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Introduction: This study aimed to develop machine learning models to predict
neurological outcomes in patients with degenerative cervical myelopathy (DCM)
after surgical decompression and identify key factors that contribute to a better
outcome, providing a reference for patient consultation and surgical
decision-making.

Methods: This retrospective study reviewed 1,895 patients who underwent
cervical decompression surgery for DCM at Peking University Third Hospital
from 2011 to 2020, with 672 patients included in the final analysis. Five machine
learning methods, namely, linear regression (LR), support vector machines (SVM),
random forest (RF), XGBoost, and Light Gradient Boosting Machine (LightGBM),
were used to predict whether patients achieved the minimal clinically important
difference (MCID) in the improvement in the Japanese Orthopedic Association
(JOA) score, which was based on basic information, symptoms, physical
examination signs, intramedullary high signals on T2-weighted (T2WI)
magnetic resonance imaging (MRI), and various scale scores. After training
and optimizing multiple ML algorithms, we generated a model with the
highest area under the receiver operating characteristic curve (AUROC) to
predict short-term outcomes following DCM surgery. We evaluated the
importance of the features and created a feature-reduced model. The
model’s performance was assessed using an external dataset.

Results: The LightGBM algorithm performed the best in predicting short-term
neurological outcomes in the testing dataset, achieving an AUROC value of
0.745 and an area under the precision–recall curve (AUPRC) value of 0.810. The
important features influencing performance in the short-term model included
the preoperative JOA score, age, SF-36-GH, SF-36-BP, and SF-36-PF. The
feature-reduced LightGBM model, which achieved an AUROC value of 0.734,
also showed favorable performance. Moreover, the feature-reduced model
showed an AUROC value of 0.785 for predicting the MCID of postoperative
JOA in the external dataset, which included 58 patients from other hospitals.

Conclusion: We developed models based on machine learning to predict
postoperative neurological outcomes. The LightGBM model presented the
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best predictive power regarding the surgical outcomes of DCM patients. Feature
importance analysis revealed that variables, including age, preoperative JOA score,
SF-36-PF, SF-36-GH, and SF-36-BP, were essential factors in the model. The
feature-reduced LightGBM model, designed for ease of application, achieved
nearly the same predictive power with fewer variables.

KEYWORDS

degenerative cervical myelopathy, spine surgery, machine learning, outcome,
prediction model

1 Introduction

Degenerative cervical myelopathy (DCM) is a progressive, non-
traumatic degenerative disease that leads to the compression of the
cervical spinal cord (Fehlings et al., 2013), resulting in the loss of
manual dexterity; gait and balance disturbances; sensory loss in the
hands or feet; arm or hand weakness; and defecatory or urinary
frequency, urgency, or hesitancy (Okada et al., 2009). With the aging
society, DCM has become an urgent clinical and public health
concern (GBD, 2017 Disease and Injury Incidence and
Prevalence Collaborators et al., 2018).

For moderate and severe DCM, as well as for patients with
progressive disease, surgical decompression is recommended; it has
been proved to improve neurological function and quality of life for
patients. However, studies indicate that 5%–30% of patients did not
achieve a satisfactory outcome after surgery (Fejer et al., 2006). In
previous studies, the factors affecting surgical outcomes included
age, baseline severity score, duration of preoperative symptoms,
signs and symptoms, comorbidities, and high signal intensity (SI) on
T2-weighted (T2-WI) magnetic resonance imaging (MRI)
(Gembruch et al., 2021; Tetreault L. A. et al., 2015). However,
predicting outcomes for individual patients is a multivariable and
chaotic system of interactions. The influence of various variables and
their interactions on postoperative outcomes cannot be accurately

assessed by traditional statistical methods (Combi, 2017). The
significance of different features in predicting surgical outcomes
for patients with DCM remains undetermined (Tetreault et al., 2013;
Tetreault et al., 2014; Tetreault et al., 2016).

Machine learning is a developing method that can be applied to
clinical datasets for the purpose of developing robust risk models
and redefining patient classes (Shah et al., 2023). Previous studies
have used machine learning methods to establish models to predict
postoperative neurological function in patients with better
predictive power than traditional statistical models. These models
have achieved good performance, with area under the receiver
operating characteristic curve values (AUROC) ranging from
0.7 to 0.9 (Khan et al., 2021; Merali et al., 2019; Song et al.,
2024). However, a large-scale study and prospective external
validation are still lacking. A tradeoff exists in machine learning
between model complexity and generalizability to new datasets. One
solution is to build a model with fewer features and appropriate
performance (Shah et al., 2023).

In this study, we aimed to develop machine learning models to
predict individual DCM patients’ neurological outcomes after
surgery and select the model with the best performance.
Additionally, we aimed to identify influential features and create
a model with fewer features and good performance in external
validation, which would benefit the clinical practice of
spine surgeons.

2 Materials and methods

2.1 Patient population

This study was approved by our hospital’s Medical Research
Ethics Committee (LM2021299). This retrospective study reviewed
1,895 patients who underwent DCM surgical decompression,
including laminoplasty, laminectomy and fusion, anterior cervical
decompression and fusion, and anterior cervical corpectomy and
fusion from 2011 to 2020 at Peking University Third Hospital. The
data were obtained from the Electronic Data Capture (EDC) system
at the Peking University Third Hospital Information Center. All
private information was masked.

The inclusion criteria were as follows: 1) age ≥18; 2) diagnosed
with DCM; 3) underwent surgical decompression for DCM
including laminoplasty, laminectomy and fusion, anterior cervical
decompression and fusion, and anterior cervical corpectomy and
fusion; and 4) had at least one follow-up record between 3 and 6-
month follow-up. Exclusion criteria included a history of spinal
tumor, active infection, rheumatoid arthritis, cervical trauma,

FIGURE 1
Patient selection flow chat.
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TABLE 1 Baseline characteristics of the patients.

Unimproved group (n = 303) Improvement group (n = 369) P-value

Age, M (IQR), years 55 (14) 53 (15) 0.116

SF-36-PF, M (IQR) 70 (35) 65 (35) 0.002*

SF-36-RP, M (IQR) 0 (25) 0 (0) 0.021*

SF-36-BP, M (IQR) 69 (36) 57 (35.5) 0.001*

SF-36-GH, M (IQR) 50 (42) 47 (42) 0.299

SF-36-VT, M (IQR) 80 (40) 60 (40) 0.006*

SF-36-SF, M (IQR) 62.5 (25) 50 (25) 0.034*

SF-36-RE, M (IQR) 0 (66) 0 (33) 0.081

SF-36-MH, M (IQR) 68 (32) 64 (28) 0.042*

SF-36-HT, M (IQR) 75 (25) 75 (25) 0.793

Preoperative JOA, M (IQR) 13.5 (1.5) 11.5 (3.5) <0.001*

Gender (male, n, %) 183 (60.4) 187 (50.7) 0.012*

Operation

Anterior (n, %) 151 (49.8) 189 (51.2) 0.725

Posterior (n, %) 131 (43.2) 150 (40.7)

Anterior + posterior (n, %) 21 (6.9) 30 (8.1)

Diagnosis

CSM (n, %) 199 (65.7) 242 (65.7) 0.991

OPLL (n, %) 7 (2.3) 8 (2.2)

CSM + OPLL (n, %) 97 (32.0) 119 (32.2)

High signals on T2WI (n, %)

None (n, %) 83 (27.4) 117 (31.7) 0.176

Single-level (n, %) 176 (58.1) 214 (58.0)

Multiple-level (n, %) 44 (14.5) 38 (10.3)

Drinking alcohol (n, %) 43 (14.2) 19 (5.1) <0.001*

Smoking history (n, %) 65 (21.5) 46 (12.5) 0.002*

Symptom

Numbness in upper limbs (n, %) 245 (80.9) 293 (79.4) 0.639

Numbness in lower limbs (n, %) 104 (34.3) 143 (38.8) 0.236

Trunk numbness (n, %) 6 (2.0) 20 (5.4) 0.021*

Weakness in upper limbs (n, %) 53 (17.5) 77 (20.9) 0.270

Weakness in lower limbs (n, %) 166 (54.8) 204 (55.3) 0.897

Pain in upper limbs (n, %) 56 (18.5) 67 (18.2) 0.914

Pain in lower limbs (n, %) 19 (6.3) 15 (4.1) 0.194

Trunk pain (n, %) 22 (7.3) 52 (14.1) 0.005*

Shoulder pain (n, %) 55 (18.2) 79 (21.4) 0.293

Neck pain (n, %) 118 (38.9) 153 (41.5) 0.508

Band-like sensation (n, %) 22 (7.3%) 44 (11.9%) 0.043*

(Continued on following page)
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ankylosing spondylitis, and previous cervical spine surgery. Patients
with missing scale scores and invalid follow-up records were also
excluded. Patients with JOA scores ≥15 were excluded to avoid a

ceiling effect as they could not achieve the minimal clinically
important difference (MCID). We standardized surgical
indications and approach selection based on guidelines and our
cervical spine professional group’s recommendations. A total of
672 patients were included in the final analysis.

2.2 Baseline data and outcomes

The baseline data for the training models included demographics
(age, sex, and profession), personal history (number of comorbidities,
history of tobacco and alcohol intake, etc.), symptoms, signs, imaging
examination (intramedullary high signals on T2WI MRI), and
preoperative scale scores (JOA and SF-36). We applied a natural
language processing (NLP) algorithm to extract symptom data from
unstructured electronic medical records. Personal history, symptoms,
and signs recorded as binary variables were selected based on the
standardized medical records for orthopedics.

We examined patients’ JOA scores 3–6 months after surgery to
evaluate neurological outcomes. The primary outcome was whether
patients achieved MCID in JOA scores. According to previous
research, the MCID for the JOA score in DCM patients was 2.5
(Maki et al., 2021). Categorical features such as professions were
transferred to one-hot coding.

TABLE 1 (Continued) Baseline characteristics of the patients.

Unimproved group (n = 303) Improvement group (n = 369) P-value

Sensation of walking on cotton wool (n, %) 164 (54.1%) 217 (58.8) 0.223

Fine motor skills (n, %) 59 (19.5) 76 (20.6) 0.717

Symptoms of lumbar spinal stenosis (n, %) 29 (9.6) 46 (12.5) 0.236

Autonomic symptoms (n, %) 59 (19.5) 91 (24.7) 0.108

Bowel and bladder function (n, %) 4 (1.3) 6 (1.6) 1.000

Muscle atrophy (n, %) 36 (11.9) 37 (10.0) 0.442

Neck tenderness (n, %) 157 (51.8) 230 (62.3) 0.006*

Upper limb muscle strength (n, %) 148 (48.8) 197 (53.4) 0.241

Lower limb muscle strength (n, %) 83 (27.4) 114 (30.9) 0.321

Abdominal reflex (n, %) 12 (4.0) 15 (4.1) 0.945

Cremasteric reflex (n, %) 4 (1.3) 2 (0.5) 0.417

Anal reflex (n, %) 1 (0.3) 0 (0) 0.451

Upper limb reflex (n, %) 11 (3.6) 15 (4.1) 0.771

Lower limb reflex (n, %) 13 (4.3) 13 (3.5) 0.608

Pathological sign

Hoffmann sign (n, %) 262 (86.5) 309 (83.7) 0.325

Babinski sign (n, %) 108 (35.6) 160 (43.4) 0.042*

With comorbidities (n, %) 94 (31.0) 120 (32.5) 0.678

Brachial plexus nerve stretch test (n, %) 50 (16.5) 69 (18.7) 0.458

Intervertebral foramen compression test (n, %) 35 (11.6) 47 (12.7) 0.640

IQR, interquartile range.

*P < 0.05.

FIGURE 2
ROC curves generated by 3-fold cross-validation algorithms in
the training set.
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2.3 Data pre-processing

In the baseline dataset, all the demographic data were valid.
Based on word segmentation of symptoms, signs, diseases, and other
information using natural language processing technology,
synonym information of the standard terminology database is
introduced for standardization and level normalization. By
“document category prediction” and “chapter prediction in the
document,” different medical records and chapter contents are
distinguished. Based on this, a combined approach using a
bidirectional long short-term memory conditional random field
(BiLSTM-CRF) network along with rule matching was employed
to extract clinical data information. The NLP algorithm would leave

blanks in the dataset if there were no matched descriptions in
electronic medical history records. Therefore, we filled all the
missing data in binary features (personal history, symptoms, and
signs) with “normal” or “negative.”

2.4 Training machine learning models and
performance evaluation

We randomly split the dataset into a training set (70%) and a test
set (30%). Five machine learning algorithms, namely, linear
regression (LR), support vector machine (SVM), random forest
(RF), extreme gradient boosting (XGBoost), and light gradient

FIGURE 3
Comparisons of balanced accuracy, weighted area under the precision–recall curve (AUPRC), weighted precision, weighted recall, and AUPRC of
the five models in the training set.

TABLE 2 AUROC values were generated by 3-fold cross-validation algorithms in the training and testing sets.

Model LR SVM RF XGBoost LightGBM

Training set AUROC* 0.701 [0.664, 0.732] 0.556 [0.457, 0.690] 0.735 [0.690, 0.749] 0.738 [0.702, 0.758] 0.763 [0.708,0.764]

Testing set AUROC* 0.698 [0.65, 0.774] 0.609 [0.352, 0.660] 0.737 [0.670, 0.791] 0.711 [0.669,0.791] 0.757 [0.702, 0.816]

*The values are given as the mean and the 95% confidence intervals.
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boosting machine (LightGBM), were trained using 3-fold cross-
validation on the training set with default hyperparameters. Model
performance was evaluated using five metrics, namely, balanced
accuracy, weighted precision, weighted recall, weighted area under
the precision–recall curve (AUPRC, Supplementary Document),
and area under the receiver operating characteristic curve
(AUROC). Based on these metrics, we selected the optimal
model for further refinement. We employed a bootstrap
approach to obtain robust estimates and compute confidence
intervals (CIs). Specifically, we repeated the cross-validation
procedure 1,000 times with varied splits of the training data. The
95% CI for each metric was approximated using the 2.5th and 97.5th
percentiles of the resulting performance distributions.

2.5 Hyperparameter optimization

Hyperparameter optimization was performed on the selected
model using a grid search algorithm. We first predefined a set of
candidate values for each hyperparameter and then exhaustively
evaluated all combinations via 3-fold cross-validation on the
training set. The optimal hyperparameter set was chosen based
on the highest AUROC.

2.6 Testing set evaluation

Using the five aforementioned metrics, the fine-tuned model
was subsequently evaluated on the test set. To calculate CIs, we again
applied the bootstrap method by randomly splitting the dataset
1,000 times and retraining the model (with fixed best
hyperparameters) on each new training split. The resulting
performance distributions were used to derive the 95% CIs (2.5th
and 97.5th percentiles).

All machine learning models were implemented in Python
3.8.5 using the scikit-learn, XGBoost, and LightGBM library. We
adhered to the transparent reporting of multivariable prediction
models for individual prognosis or diagnosis (TRIPOD) guidelines
throughout model development.

2.7 Feature importance analysis

The machine learning module used to train the model offers
built-in methods for assessing feature importance. For linear models
(LR and SVM), importance is determined by the absolute value of
the learned coefficients. For tree-based models (RF, XGBoost, and
LightGBM), importance is calculated based on the frequency of each
feature used for splitting nodes across all trees. Additionally, the
Shapley additive explanation (SHAP) value of a feature is calculated
by determining its marginal contribution across all possible feature
subsets, and these contributions are then averaged to yield the
feature’s overall impact on the prediction.

2.8 Feature-reduced model

To improve themodel’s compatibility across different healthcare
systems, we aimed to reduce the number of features. According to
the importance of features in the final model and based on clinical
experience, we selected a subset of features to build a feature-reduced
machine learning model. We then extracted the relevant feature data
from the previous training and testing sets to train this model. The
outcome measures remained consistent with those aforementioned.

2.9 External model validation

Another dataset containing 31 patients from West China Hospital
and 27 patients from Shanghai Changzheng Hospital was used as the
external validation set. The dataset includes patients’ demographics,
JOA scores, and SF-36 scores, which were used to validate the feature-
reduced model. We analyzed AUROC values and decision curve
analysis (DCA) to evaluate the performance of the feature-reduced
model in the external dataset.

3 Results

3.1 Patients’ characteristics

Of the 1,895 patients, 298 were excluded because they were
diagnosed with cervical spondylotic radiculopathy or cervical

FIGURE 4
ROC curves generated by 3-fold cross-validation algorithms in
the testing set.

TABLE 3 Search spaces and best values of hyperparameters in the LightGBM
model.

Hyperparameter Search space Best
value

max_depth [3,4,5] 3

num_leaves [5, 6, 7, 12, 13, 14, 15, 28, 29, 30, 31] 5

subsample [0.8, 0.9, 1.0] 0.8

colsample_bytree [0.8, 0.9, 1.0] 1.0

reg_alpha [0,10,100,1000] 0

reg_lambda [0,10,100,1000] 10
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spondylosis with sympathetic symptoms; 143 patients were
excluded due to previous cervical spine surgery history;
498 patients’ records were invalid or missing; and 284 patients
had preoperative JOA scores ≥15. Finally, a dataset with
672 patients and 63 features was generated (Figure 1). The
baseline characteristics are shown in Table 1. In addition,
369 patients reached the MCID of JOA score improvement at
the short-term follow-up postoperatively.

3.2 Model generation

Based on the training set, we generated five models (LR, SVM, RF,
XGBoost, and LightGBM). The ROC curves and AUROC values
produced by the three-fold cross-validation algorithms are presented
in Figure 2. Figure 3 presents the comparisons of the balanced accuracy,
weighted precision, weighted recall, AUPRC, and AUROC values in the
training set. The decision tree algorithms (RF, XGBoost, and LightGBM)

FIGURE 5
ROC curve of the tuned LightGBM model. The area under curve (AUROC) value was 0.763.

FIGURE 6
Top eight most essential predictors for the prediction of outcomes.
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demonstrated superior performance among the five selected machine
learning models. The LightGBM model achieved the highest AUROC
value of 0.745.We used the testing set to evaluate the five trainedmodels.
The AUROC values of the training and testing sets are summarized in
Table 2. The LightGBM model demonstrated the best performance in
training and testing sets, with a slight decrease in the AUROC value,
indicating no overfitting (Figure 4).

The grid search strategy was used to optimize the
hyperparameters of LightGBM. We tuned six hyperparameters,

including “max_depth,” “num_leaves,” “subsample,” “colsample_
bytree,” “reg_alpha,” and “reg_lambda.” The search spaces and best
values are provided in Table 3. The AUROC value of the tuned
LightGBM model increased to 0.763 in the training set (Figure 5).

3.3 Feature importance

We evaluated the feature importance of the LightGBM model.
Preoperative JOA scores, SF-36-BP, age, SF-36-SF, SF-36-PF, SF-36-
MH, body pain, and SF-36-GH are the eight most critical predictors
for outcome prediction (Figure 6). We selected the top 10 features
based on feature importance, and the SHAP values were calculated
to evaluate the importance of features at the individual level
(Figure 7). A single-sample SHAP force plot for a patient is
shown in Figure 8.

3.4 Feature-reduced model

According to the feature importance and the accessibility of
input data, we chose age, sex, preoperative JOA scores, and
preoperative SF-36 scores as features to build the feature-reduced

FIGURE 7
Bar plot of the SHAP value of the predictors in the model.

FIGURE 8
Single-sample SHAP force plot. Blue indicates that the feature has a negative effect on the prediction (arrow to the left, SHAP value decreases), and
red indicates that the feature has a positive effect on the prediction (arrow to the right, SHAP value increases). On the number line, 0.1696 is the base SHAP
value, which is the average predicted by themodel. In this sample, the total JOA score = 12 had themost significant positive effect and age = 60 years had
the most significant negative effect, resulting in a SHAP value of 0.63 for this patient.

TABLE 4 Best value of the hyperparameters in the feature-reduced model.

Hyperparameter Parameter space Best
Value

max_depth [3,4,5] 4

num_leaves [5, 6, 7, 12, 13, 14, 15, 28, 29, 30, 31] 5

subsample [0.8, 0.9, 1.0] 0.8

colsample_bytree [0.8, 0.9, 1.0] 0.9

reg_alpha [0,10,100,1000] 0

reg_lambda [0,10,100,1000] 0

FIGURE 9
ROC curve of the feature-reduced model in the testing set with
an area under curve (AUROC) value of 0.734.
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model. We applied the same training set to construct the feature-
reduced model. Then, the grid-search algorithm was used to
optimize the hyperparameter with the same search spaces. The
best value is presented in Table 4. The feature-reduced model
was also tested with the same dataset. The ROC curve in the
testing set is shown in Figure 9. The feature-reduced LightGBM
model had an AUROC value of 0.734, which showed almost the
same performance as the initial model (Figure 9).

3.5 External validation

The external dataset included 31 patients from West China
Hospital and 27 patients from Shanghai Changzheng Hospital. To
generate the external testing set, we extracted the data according to
the reduced features (age, sex, preoperative JOA scores, and
preoperative SF-36 scores). The outcome measure was whether
patients achieved the MCID of the JOA score at 3–6 months
after the DCM decompression surgery. The ROC curve is
presented in Figure 10, with an AUROC value of 0.785. This
indicated that our model also performed well in extrapolation.

4 Discussion

Surgical decompression is recommended for the treatment of
DCM and has shown long-term improvement in patients. However,
the degree of patient recovery can vary widely (Gulati et al., 2021). In
previous studies, several machine learning models have been
developed to predict improvements in neurological function
using the preoperative clinical characteristics of patients with
DCM (Khan et al., 2021; Merali et al., 2019; Song et al., 2024). In
this study, we applied a natural language processing algorithm to

extract symptom data from unstructured medical history records,
which could include more features than previous studies. We
compared the performance of each model and identified that the
LightGBMmodel demonstrated the best predictive performance. To
the best of our knowledge, we were the first to build a feature-
reduced model based on LightGBM to predict surgery outcomes for
DCM patients, which showed good performance.

We built machine learning models using five classic algorithms.
The decision tree algorithms (RF, XGBoost, and LightGBM) showed
better performance with an AUROC value of more than 0.7, and the
LightGBM model showed the best performance. Decision tree
algorithms correlate features with outcomes and have been
effectively utilized across various learning disciplines. At each
node or branch point, training examples are partitioned based on
the value of a particular feature (Shah et al., 2023). Maki et al.
reported that XGBoost showed the highest AUROC value (0.72) for
predicting the MCID of the JOA score in patients with cervical
ossification of the posterior longitudinal ligament (OPLL) 1 year
after surgical treatment, whereas RF demonstrated the highest
AUROC value (0.75) for predicting MCID at 2 years (Maki et al.,
2021). Merali et al. (2019) reported that the best-performing
predictive model used a random forest structure with an average
area under the curve (AUROC) value of 0.70 to predict
postoperative MCID of SF-6D and mJOA score in DCM patients
at 6-, 12-, and 24-month follow-up. Our results showed that decision
tree algorithms have a good predictive ability for surgical outcomes
in DCM patients, which was consistent with prior studies.

The feature importance of the LightGBM model was calculated,
and the preoperative JOA scores, SF-36-BP, age, SF-36-SF, SF-36-
PF, SF-36-MH, body pain, and SF-36-GH are the top eight most
crucial predictors for the prediction of neurological outcomes.
Previous studies have demonstrated that preoperative clinical
features of patients with DCM were associated with neurological

FIGURE 10
ROC curve of the feature-reduced model in the external dataset with an area under curve (AUROC) value of 0.785.
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function improvement after surgery. It was reported that gender,
age, and preoperative functional scores were related to the surgical
prognosis of patients with DCM (Tetreault et al., 2018; Nakashima
et al., 2012). We found that body pain correlated to the trunk
sensation and was a crucial predictor of surgery outcome. Previous
studies showed that positive pathologic signs of lower limbs, finger
numbness, and hyperreflexia are associated with unsatisfactory
improvement of nerve function measured by JOA after surgery
(Tetreault et al., 2013; Tetreault et al., 2016; Tetreault L. et al., 2015).
The body pain could also be a sign of more serious neurological
impairment and predict worse improvement.

We demonstrated that patients with lower preoperative JOA
scores were more likely to achieve MCID in their recovery of
neurological function at 3–6 months after surgery. This may be
because higher preoperative JOA scores have less room for
improvement due to ceiling effects, similar to previous studies for
the prediction of MCID (Khan et al., 2021; Maki et al., 2021).
Patients with lower preoperative JOA scores could be more likely to
benefit from surgery. This insight is crucial for understanding the
prognosis of DCM patients after surgery.

We built a feature-reduced model and showed that the feature-
reduced model could get the same prediction accuracy by only
paying attention to age, sex, preoperative JOA scores, and
preoperative SF-36 scores. As far as we know, this is the first
study to build a feature-reduced machine learning model to
predict DCM patient outcomes after surgical treatment. However,
the feature-reduced LightGBM model showed slightly worse
performance in the testing set, which might be attributed to
fewer features. Reducing the number of features could enhance
the model’s generalizability. In external validation using an
independent patient cohort from two hospitals, our model
performed well with an AUROC value of 0.785. This indicated
that developing a feature-reduced model could be an effective
strategy for the generalization of the prediction model of DCM
patient outcomes.

Our study still has some limitations. First, our follow-up data are
limited to the short-term period of 3–6 months. Second, preoperative
clinical variables only include intramedullary high signals on T2WI
MRI. More preoperative imaging parameters of patients with DCM
may improve the predictive efficacy of the model (Naruse et al., 2009;
Hamburger et al., 1997). Third, the amount of data we have is not
particularly large. Although machine learning offers a powerful way to
build complex models and generate predictions, compared to
traditional statistical methods, machine learning models require
relatively large datasets to achieve optimal performance.

5 Conclusion

We established models to predict postoperative neurological
outcomes based on machine learning. The LightGBM model
presented the best predictive power with an AUROC value of
0.745. Feature importance analysis showed that age, preoperative
JOA score, SF-36-PF, SF-36-GH, and SF-36-BP were crucial factors
for prediction. The feature-reduced model could achieve almost the
same prediction accuracy by only paying attention to age, sex,
preoperative JOA scores, and preoperative SF-36 scores, making
it more practical for clinical application. Machine learning could

help spine surgeons make more precise predictions of DCM patient
outcomes after cervical decompression surgery.
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