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Background: The high prevalence of low back pain has led to an increasing
demand for the analysis of lumbar magnetic resonance (MR) images. This study
aimed to develop and evaluate a deep-learning-assisted automated system for
diagnosing and grading lumbar intervertebral disc degeneration based on lumbar
T2-weighted sagittal and axial MR images.

Methods: This study included a total of 472 patients who underwent lumbar MR
scans between January 2021 and November 2023, with 420 in the internal
dataset and 52 in the external dataset. The MR images were evaluated and
labeled by experts according to current guidelines, and the results were
considered the ground truth. The annotations included the Pfirrmann grading
of disc degeneration, disc herniation, and high-intensity zones (HIZ). The
automated diagnostic model was based on the YOLOv5 network, modified by
adding an attention module in the Cross Stage Partial part and a residual module
in the Spatial Pyramid Pooling-Fast part. Themodel’s diagnostic performancewas
evaluated by calculating the precision, recall, F1 score, and area under the
receiver operating characteristic curve.

Results: In the internal test set, the model achieved precisions of 0.78–0.91,
0.90–0.92, and 0.82 and recalls of 0.86–0.91, 0.90–0.93, and 0.81–0.88 for disc
degeneration grading, disc herniation diagnosis, and HIZ detection, respectively.
In the external test set, the precision values for disc degeneration grading,
herniation diagnosis, and HIZ detection were 0.73–0.87, 0.86–0.92, and
0.74–0.84 and recalls were 0.79–0.87, 0.88–0.91, and 0.77–0.78, respectively.

Conclusion: The proposed model demonstrated a relatively high diagnostic and
classification performance and exhibited considerable consistency with expert
evaluation.
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1 Introduction

Approximately 70%–85% of people worldwide experience
symptoms of lower back pain (LBP) and leg pain at least once in
their lives (de Souza et al., 2019). Such discomfort can significantly
affect individuals’ quality of life and increase the healthcare burden.
The etiologies of LBP and leg pain are highly complex, with
degenerative changes in the lumbar spine being the most
common factors (Knezevic et al., 2021). From a
pathophysiological perspective, intervertebral disc pathology is
closely linked to overall degenerative changes in the spine,
leading to related symptoms (Dowdell et al., 2017). First,
deformities such as disc herniation can directly compress the
dural sac or nerve roots. Second, annulus fibrosus rupture of the
intervertebral disc can result in the release of pain factors and
inflammatory mediators, stimulating nearby nerve roots. Third,
the intervertebral disc has been considered the initiator of overall
lumbar degeneration (Leone et al., 2007). Briefly, disc collapse and
weakened stress can reduce lumbar stability, influence stress
distribution, and further accelerate degenerative changes in other
structures such as the facet joint and ligament flavum.

For symptomatic patients, magnetic resonance imaging (MRI)
of the lumbar spine is a commonly used diagnostic tool in outpatient
settings. Given the crucial role of the intervertebral disc, it is a
primary focus in the radiological assessment of the lumbar spine
(Kamei et al., 2022). MRI can clearly depict the degree of disc
degeneration and disc herniation. This information aids doctors in
making accurate diagnoses and developing treatment plans, such as
guiding decompression operations. However, the interpretation of
lumbar MRI remains a complex and subjective process, heavily
dependent on the clinical experience of the clinician
(Liawrungrueang et al., 2024). Moreover, current clinical
resources are under increasing strain due to the rising demand
from patients (Chen et al., 2022).

With the rapid development of artificial intelligence (AI)
technology, computer-aided diagnosis can improve clinical
workflows (Kulkarni and Singh, 2023; D’Antoni et al., 2021). A
decade ago, machine learning was already being explored for
diagnosing intervertebral disc degeneration using small-scale MRI
datasets (Alomari et al., 2010; Koh, Chaudhary, and Dhillon, 2012).
In recent years, deep learning (DL), a state-of-the-art AI approach,
leverages specialized neural network architectures to process raw
data, automatically extracting hierarchical and abstract features
through multi-layered, nonlinear networks (LeCun, Bengio, and
Hinton, 2015; Huang et al., 2024). These capabilities enable accurate
and efficient image detection and classification. DL has shown
remarkable potential in the imaging evaluation of intervertebral
discs. Achieving good performance in grading disc degeneration and
detecting disc herniation (Zheng et al., 2022; Tsai et al., 2021;
Nikpasand et al., 2024; Soydan et al., 2023). Such advancements
may enhance clinical efficiency, aid in identifying overlooked
lesions, and improve diagnostic accuracy, particularly for junior
and primary care clinicians (Compte et al., 2023; Martin-Noguerol
et al., 2023).

However, there are still gaps remain that limit the clinical
application of deep learning technologies. First, previous studies
on the assessment of intervertebral disc degeneration have been
narrow. In addition to disc herniation, other radiological

manifestations of degeneration, such as high-intensity zones
(HIZ), are also considered common causes of LBP (Wang and
Hu, 2012). To our knowledge, no prior studies have explored
automatic detection methods for this feature. Second, while
existing models for diagnosing and grading disc degeneration
have demonstrated promising performance, they are typically
designed with complex and multi-stage algorithms that separately
handle image segmentation, detection, and classification. Such
models, while effective in research context, face practical
limitations in clinical settings where simpler and more
streamlined solutions are needed (He et al., 2024). By avoiding
the use of overly complex algorithms, these models can improve
their clinical applicability and facilitate broader implementation in
routine practice.

In this study, a multitask automatic diagnostic model for lumbar
intervertebral disc degeneration was developed based on a modified
YOLOv5 network. The key advantage of this model lies in its ability
to simultaneously handle multiple detection and classification tasks.
Utilizing clinical MR images, this model can qualitatively assess the
degree of lumbar intervertebral disc degeneration, including the
evaluation of Pfirrmann grades of disc degeneration, disc herniation
diagnosis, and HIZ identification. Drawing on the experience from
the widely adopted chest CT auxiliary diagnostic systems (Xudong
et al., 2022), the proposed model primarily aims to provide simple
and clear outputs—the imaging slice and the location of specific
lesions. Such systems have demonstrated their effectiveness in
supporting clinicians with image interpretation and report
generation.

2 Materials and methods

2.1 General guidelines

This study was conducted and reported in accordance with the
Standards for Reporting of Diagnostic Accuracy criteria (see
Supplementary Material). This study was conducted in
accordance with the Declaration of Helsinki. The study was
approved by the institutional ethics committee (2024-KE-385).
Since retrospective studies do not involve any additional
intervention and privacy disclosure, the informed consent
requirement was waived.

2.2 Data collection

Figure 1 depicts the data allocation and processing workflow.
From January 2021 to November 2023, a dataset of 10,028 axial and
5,040 sagittal T2-weighted (T2W) MR images was collected from
420 patients with LBP or leg pain at Beijing Chaoyang Hospital,
Capital Medical University. In addition, an external testing set
included a total of 1,228 axial and 624 sagittal T2W MR images
from 52 patients at Beijing Shijitan Hospital, Capital Medical
University, and Beijing Friendship Hospital, Capital Medical
University. All data were anonymized and numbered.

Patients aged >18 years undergoing lumbar spine MRI at an
outpatient or inpatient clinic were included. Individuals with spinal
infection, trauma, or deformity; history of malignant tumors; history
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of previous spinal surgery, particularly with implants; and poor
image quality, such as image blurring caused by patient movement
or the presence of artifacts affecting imaging evaluation,
were excluded.

Considering the patient population in the hospital, the
proportion of certain degeneration patterns is relatively low, such
as disc degeneration grades 1 and 5, as well as HIZ (see the “Dataset
Labeling and Reference Standard” section). Therefore, the
420 patients included in our study do not constitute a
consecutive cohort. This group consisted of 246 consecutive
patients, supplemented by additional 124 patients with HIZ,
20 patients aged <30 years, and 30 patients aged >75 years.
Regarding the distribution of chief complaints, 133 patients
presented with LBP, while 287 patients reported leg pain or
claudication.

In the internal dataset, MRI scans were performed using a 3.0-T
MRI scanner (Magnetom Verio, Siemens Healthcare, Erlangen,
Germany). In the external dataset, MRI scans were performed
using the Discovery MR 750 W 3.0TMR scanner (GE Medical
Systems, Milwaukee, WI, United States). The core parameters set
for the MRI systems are provided in Table 1.

2.3 Dataset labeling and reference standard

Two spine surgeons with >10 years of experience independently
evaluated and annotated each image. In cases where their assessments
differed, a third senior surgeon adjudicated the disagreement. In
addition, after the annotations were completed, the author compared
the annotations with existing radiologist reports and excluded images
with significant discrepancies. Thus, the ground truth was established.

The diagnostic annotation reference standards used were as follows
(Figure 2): disc degeneration was graded according to the Pfirrmann
classification system (Pfirrmann et al., 2001). This can be briefly
described in five grades: Grade 1 represents a homogeneous bright
white nucleus pulposus with a clear boundary from the annulus fibrosus
and normal disc height. Grade 2 represents an inhomogeneous nucleus
pulposus, with or without horizontal bands, but still relatively clear
boundaries. Grade 3 indicates a nucleus pulposus with decreased signal
intensity, unclear boundaries, and possibly mild disc height reduction.
Grade 4 represents a heterogeneous gray or black nucleus pulposus,
where the nucleus pulposus and annulus fibrosus are indistinguishable.
Grade 5 indicates that the entire disc shows low-signal intensity with
disc space collapse. According to the commonly used Jensen grading
system (Li, Fredrickson, and Resnick, 2015), lumbar disc protrusion or
extrusion, defined as a partial or extensive extension beyond the
interspace, was considered disc herniation. Mild disc bulging was
not considered herniation. HIZ was defined as a high-intensity
signal within the low-signal annulus fibrosus on T2W MR images
(Teraguchi et al., 2020). HIZ can be located anteriorly or posteriorly in
the disc but is clearly dissociated from the nucleus pulposus and shows
higher signal intensity than the nucleus pulposus.

All annotations were completed using the Labelme program.
Although Pfirrmann’s description states that disc degeneration
grading should be based on the mid-sagittal slice, all visible discs
in the mid-sagittal slice and two para-midsagittal slices were
annotated to enhance data volume and clinical applicability, as
all these slices provide sufficient disc information. For disc
herniation and HIZ, a positive annotation strategy was used, that

FIGURE 1
Data allocation and processing flowchart.

TABLE 1 MRI scanning parameters for T2-weighted axial and sagittal scans.

Internal dataset External dataset

TR/TE 3,000–3,100/
95–110 ms

2,500/128 ms

Axial matrix 512 × 512 512 × 512

Axial slice thickness 3 mm 3 mm

Axial spacing between slices 3.3 mm 3.3 mm

Sagittal matrix 320 × 320 320 × 240

Sagittal slice thickness 4 mm 4 mm

Sagittal spacing between slices 4.8 mm 4.8 mm
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is, marking diagnostic positive results in all sagittal and axial images,
without separately annotating normal discs.

2.4 Data preprocessing

The internal dataset was randomly divided into training (n =
294), validation (n = 84), and testing (n = 42) sets. To improve the
model’s generalization and performance on test data and further
applications, data augmentation was performed on the training set.
The specific methods included: adding Gaussian noise to the images
to simulate real-world noise interference and increase data diversity
and applying gamma transformation, which is a nonlinear operation
used for image enhancement to adjust the contrast and brightness of
the images. A gamma transformation with random values ranging
from 0.8 to 1.2 was applied. 30% of the original data were randomly
selected and transformed using the two methods.

2.5 Construction of the deep-learning
network model

Figures 3, 4 illustrates the proposed deep-learning network
model. The study utilized a modified YOLOv5 network as the

algorithm framework. In the Neck network, YOLOv5 uses a
feature pyramid network (FPN), which can perform detection
at different feature map levels to enhance object detection
performance by integrating information from various feature
layers. The head network consists of three output layers, each of
which is responsible for detecting large, medium, and small-
scale objects. To ensure the accuracy of small object detection,
the network was improved by adding an attention module in the
Cross Stage Partial (CSP) part (Module 1) and a residual
module in the Spatial Pyramid Pooling-Fast (SSPF)
part (Module 2).

2.5.1 Module 1
The improvement in the CSP module is shown in Module 1.

This module employs a squeeze-and-excitation (SE)-like attention
mechanism to extract dependencies between channels. The SE-like
attention mechanism mainly consists of Conv3x3 + fully connected
(FC) + rectified linear unit (ReLU) + FC + Sigmoid, as indicated by
the red dashed box. This module introduces more nonlinearity,
allowing for better fitting of complex inter-channel relationships
through FC processing while significantly reducing the number of
parameters and computational load. The features extracted by the
attention mechanism are concatenated with the original feature map
to complete the feature fusion.

FIGURE 2
Illustration of the lesions of interest and labeling process. (A) Pffirmann grading system (grades 1–5). (B) Lumbar disc herniation on sagittal and axial
MRI. (C) High-intensity zone on sagittal and axial MRI.

FIGURE 3
Overview of the deep learning pipeline. The modified YOLOv5 model is capable of simultaneously detecting and classifying three types of lesions
based on sagittal and axial lumbar MRI.
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2.5.2 Module 2
The improvement in the SSPF module is shown in Module 2.

This part continuously applies maximum pooling three times and
integrates the results of maximum pooling. Given that MR image
clarity is not uniform owing to equipment and operator
experience, the concept of residuals was introduced. By adding
residual calculations on the original basis, the detailed features
can be better preserved, thereby enhancing the detection
capability for small objects.

2.5.3 Loss function
The classification and bounding box loss functions were

employed to address the objectives of detection and classification
in this study. The classification loss function was defined as:

ClsLoss � −∑
n

i�1
yi × log yi′( ) + 1 − yi( ) × log 1 − yi′( )[ ]

Among them, i represents the i-th category, n denotes the total
number of categories, y is the ground truth label for the i-th
category, and y′ is the predicted label for the i-th category.

The bounding box loss was defined as:

DIoULoss � 1 − IoU + ρ2 b, bgt( )
c2

IoU � box ∩ box′
box ∪ box′

Among them, ρ represents the Euclidean distance between the
two rectangular boxes; b denotes the center point of the predicted
bounding box; bgt refers to the center point of the ground truth
bounding box; box represents the ground truth bounding box, and
box′ refers to the predicted bounding box.

The overall loss function is computed as the average of the
classification loss and bounding box loss, ensuring a balanced
optimization of both tasks:

Loss � ClsLoss +DIoULoss

2

2.6 Statistical analysis

The performance of the automated diagnostic model was
evaluated on the internal and external test datasets. For the
automated grading of disc degeneration, a confusion matrix of
multigrade classification was constructed. Then, quantitative
evaluation metrics, including precision, recall, and F1 score, were
computed based on the confusion matrices. The evaluation metrics
were defined as

Precision � TP

TP + FP

Recall � TP

TP + FN

F1 score � 2 × Precision × Recall

Precision + Recall

Among them, TP, TN, FP, and FN refer to the number of true
positives, true negatives, false positives, and false negatives,
respectively. The area under the receiver operating characteristic
curve (AUC) was also calculated. For the automated detection of
lumbar disc herniation and HIZ, the precision, recall, and F1 score
were calculated. The linearly weighted Cohen’s kappa coefficient was
calculated to evaluate the classification performance of the deep-
learning model and human doctors; p < 0.05 was considered
statistically significant.

Considering that the above diagnostic and grading criteria are
qualitative rather than quantitative, the diagnosis of the degree of
disc degeneration may be ambiguous in clinical practice. Therefore,
the slice-wise accuracy of the automated diagnosis was further
assessed to evaluate its performance. An independent senior
surgeon directly reviewed the output results of the internal test
set. The automatic diagnosis result of a scan slice was considered
clinically acceptable if the grading error for all intervertebral discs
was ≤1 and there were no significant missed diagnoses or
misdiagnoses. Furthermore, considering that patients’ diagnostic
needs for disc herniation and HIZ are typically disc-wise rather than
slice-wise in clinical practice, the disc-wise diagnostic performance

FIGURE 4
Design of the proposed deep learning network. (A) Overview of the proposed network architecture; (B) Cross Stage Partial module integrated with
an SE-like attention mechanism; (C) Spatial Pyramid Pooling-Fast module based on residual design; (D) Schematic representation of the
prediction module.
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of the model was evaluated. Specifically, all slices of a given disc
segment were aggregated, and the disc was classified as pathological
if one or more lesions were detected.

To further compare the diagnostic and grading capabilities of
the proposed deep learning model with those of human doctors, a
medical postgraduate student (reader 1) and an attending clinician
(reader 2) were invited to independently annotate all images in the
internal test set. The performances of (1) the deep learning model,
(2) reader 1, and (3) reader 2 were then evaluated by comparing their
results with the ground truth.

3 Results

3.1 Patient information

Table 2 present the general information and intervertebral disc
lesion details of the included patients, respectively. The internal
dataset consists of 420 patients aged 59.5 ± 13.3 years (range 18–88).
The external dataset contained 52 patients aged 55.1 ± 12.1 years
(range 23–78). The specific numbers of lesion annotations are
provided in Table 3.

3.2 Model performance in the internal
test set

Table 4 provides the precision, recall, and F1 score in the internal
test set. Generally, the precision values for automated disc

degeneration grading, diagnosis of lumbar disc herniation, and
HIZ were 0.78–0.91, 0.90–0.92, and 0.82, and recall values of
0.86–0.91, 0.90–0.93, and 0.81–0.88, respectively. Figure 5 shows
the confusion matrix and the receiver operating characteristics curve
of the disc degeneration automated grading. The disc-wise precision
values for the diagnosis of lumbar disc herniation and HIZ was
0.84 and 0.79, respectively, based on sagittal scans, and 0.85 and
0.84, respectively, based on axial scans. The disc-wise recall values
for the diagnosis of lumbar disc herniation and HIZ was 0.94 and
0.86, respectively, based on sagittal scans, and 0.94 and 0.89,
respectively, based on axial scans.

Results of the internal testing were independently evaluated by a
senior surgeon according to the abovementioned criteria. In this
study, 96.8% of the sagittal images and 93.0% of the axial images
were considered clinically acceptable. For further comparison of the
diagnostic and grading capability of the model and human doctors,
Cohen’s kappa coefficients were compared between their results and
the ground truth. The coefficients of the model, reader 1, and reader
2 were 0.84, 0.79, and 0.85, respectively.

3.3 Model performance in the external
test set

Table 5 and Figure 6 show the diagnostic and classification
performance in the external test set. The precision values of the five
disc degeneration grades were 0.87, 0.84, 0.82, 0.85, and 0.73 in
sequence. The recall values were 0.84, 0.79, 0.85, 0.82, and 0.87 in
sequence. In addition, the precision of disc herniation and HIZ
detection were 0.86 and 0.84 in the sagittal images and 0.92 and
0.74 in the axial images. The recalls of disc herniation and HIZ
detection were 0.88 and 0.78 in the sagittal images and 0.91 and

TABLE 2 Demographic information of included patients.

Characters Training set (n = 294) Validation set (n = 84) Test set (n = 42) External test set (n = 52)

Age (years) 60.3 ± 13.2 57.6 ± 13.5 58.2 ± 14.1 55.1 ± 12.1

Gender (M/F) 142/152 41/43 22/20 24/28

BMI (kg/m2) 24.6 ± 3.5 24.9 ± 3.3 25.0 ± 3.7 24.5 ± 3.0

TABLE 3 Number of lesion annotations in the internal and external dataset.

Internal dataset External dataset

Pfirrmann grading of disc degeneration

1 750 82

2 1,634 120

3 2,178 195

4 2,441 175

5 590 52

Disc herniation (axial)a 1844 175

Disc herniation (sagittal) 3,632 363

High-intensity zone (axial)a 487 44

High-intensity zone (sagittal) 762 65

aThe number of slices where the same lesion can be observedmay differ between sagittal and

axial scans.

TABLE 4 Diagnostic and classification performance in the internal test set.

Precision Recall F1 score

Disc degeneration grade 1 0.92 0.86 0.89

Disc degeneration grade 2 0.84 0.88 0.86

Disc degeneration grade 3 0.90 0.88 0.89

Disc degeneration grade 4 0.91 0.88 0.89

Disc degeneration grade 5 0.78 0.91 0.84

Lumbar disc herniation (sagittal) 0.92 0.90 0.91

Lumbar disc herniation (axial) 0.90 0.93 0.91

High-intensity zone (sagittal) 0.82 0.88 0.85

High-intensity zone (axial) 0.82 0.81 0.81
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0.77 in the axial images. The disc-wise precision values for the diagnosis
of lumbar disc herniation and HIZ was 0.79 and 0.78, respectively,
based on sagittal scans, and 0.87 and 0.70, respectively, based on axial
scans. The disc-wise recall values for the diagnosis of lumbar disc
herniation and HIZ was 0.92 and 0.78, respectively, based on sagittal
scans, and 0.91 and 0.83, respectively, based on axial scans.

4 Discussion

Pfirrmann grading, disc herniation, and HIZ are important MRI
indicators to evaluate the intervertebral discs. Pfirrmann grading
assesses the degree of disc degeneration based on its composition
and morphology, providing valuable insights for predicting disease
progression and guiding treatment strategies (Pfirrmann et al.,
2001). Disc herniation is a common cause of LBP and radicular
symptoms. While disc bulgings and herniations are frequently
observed in imaging reports, not all cases are clinically
symptomatic. Focus should primarily be on herniations causing
significant nerve compression, which is the main concern of this
study. HIZ is closely associated with annular tears and inflammatory

responses, and is considered another important indicator of LBP
(Wang and Hu, 2012). Furthermore, incomplete annular integrity
may contribute to the progression of disc herniation.

Despite their clinical significance, interpreting MRI is intensive and
time-consuming. Therefore, an auxiliary diagnostic model that can
automatically identify the signs was developed in this study.
Validation on both internal and external test sets demonstrated the
model’s satisfactory capability in diagnosing and grading lumbar disc
degeneration. Compared to prior models (Table 6), the proposed model
offers several advantages. First, most existing models adopt a multi-stage
approach, requiring manual or automated cropping of regions of
interest. By integrating detection and classification tasks into a single-
stage framework, the proposed model achieves efficient processing with
reduced computational complexity. Second, this multi-task model
achieved results comparable to those of single-task models. This
design enhances its clinical applicability as a promising tool for
assisting clinicians in routine practice.

Several studies have attempted to automate the grading of disc
degeneration. Since the development of SpineNet in 2017 (Jamaludin,
Kadir, and Zisserman, 2017), researchers have proposed using various
algorithmic models, including VGG-16 and Inception v3 (Soydan et al.,
2023; Niemeyer et al., 2024). In this study, a modified
YOLOv5 algorithm framework was employed, and the results
demonstrated a relatively satisfactory classification performance.
Notably, the primary issue with the automatic grading of disc
degeneration may stem from the grading standard itself. Disc
degeneration is a continuous process; however, the Pfirrmann
grading system is a subjective, qualitative standard. Therefore, even
clinical experts may struggle to definitively classify a disc, and the
intraobserver coefficient can be low (Gao et al., 2021). To solve this
problem, Gao et al. (2021) proposed adjusting the loss function to
maximize the distance between the samples and the classification
hyperplane. Although this theoretically improves classification
performance, it also carries the risk of exaggerating the differences
between the degrees of degeneration. We believe that minor deviations
in grading typically do not directly affect clinical decision-making. In
our test results, over 95% of image detections were evaluated as
acceptable by a clinical expert. This result preliminarily meets the

FIGURE 5
Confusionmatrix (A) and receiver operating characteristic curves (B) of the lumbar disc degeneration automated classification in the internal test set.

TABLE 5 Diagnostic and classification performance in the external test set.

Precision Recall F1 score

Disc degeneration grade 1 0.87 0.84 0.86

Disc degeneration grade 2 0.84 0.79 0.82

Disc degeneration grade 3 0.82 0.85 0.83

Disc degeneration grade 4 0.85 0.82 0.83

Disc degeneration grade 5 0.73 0.87 0.79

Lumbar disc herniation (sagittal) 0.86 0.88 0.87

Lumbar disc herniation (axial) 0.92 0.91 0.91

High intensity zone (sagittal) 0.84 0.78 0.81

High intensity zone (axial) 0.74 0.77 0.75
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clinical requirements. An alternative strategy could be to introduce
transitional grades (Niemeyer et al., 2021), which may more accurately
reflect the natural progression of disc degeneration.

Given the high incidence of lumbar disc herniation, research on
its automatic diagnosis has become a current hotspot. Over the past
2 years, researchers have achieved automatic grading and
classification of disc herniation (Sustersic et al., 2022; Xu et al.,
2024), resulting in the generation of more accurate and
comprehensive imaging reports. However, these functions rely on
extensive data annotation and training. Moreover, for multitask
algorithms such as lumbar spineMRI interpretation, the inclusion of
too many label types may increase the operating costs of the system,
making its clinical deployment more challenging. For disc
herniation, the imaging characteristics are often similar.
However, no clear diagnostic imaging standards have been
established (Li et al., 2015), leading to significant annotation

noise. Therefore, in this study, a positive annotation strategy was
adopted for training the automatic diagnostic model, which
significantly reduced the number of labels and helped mitigate
noise and overfitting. A previous study showed that this method
can achieve performance comparable to that of fully labeled
classifiers and offers certain advantages in multitask learning
(Yuan et al., 2023). The proposed algorithm incorporates an SE-
like attention mechanism and a residual calculation module, which
enhance the detection of small targets such as disc herniation and
HIZ. This approach further improves the performance of positive-
label learning and assists clinicians in identifying potentially
symptomatic disc herniations.

It is worth noting that the disc-wise diagnostic metrics for
lumbar disc herniation demonstrated higher recall but lower
precision compared to slice-wise metrics in both internal and
external tests. This is because even if the model missed some
lesions, a disc can still be diagnosed as positive due to the
presence of typical lesions in other slices. For the same reason,
false positives may also increase. This comparison highlights the
importance of conducting a detailed analysis of individual slices
from the original images. In clinical practice, accurate slice-wise
diagnosis is essential, as it not only confirms whether a disc is
pathological but also provides detailed information about the
lesion’s location and boundaries. Such information can help
clinicians correlate imaging abnormalities with clinical symptoms,
assess disease severity, and develop treatment plans accordingly.

To the best of our knowledge, no previous studies have explored
automatic detection methods for HIZ. The imaging manifestations
of HIZ vary; it can appear in either the anterior or posterior portions
of the disc and present in multiple forms, including rim, round, and
fissure types. Our annotation strategy encompassed all HIZ types,
which increased the detection complexity of the model. In addition,
studies have indicated that HIZ is only likely to have clinical
significance if it appears on at least two consecutive MRI slices,
and in some patients, typical changes are observed on both T1W and
T2W images (Wang and Hu, 2012; Shan et al., 2017). This indicates

FIGURE 6
Confusion matrix (A) and receiver operating characteristic curves (B) of the lumbar disc degeneration automated classification in the external
test set.

TABLE 6 Performance comparison of the proposed model with previous
studies.

Precision Recall

Disc herniation on axial imagesa

Su et al. (2022) 0.80 0.71

Sustersic et al. (2022) 1.00 0.95

Zhang et al. (2023) 0.78 0.83

Ours 0.90 0.93

Grading of disc degeneration

Natalia et al. (2024) 0.88 0.88

Gao et al. (2021) 0.86 0.86

Ours 0.88 0.88

aAccording to the evaluation criteria for disc herniation used in this study, disc bulging or

grade 1 herniation were classified as normal when calculating the diagnostic performance of

previous models.
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that a more clinically applicable diagnostic model needs to be of
multi-input and multi-class. Therefore, a dedicated study on the
automatic diagnosis of HIZ is currently being planned.

Furthermore, the errors in the diagnostic and classification
results of the deep-learning model were analyzed. For disc
degeneration grading, the model demonstrated unstable
performance in distinguishing grades 2–4. As previously
discussed, this is mainly due to the inherently vague boundaries
between these grades. Although the model exhibited classification
capabilities similar to those of human clinicians in the test set,
human clinicians nearly never make errors >1 grade. In future
improvements, the loss function could be adjusted to solve this
problem, for instance, by introducing grade smoothing or grade-
weighted loss functions to tie the penalty more closely to the grading
discrepancy and avoid significant misclassification. Regarding disc
herniation and HIZ, Figure 7 highlights two typical detection errors.
The model misdiagnosed a mild disc bulge as herniation and
revealed insufficient detection capacity for smaller and marginally
located HIZ. Balancing the sensitivity and specificity of detecting
these two types of lesions may be a key future challenge. The model
should be adapted according to the clinical application, prioritizing
higher sensitivity for screening purposes or higher specificity for
identifying symptomatic lesions. Moreover, for disc herniation
detection, the model demonstrated similar performance on the
external test set as it did on the internal test set. However, for
the HIZ and disc degeneration grading, the results on the external
test set showed a decline. This may be because the detection of the
latter can be influenced by factors such as image contrast and
resolution. This proposes that further training with multicenter
data may be necessary in future studies.

The current algorithm still has some areas for improvement. We
plan to conduct further studies on the following aspects: First, the
current auxiliary diagnostic model does not incorporate automatic
segmentation technology. In future work, automatic segmentation
algorithms can be applied to predefined regions of interest, which

would enhance the diagnostic performance and interpretability of
the model. Second, the current model cannot medically localize the
detected lesions. We plan to develop localization algorithms based
on image segmentation technology (e.g., L4/5 disc herniation).
Third, the integration of the existing image detection models
with natural language processing (NLP) is feasible in the future
(Bacco et al., 2022; Santomartino et al., 2024). For example, not all
abnormal changes in MR images result in clinical symptoms. NLP
can assist in localizing the responsible segment by analyzing the
symptoms reported by the patients. Additionally, NLP can be used
to integrate the output of image detection and generate radiological
diagnostic reports. These techniques will help promote the clinical
application of the automated diagnostic model.

This study has some limitations. The dataset used to train the
model is still relatively limited; thus, supplementing data from
different populations, pathologies, and scanners is necessary to
minimize bias. Cross-validation was not performed during the
training process, which may have potentially affected the model’s
generalizability and robustness. Although the model’s diagnostic
performance has undergone preliminary external validation, larger-
scale independent validation is needed for further assessment. The
proposed model is developed using supervised learning based on
clinician-labeled data, which may limit its ability to accurately
diagnose images where there is disagreement among human
doctors. It is necessary to explore additional training
methodologies to enhance its diagnostic performance in the
context of complex diseases in the future. Moreover, in future
research, new MRI techniques or precise and quantitative
diagnostic criteria may be implemented.

5 Conclusion

The proposed deep learning model is based on a relatively
lightweight multi-task framework and achieves satisfactory

FIGURE 7
Illustrations of the incorrect diagnostic results of the model. (A) A mild disc bulge was misdiagnosed as disc herniation. (B) A small HIZ lesion was
missed by the model.
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diagnostic and classification capabilities for lumbar disc
degenerative diseases. Internal and external validations indicated
that the model demonstrates diagnostic performance comparable to
that of human clinicians. However, future research should focus on
clinically driven model optimization. Key directions include training
and testing the model on larger datasets to improve its
generalizability and incorporating diverse input data to develop a
multimodal diagnostic model suitable for clinical applications.
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