were given a 2-minute rest between trials. 3D kinematic data
were collected using the motion capture system, with reflective
markers placed on the lower limbs according to the Plug-in Gait
model. Ground reaction forces were recorded simultaneously
with the force plates.

2.2 Data processing

The raw EMG data were band-pass filtered (20–450 Hz) to
remove noise, followed by full-wave rectification. Signals were then
normalized to MVIC values and a low-pass filter (6 Hz) was applied
to obtain the envelope (Mantoan et al., 2015; Derrick et al., 2020).
Kinematic data collected from the motion capture system during the
gait trials were processed using OpenSim (v4.3), an open-source
musculoskeletal modeling software (Pizzolato et al., 2016). Reflective
markers were placed on the lower limbs according to the Plug-in
Gait model. Inverse kinematics (IK) were performed in OpenSim to
compute joint angles based on the 3D marker trajectories. Using
inverse dynamics (ID), the net joint moments at the knee were
calculated by combining the kinematic data with the ground
reaction forces recorded from force plates. The muscle force used
in this study is calculated using OpenSim’s Computed Muscle
Control (CMC) tool.

FIGURE 1
Showsmarker and EMG sensor placement and plug-in-gait model based on capturedmarker positions. (A) represents the processing process of 3D
motion capture data; (B) shows a model of reflective marker points used in plug-in gait; (C) shows the position of the EMG sensor in the acquisition
process; (D) shows a 3D motion capture laboratory scene.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Xie et al. 10.3389/fbioe.2025.1530950

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1530950


2.3 Neural network architecture: CNN-GRU-
attention model for torque prediction

In this study, a CNN-GRU-Attention model was established to
predict knee joint torque. As shown in Figure 2, the model consists
of A CNN, GRU and attention mechanism to perform regression on
EMG and angle time series data. Firstly, CNN extracts feature from
each input variable capturing local characteristics. GRU then
captures long-term dependencies in the data. Finally, the
attention module weights and sums the importance of input

variables to enhance prediction performance. The model maps
the features to the output variable space through dense layers.
The personalized model used in this study is derived from
previous work that employed an EMG-driven musculoskeletal
model to calculate knee torque and reduce experimental
measurement errors through an optimization algorithm.

2.3.1 Convolutional neural networks (CNN)
The CNN is designed to extract spatial features from the time-

series EMG signals, which are structured as 2D arrays where one

FIGURE 2
(A) Architecture of knee joint torque framework based on CNN-GRU-Attention network. For the hybrid-CNN model, computed muscle force
through the physics-based calibrated NMS model was added. Panel (B) Network structure of CNN-GRU-Attention combined with transfer learning. We
extracted layers from a pre-trained model and transferred it to the target model. In the target model, we tuned learning rate and retrained the last dense
layer with data from the target subject.
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dimension represents time and the other represents multiple EMG
channels. The CNN architecture consists of several 2D
convolutional layers with 3 × 3 convolution kernels. These
kernels slide across the EMG data, detecting localized patterns
related to muscle activation that are crucial for predicting joint
torque. Each convolutional layer is followed by a Rectified Linear
Unit (ReLU) activation function, which introduces non-linearity to
the model. This helps the CNN capture complex relationships
between muscle activation signals and torque output. The ReLU
function is defined as Equation 1:

ReLU � max 0, x( ) (1)
To further reduce the dimensionality of the feature maps while

retaining important information, max-pooling layers with a 2 ×
2 window size are incorporated after specific convolutional layers.
Max-pooling selects the maximum value within each 2 × 2 region,
effectively down sampling the feature maps and mitigating
overfitting.

The CNN architecture consists of alternating 2D convolutional
layers and max-pooling layers, allowing the model to progressively
reduce spatial dimensions while capturing increasingly complex
patterns in the EMG signals. The convolution operation for the
input 2D array X is expressed as Equation 2:

fi,j � ReLU ∑3
m�1

∑3
n�1

ωm,n · xi+m−1,j+n−1 + b⎛⎝ ⎞⎠ (2)

where ωm,n represents the 3 × 3 kernel, x is the input data, and b is
the bias term. The output fi,j forms the resulting feature map at
position (i, j).

2.3.2 Gated recurrent unit (GRU)
The gate recurrent unit (GRU) network is a simplified version

of the long short-term memory (LSTM) network, sharing similar

functionalities and gating mechanisms. It will acquire a faster
training speed and make fewer errors than LSTM because of the
fewer parameters considered (Xu et al., 2021). At the same time,
owing to fewer parameters, the fitting effect of GRU is better than
that of the LSTM with fewer original data (Choe et al., 2021).
Figure 3 illustrates the structural relationship within the GRU
unit at time t, where zt and rt represent the update and reset gate
respectively which selectively remember or forget information,
thereby mitigating the problems of vanishing and exploding
gradients through the gating mechanism; ht denotes the
hidden state information of the GRU unit at this moment,
while represents candidate state information. Nonlinear
activation functions σ and tanh are applied to implement their
respective functions in update gate zt and reset gate rt by utilizing
previously hidden state information ht-1 and current input xt. The
update gate determines the allocation ratio between hidden state
information ht at time t-1 and candidate state information at time
t; a higher value retains more information from time t-1.
Similarly, the reset gate controls the correlation degree
between candidate state information at time t and hidden state
information ht-1 at time t-1; a lower value leads to greater
forgetting of past information at time t; a higher value retains
more information from time t-1.

The calculation procedure of the forward pass in a GRU
architecture can be expressed by the (Equations 3–6).

rt � σ ωr · ht−1, xt[ ]( ) (3)
zt � σ ωz · ht−1, xt[ ]( ) (4)

h̃t � tanh ω · rtpht−1, xt[ ]( ) (5)
ht � 1 − zt( )pht−1 + ztph̃t (6)

where, ωr, ωz and ω are corresponding weight matrices; * represents
matric multiplication.

FIGURE 3
Shows the basic structure of GRU, the star (*) symbol denotes element-wise multiplication.
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2.3.3 Attention mechanism
The attention mechanism is a widely used technique in the

field of sequence data processing (Liu and Guo, 2019). Its basic
idea is to dynamically assign weights, so as to selectively focus on
specific parts of the input sequence. This method allows the
model to deal with long-distance dependency problems more
effectively, thereby improving the performance of sequence
modeling. By calculating the similarity between any two
positions, the attention mechanism can capture long-distance
dependency relationships and is not limited by the sequence
length. It is also suitable for processing various feature data and
can flexibly adjust the weights of each feature to enhance the
model’s performance and adaptability.

2.3.4 Transfer learning
A transfer learning technique was employed to adapt the hybrid

model for different participants in predicting knee joint torque. The
pre-trained model on EMG data from certain subjects (S1, S2, . . .,
Sp), was designed to capture general patterns in EMG relevant to
torque prediction. For a new participant (St), only the final dense
layer of the model was re-trained. With this approach, all layers of
the pre-trained CNN-GRU -attention model, including
convolutional, recurrent (GRU), and attention layers, were
retained. However, the dense layer at the output, responsible for
mapping the learned features to the torque prediction, was
reinitialized and re-trained from scratch using the data from new
subjects. The remaining layers were fine-tuned to adjust to the

FIGURE 4
(A) The training and testing data hybrid-CNN model for five different cases in intra -subject prediction; (B) the training and testing data of hybrid-
CNN model for five different cases in inter-subject prediction. Intra-subject prediction: For each case, different movements were used to train model.
Models were trained by using data from eachmotion separately, and tested on the same typemotions at different speeds, for each user individually. Inter-
subject prediction without transfer learning: Models were trained for each movement of multiple subjects except one (leave-one-out cross-
validationmethod), and then tested on the same typemotions for the remaining new subject. Inter-subject predictionwith transfer learning: Models were
pre-trained for each movement on multiple users except one, and were shared to a new user with a common structure. We then re-trained models with
data from the same motion of the new participant.
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specific characteristics of the new subject while maintaining the
knowledge acquired from previous subjects.

2.3.5 Hyper parameters tuning for model
Hyperparameter tuning was conducted using a coarse-to-fine

random search to optimize the CNN-GRU model for predicting
knee joint torque from EMG signals (Bergstra and Bengio, 2012).
The model was trained with a batch size of 512, using the Adam
optimizer with an initial learning rate of 10−3, which was reduced to
10−4 during the transfer learning phase. The mean squared error
(MSE) loss function was used to minimize prediction error. The
tuning process explored a wide range of hyperparameters, including
learning rates, CNN kernel sizes, and GRU units, followed by a
refined search in promising regions. The model training was limited
to 1000 epochs, after which optimization was stopped, and early
stopping was applied to prevent overfitting based on validation loss.

2.4 Evaluation framework

The study examines the accuracy of torque estimation by
standard-CNN and hybrid-CNN models under two scenarios:
intra-subject and inter-subject. In the inter-subject predictions,
transfer learning is introduced to assess and compare the
estimation accuracy of both models. For a detailed testing
protocol, please refer to Figure 4.

2.4.1 Intra-subject prediction
The model is trained on different movement variations within a

single type of activity and tested on remaining variations.
Specifically, two trials are used for training, while one trial serves
as validation data.

2.4.2 Without transfer learning
Both deep learning models were trained for each movement of

multiple subjects except one (leave-one-out cross-validation
method) and then tested on the same type of motions for the
remaining new subject.

2.4.3 With transfer learning
Both deep learning models were pre-trained for each movement

on multiple subjects except one. We then re-trained the model using
data from the same type of motion of the new subject and tested it on
the remaining trials.

For each model, the prediction error is calculated as the root
mean square error (RMSE) calculated as Equation 7 between
predicted and measured joint torques, with the latter obtained via
inverse dynamics. This RMSE is then normalized by body weight. To
assess differences in prediction error between models, a paired-
sample t-test is applied, with significance determined at the
p < 0.05 level.

ERMS �

�������������
1
N

∑N
i�1

yp,i − yi( )2√√
(7)

3 Results

3.1 Intra-subject prediction performance

Overall, compared to the standard-CNN model, the torque
predictions from the hybrid-CNN model significantly
demonstrated a superior agreement with the torque calculated

FIGURE 5
Violin plots depicting the distributions of RMSEs between predicted andmeasured joint torque (normalized by bodymass) across subjects during five
movements in the intra-subject scenario. p indicates a significant difference between two cases.
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through inverse dynamics at movement tests and smaller RMSE was
observed in Figure 5 (hybrid-CNN: RMSE = 0.13Nm/kg, standard-
CNN: RMSE = 0.21 Nm/kg). In all trained motions, the predicted
accuracy by hybrid-CNN was significantly higher than that of the
NMS. (slow walking: p = 0.004, self-selected speed walking: p =
0.004, fast walking: p < 0.0001, isometric knee extension 30°: p =
0.028, isometric knee extension 60°: p = 0.028). Compared to the
standard CNN, the hybrid CNN did not always demonstrate
superior prediction accuracy. It is worth noting that a worse
predicted torque agreement with actual torque by the hybrid-
CNN model and standard-CNN model was found in some tested
motions, such as self-selected speed walking in Gaitfast case and fast
walking in Gaitslow case (Figure 6).

3.2 Inter-subject prediction performance

Overall, the torque prediction error from the standard CNN
model was higher than that from the hybrid CNN model before
adopting transfer learning. It clearly showed that the standard CNN
model performed worst in almost test scenarios (Figures 7, 8). In
almost trained motions, the prediction accuracy by standard-CNN
was significantly worse compared to hybrid CNN (slow walking: p =
0.038, self-selected speed walking: p = 0.011, fast walking: p = 0.025,
isometric knee extension 30°: p = 0.028, isometric knee extension 60°:
p = 0.028). In the tested movements, the standard CNN generally
had worse prediction accuracy than the hybrid CNN model. The
RMSE between predicted and calculated torque from inverse

FIGURE 6
One example trial of measured (computed by inverse dynamics) and estimated joint torque via models during five movements in intra-subject
scenario. For each case, the motion used as training data was framed with a dashed box and others are testing data.
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dynamics in the standard-CNN and hybrid-CNN model was
0.225 Nm/kg and 0.172 Nm.kg respectively.

After adopting transfer learning in both models, the predicted
torque showed good agreement with the calculated and the RMSE
had decreased wherein the standard-CNN had poorer accuracy in
some movements compared to the hybrid-CNN model in terms of
Figures 9, 10. The RMSE between predicted and calculated torque
from inverse dynamics in the standard-CNN and hybrid-CNN
model was respectively 0.168 Nm/kg and 0.12 Nm/kg and the
prediction error significantly decreased 28.49% and 25.43% (p <
0.001) respectively.

4 Discussion

This study proposed a modeling method of transfer learning
combined with convolutional neural networks-recurrent neural
networks-attention mechanism (CNN-GRU-Attention) for the
prediction of knee joint torque with much higher accuracy. This
approach enhances model accuracy and generalization, particularly
in predicting joint torque across diverse individuals and movement
scenarios. This method extracts the common knowledge from a set
of data through the pre-training of the network model, and
extrapolates the knowledge to the target by fine-tuning (FT) of
the network parameters, so as to quickly obtain a new adaptive
model to realize the data feature transfer learning with small
samples. The muscle forces calculated through the
musculoskeletal model are entered into the model as features,

and the performance between using (hybrid-CNN) and not using
the muscle force model (standard-CNN) is compared. We observed
a decline in torque prediction performance when extending the
model to inter-subject scenarios. To address this issue, we
implemented transfer learning, which significantly improved
prediction accuracy and enhanced the generalization capability of
the proposed model.

Gated recurrent unit (GRU) networks are frequently employed to
predict joint torque and other sequence-based data in biomechanics.
Serving as a model-free alternative to EMG-driven NMSmodels, GRUs
enable direct mapping of EMG signals to joint torques, thus supporting
real-time applications. Unlike NMS approaches, GRUs do not explicitly
model physiological relationships, such as muscle excitation-activation
dynamics, muscle force-length properties, and muscle-tendon
kinematics at various joint angles. By contrast, NMS models are
typically customized to individual subjects, using experimental data
to refine parameters like optimal muscle fiber length and tendon slack
length, thereby improving joint torque predictions on a subject-specific
basis (Pizzolato et al., 2015; Hoang et al., 2018). Due to the individual
calibration, NMS models are rarely evaluated for cross-subject
generalizability. However, for situations requiring precise, subject-
specific accuracy, NMS-based methods are often the preferred
choice. Integrating muscle forces derived from musculoskeletal
(MSK) models with EMG signals and joint angles as inputs to deep
learning models significantly improves knee joint torque prediction
over standard CNNs. As shown in Figure 5, the mean RMSE is
0.178 Nm/kg, 0.15 Nm/kg and 0.157 Nm/kg in the case of Gaitslow,
Gaitself and Gaitfast using hybrid-CNN. Also, the mean RMSE is

FIGURE 7
Violin plots depicting the distributions of RMSEs between predicted and measured joint torque without transfer learning (normalized by body mass)
across subjects during five movements in inter-subject scenario. p indicates a significant difference between two cases.
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0.255 Nm/kg, 0.231 Nm/kg and 0.217 Nm/kg in the case of Gaitslow,
Gaitself and Gaitfast using standard-CNN. The prediction error
decreased 18%, 35.06% and 27.64% respectively in intra-subject
scenarios. This enhancement stems from incorporating
physiologically meaningful data that better reflects the human
musculoskeletal system. Muscle force serves as a crucial intermediate
variable that bridges the complex relationship between muscle
activation and joint dynamics, allowing the model to capture non-
linear biomechanical interactions more effectively. Combining EMG
and joint angles with MSK-derived muscle force provides a multi-
source input approach, offering comprehensive insights intomovement
phases and muscle responses, thus reducing prediction errors.
Moreover, muscle force data help the model adapt to inter-subject
variability and unseen movement patterns, enhancing robustness
against data distribution shifts.

As expected, when transfer learning was not adopted, inter-
subject torque prediction performance was less accurate than that of
intra-subject prediction, regardless of which hybrid-CNN model

was used. Without transfer learning, both hybrid- and standard
CNN were trained using data from previous experiences/subjects
but none from the new subject. Therefore, it is to be expected that
the torque prediction would be less accurate than the calculated
from inverse dynamics. When transfer learning was implemented,
the joint torque prediction performance was significantly improved
in almost all cases as shown in Figure 9.When using the hybrid CNN
model, the mean RMSE was 0.123 Nm/kg and 0.172 Nm/kg
respectively with and without transfer learning. It can be
concluded that the predictive error has significantly reduced by
28.49%. Similarly, when using the standard CNN model, the mean
RMSE was respectively 0.168 Nm/kg and 0.225 Nm/kg with and
without transfer learning. It can be concluded that the predictive
error has witnessed a significant reduction of 25.33%. Transfer
learning enhances adaptability across patient populations by
enabling models to fine-tune efficiently on specific datasets,
reducing the need for extensive data collection. Techniques such
as model pruning and lightweight architectures ensure low-latency

FIGURE 8
One example trial of measured (computed by inverse dynamics) and estimated joint torque via models without transfer learning during five
movements in inter-subject scenario. For each case, the motion used as training data was framed with a dashed box and others are testing data.
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performance, critical for real-time tasks like prosthetic control, gait
analysis, and rehabilitation monitoring. Additionally, transfer
learning improves generalization to diverse clinical conditions,
supporting applications such as fall risk prediction, post-surgical
mobility assessment, and remote monitoring of chronic conditions.

Muscle coordination patterns can be expected to vary across
subjects (Safavynia et al., 2011; Rugy et al., 2012), thus, the standard-
CNN model may not have sufficient generalizability without
information from a new subject in the training process,
particularly when training data sets with other subjects are not
rich enough. Transfer learning is a common approach in inter-
subject cross-validation, improving the generalization of neural
networks by transferring knowledge from one domain (previous
subjects) to another (new participants) (Soleimani and Nazerfard,
2021). This approach effectively mitigates the decline in predictive
accuracy observed when evaluating models on previously unseen
data. A study by Kian et al. found that the effectiveness of EMG-
driven NMS model calibration is task-dependent, suggesting the use
of diverse tasks to optimize musculotendon and EMG-to-activation
parameters (Kian et al., 2021). However, individuals with disabilities
may struggle to perform a wide range of tasks. Transfer learning
proves especially valuable when collecting large datasets from new
subjects or movements is costly, time-intensive, or challenging, as in
the case of motor disabilities. By incorporating transfer learning,
joint torque prediction accuracy was significantly improved.

One limitation of this study lies in the relatively small sample size,
whichmight restrain the diversity of the input data and, accordingly, the
model’s capacity to capture a broader range of variability in
biomechanical and physiological characteristics. Additionally, the

participant group was confined to young adults, which precludes the
exploration of how age-related factors, such as alterations in muscle
strength or joint stiffness, could impact the model’s performance. Also,
the accuracy of this model is verified only in different walking speeds
and isometric test movements. Future studies should expand the dataset
to include older adults, different movement such as jumping and
running, pediatric populations, and individuals with musculoskeletal
or neurological conditions. These diverse cohorts would allow us to
assess the model’s robustness and adaptability across a broader range of
biomechanical patterns, ultimately enhancing its clinical applicability.

5 Conclusion

This study developed an advanced hybrid neural network model
that integrates biomechanical parameters from an NMS with CNNs
to enhance knee joint torque prediction accuracy. The results reveal
that the hybrid model surpasses the performance of standard-CNN
in intra-subject assessments. This improvement is attributed to the
inclusion of physiological variables, such as individualized muscle
forces computed by the hybrid CNN, which act as essential
intermediaries in knee torque estimation and boost prediction
accuracy, especially when faced with new movement patterns. To
address the challenges in inter-subject torque prediction, the study
incorporates transfer learning into the NMS-informed CNN model.
This approach significantly improves predictive accuracy for unseen
movements, such as slower walking, notably during the late stance
phase when peak knee extension torque occurs. The transfer
learning-enhanced CNN-GRU-Attention with the NMS model

FIGURE 9
Violin plots depicting the distributions of RMSEs between predicted and measured joint torque with transfer learning (normalized by body mass)
across subjects during five movements in inter-subject scenario. p indicates a significant difference between two cases.
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outperforms both hybrid-CNN without transfer learning and
standard-CNN significantly, and shows great potential in the
prediction of knee joint torque.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Ethics statement

The studies involving humans were approved by Ethics
Commitee of Capital Medical University. The studies were

conducted in accordance with the local legislation and
institutional requirements. The participants provided their
written informed consent to participate in this study.

Author contributions

HX: Conceptualization, Data curation, Formal Analysis,
Methodology, Software, Validation, Visualization,
Writing–original draft, Writing–review and editing. YW: Data
curation, Funding acquisition, Writing–review and editing. TL:
Formal Analysis, Methodology, Writing–review and editing. SY:
Formal Analysis, Methodology, Writing–review and editing. JZ:
Formal Analysis, Methodology, Writing–review and editing. KZ:
Conceptualization, Methodology, Writing–review and editing,
Project administration.

FIGURE 10
One example trial of measured (computed by inverse dynamics) and estimated joint torque via models with transfer learning during fivemovements
in inter-subject scenario. For each case, the motion used as training data was framed with a dashed box and others are testing data.

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Xie et al. 10.3389/fbioe.2025.1530950

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1530950


Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This study
was supported by the Young Scientists Fund of the National Natural
Science Foundation of China (Grant No.12302419).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Ao, D., Li, G., Shourijeh, M. S., Patten, C., and Fregly, B. J. (2023). EMG-driven
musculoskeletal model calibration with wrapping surface personalization. IEEE
Trans. Neural Syst. Rehabilitation Eng. 31, 4235–4244. doi:10.1109/tnsre.2023.
3323516

Ao, D., Vega, M. M., Shourijeh, M. S., Patten, C., and Fregly, B. J. (2022). EMG-driven
musculoskeletal model calibration with estimation of unmeasured muscle excitations
via synergy extrapolation. Front. Bioeng. Biotechnol. 10, 962959. doi:10.3389/fbioe.2022.
962959

Bergstra, J., and Bengio, Y. (2012). Random search for hyper-parameter optimization.
J. Mach. Learn. Res. 13, 281–305. doi:10.5555/2188385.2188395

Berning, J., Francisco, G. E., Chang, S. H., Fregly, B. J., and O’Malley, M. K. (2021).
Myoelectric control and neuromusculoskeletal modeling: complementary technologies
for rehabilitation robotics. Curr. Opin. Biomed. Eng. 19, 100313. doi:10.1016/j.cobme.
2021.100313

Choe, D.-E., Kim, H.-C., and Kim, M.-H. (2021). Sequence-based modeling of deep
learning with LSTM and GRU networks for structural damage detection of floating
offshore wind turbine blades. Renew. Energy 174, 218–235. doi:10.1016/j.renene.2021.
04.025

Derrick, T. R., van den Bogert, A. J., Cereatti, A., Dumas, R., Fantozzi, S., and Leardini,
A. (2020). ISB recommendations on the reporting of intersegmental forces and
moments during human motion analysis. J. BIOMECHANICS 99, 109533. doi:10.
1016/j.jbiomech.2019.109533

Dzulkifli, M. A., Hamzaid, N. A., Davis, G. M., and Hasnan, N. (2018). Neural
network-based muscle torque estimation using mechanomyography during electrically-
evoked knee extension and standing in spinal cord injury. Front. Neurorobotics 12, 50.
doi:10.3389/fnbot.2018.00050

Gautam, A., Panwar, M., Biswas, D., and Acharyya, A. (2020). MyoNet: a transfer-
learning-based lrcn for lower limb movement recognition and knee joint angle
prediction for remote monitoring of rehabilitation progress from sEMG. IEEE
J. Transl. Eng. Health Med. 8, 1–10. doi:10.1109/jtehm.2020.2972523

Hajian, G., Morin, E., and Etemad, A. (2021). Convolutional neural network
approach for elbow torque estimation during quasi-dynamic and dynamic
contractions. Annu Int Conf IEEE Eng Med Biol Soc., 665–668. doi:10.1109/
EMBC46164.2021.9630287

Hoang, H. X., Pizzolato, C., Diamond, L. E., and Lloyd, D. G. (2018). Subject-specific
calibration of neuromuscular parameters enables neuromusculoskeletal models to
estimate physiologically plausible hip joint contact forces in healthy adults.
J. Biomech. 80, 111–120. doi:10.1016/j.jbiomech.2018.08.023

Huang, Y., He, Z., Liu, Y., Yang, R., Zhang, X., Cheng, G., et al. (2019). Real-time
intended knee joint motion prediction by deep-recurrent neural networks. IEEE Sensors
J. 19 (23), 11503–11509. doi:10.1109/jsen.2019.2933603

Jung, M. K., Muceli, S., Rodrigues, C., Megia-Garcia, A., Pascual-Valdunciel, A., del-
Ama, A. J., et al. (2022). Intramuscular EMG-driven musculoskeletal modelling:
towards implanted muscle interfacing in spinal cord injury patients. IEEE Trans.
Biomed. Eng. 69 (1), 63–74. doi:10.1109/tbme.2021.3087137

Kian, A., Pizzolato, C., Halaki, M., Ginn, K., Lloyd, D., Reed, D., et al. (2021). The
effectiveness of EMG-driven neuromusculoskeletal model calibration is task dependent.
J. Biomech 129, 110698. doi:10.1016/j.jbiomech.2021.110698

Liu, G., and Guo, J. (2019). Bidirectional LSTM with attention mechanism and
convolutional layer for text classification. Neurocomputing 337, 325–338. doi:10.1016/j.
neucom.2019.01.078

Mantoan, A., Pizzolato, C., Sartori, M., Sawacha, Z., Cobelli, C., and Reggiani, M.
(2015). MOtoNMS: a MATLAB toolbox to process motion data for

neuromusculoskeletal modeling and simulation. Source code Biol. Med. 10, 12.
doi:10.1186/s13029-015-0044-4

McErlain-Naylor, S. A., King, M. A., and Felton, P. J. (2021). A review of forward-
dynamics simulation models for predicting optimal technique in maximal effort
sporting movements. Appl. Sci. 11 (4), 1450. doi:10.3390/app11041450

Pizzolato, C., Lloyd, D. G., Sartori, M., Ceseracciu, E., Besier, T. F., Fregly, B. J., et al.
(2015). CEINMS: a toolbox to investigate the influence of different neural control
solutions on the prediction of muscle excitation and joint moments during dynamic
motor tasks. J. Biomech. 48 (14), 3929–3936. doi:10.1016/j.jbiomech.2015.09.021

Pizzolato, C., Reggiani, M., Modenese, L., and Lloyd, D. G. (2016). Real-time inverse
kinematics and inverse dynamics for lower limb applications using OpenSim. Comput.
Methods Biomechanics Biomed. Eng. 20 (4), 436–445. doi:10.1080/10255842.2016.
1240789

Pizzolato, C., Saxby, D. J., Palipana, D., Diamond, L. E., Barrett, R. S., Teng, Y. D., et al.
(2019). Neuromusculoskeletal modeling-based prostheses for recovery after spinal cord
injury. Front. Neurorobotics 13, 97. doi:10.3389/fnbot.2019.00097

Prilutsky, B. I., and Gregor, R. J. (2000). Analysis of muscle coordination strategies in
cycling. IEEE Trans. Rehabilitation Eng. 8 (3), 362–370. doi:10.1109/86.867878

Rugy, A., Loeb, G. E., and Carroll, T. J. (2012). Muscle coordination is habitual rather
than optimal. J. Neurosci. 32 (21), 7384–7391. doi:10.1523/JNEUROSCI.5792-11.2012

Safavynia, S. A., Torres-Oviedo, G., and Ting, L. H. (2011). Muscle synergies:
implications for clinical evaluation and rehabilitation of movement. Top. spinal cord
Inj. rehabilitation 17 (1), 16–24. doi:10.1310/sci1701-16

Sartori, M., Durandau, G., Došen, S., and Farina, D. (2018). Robust simultaneous
myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-
time neuromusculoskeletal modeling. J. Neural Eng. 15 (6), 066026. doi:10.1088/1741-
2552/aae26b

Schulte, R. V., Zondag, M., Buurke, J. H., and Prinsen, E. C. (2022). Multi-day EMG-
based knee joint torque estimation using hybrid neuromusculoskeletal modelling and
convolutional neural networks. Front. Robotics AI 9, 869476. doi:10.3389/frobt.2022.
869476

Serrancolí, G., Kinney, A. L., Fregly, B. J., and Font-Llagunes, J. M. (2016).
Neuromusculoskeletal model calibration significantly affects predicted knee contact
forces for walking. J. Biomechanical Eng. 138 (8), 0810011–08100111. doi:10.1115/1.
4033673

Soleimani, E., and Nazerfard, E. (2021). Cross-subject transfer learning in human
activity recognition systems using generative adversarial networks. Neurocomputing
426, 26–34. doi:10.1016/j.neucom.2020.10.056

Su, B., and Gutierrez-Farewik, E. M. (2020). Gait trajectory and gait phase prediction
based on an LSTM network. Sensors 20 (24), 7127. doi:10.3390/s20247127

Wu, D., Yang, J., and Sawan, M. (2023). Transfer learning on electromyography
(EMG) tasks: approaches and beyond. IEEE Trans. Neural Syst. Rehabilitation Eng. 31,
3015–3034. doi:10.1109/tnsre.2023.3295453

Xu, J., Wang, K., Lin, C., Xiao, L., Huang, X., and Zhang, Y. (2021). FM-GRU: a time
series prediction method for water quality based on seq2seq framework. Water 13 (8),
1031. doi:10.3390/w13081031

Xu, L., Chen, X., Cao, S., Zhang, X., and Chen, X. (2018). Feasibility study of advanced
neural networks applied to sEMG-based force estimation. Sensors 18 (10), 3226. doi:10.
3390/s18103226

Yao, S., Zhuang, Y., Li, Z., and Song, R. (2018). Adaptive admittance control for an
ankle exoskeleton using an EMG-driven musculoskeletal model. Front. Neurorobotics
12, 16. doi:10.3389/fnbot.2018.00016

Frontiers in Bioengineering and Biotechnology frontiersin.org13

Xie et al. 10.3389/fbioe.2025.1530950

https://doi.org/10.1109/tnsre.2023.3323516
https://doi.org/10.1109/tnsre.2023.3323516
https://doi.org/10.3389/fbioe.2022.962959
https://doi.org/10.3389/fbioe.2022.962959
https://doi.org/10.5555/2188385.2188395
https://doi.org/10.1016/j.cobme.2021.100313
https://doi.org/10.1016/j.cobme.2021.100313
https://doi.org/10.1016/j.renene.2021.04.025
https://doi.org/10.1016/j.renene.2021.04.025
https://doi.org/10.1016/j.jbiomech.2019.109533
https://doi.org/10.1016/j.jbiomech.2019.109533
https://doi.org/10.3389/fnbot.2018.00050
https://doi.org/10.1109/jtehm.2020.2972523
https://doi.org/10.1109/EMBC46164.2021.9630287
https://doi.org/10.1109/EMBC46164.2021.9630287
https://doi.org/10.1016/j.jbiomech.2018.08.023
https://doi.org/10.1109/jsen.2019.2933603
https://doi.org/10.1109/tbme.2021.3087137
https://doi.org/10.1016/j.jbiomech.2021.110698
https://doi.org/10.1016/j.neucom.2019.01.078
https://doi.org/10.1016/j.neucom.2019.01.078
https://doi.org/10.1186/s13029-015-0044-4
https://doi.org/10.3390/app11041450
https://doi.org/10.1016/j.jbiomech.2015.09.021
https://doi.org/10.1080/10255842.2016.1240789
https://doi.org/10.1080/10255842.2016.1240789
https://doi.org/10.3389/fnbot.2019.00097
https://doi.org/10.1109/86.867878
https://doi.org/10.1523/JNEUROSCI.5792-11.2012
https://doi.org/10.1310/sci1701-16
https://doi.org/10.1088/1741-2552/aae26b
https://doi.org/10.1088/1741-2552/aae26b
https://doi.org/10.3389/frobt.2022.869476
https://doi.org/10.3389/frobt.2022.869476
https://doi.org/10.1115/1.4033673
https://doi.org/10.1115/1.4033673
https://doi.org/10.1016/j.neucom.2020.10.056
https://doi.org/10.3390/s20247127
https://doi.org/10.1109/tnsre.2023.3295453
https://doi.org/10.3390/w13081031
https://doi.org/10.3390/s18103226
https://doi.org/10.3390/s18103226
https://doi.org/10.3389/fnbot.2018.00016
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1530950


Zaman, R., Xiang, Y. J., Rakshit, R., and Yang, A. M. (2022). Hybrid predictive
model for lifting by integrating skeletal motion prediction with an OpenSim
musculoskeletal model. IEEE Trans. Biomed. Eng. 69 (3), 1111–1122. doi:10.
1109/TBME.2021.3114374

Zhang, L. B., Li, Z. J., Hu, Y. B., Smith, C., Farewik, E. M. G., and Wang, R. L. (2021).
Ankle joint torque estimation using an EMG-driven neuromusculoskeletal model and
an artificial neural network model. IEEE Trans. Automation Sci. Eng. 18 (2), 564–573.
doi:10.1109/TASE.2020.3033664

Zhang, Q., Clark, W. H., Franz, J. R., and Sharma, N. (2022). Personalized
fusion of ultrasound and electromyography-derived neuromuscular
features increases prediction accuracy of ankle moment during
plantarflexion. Biomed. Signal Process. Control 71, 103100. doi:10.1016/j.bspc.
2021.103100

Zhao, Y., Zhang, J., Li, Z., Qian, K., Xie, S. Q., Lu, Y., et al. (2023). Computationally
efficient personalized EMG-driven musculoskeletal model of wrist joint. IEEE Trans.
Instrum. Meas. 72, 1–10. doi:10.1109/tim.2022.3225023

Frontiers in Bioengineering and Biotechnology frontiersin.org14

Xie et al. 10.3389/fbioe.2025.1530950

https://doi.org/10.1109/TBME.2021.3114374
https://doi.org/10.1109/TBME.2021.3114374
https://doi.org/10.1109/TASE.2020.3033664
https://doi.org/10.1016/j.bspc.2021.103100
https://doi.org/10.1016/j.bspc.2021.103100
https://doi.org/10.1109/tim.2022.3225023
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1530950

	Transfer learning-enhanced CNN-GRU-attention model for knee joint torque prediction
	1 Introduction
	2 Materials and methods
	2.1 Experiment setup
	2.2 Data processing
	2.3 Neural network architecture: CNN-GRU-attention model for torque prediction
	2.3.1 Convolutional neural networks (CNN)
	2.3.2 Gated recurrent unit (GRU)
	2.3.3 Attention mechanism
	2.3.4 Transfer learning
	2.3.5 Hyper parameters tuning for model

	2.4 Evaluation framework
	2.4.1 Intra-subject prediction
	2.4.2 Without transfer learning
	2.4.3 With transfer learning


	3 Results
	3.1 Intra-subject prediction performance
	3.2 Inter-subject prediction performance

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


