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Background: Muscle fat infiltration and atrophy were common pathomorphologic
changes in the paravertebral muscles. Some studies indicated that degeneration of
paravertebral muscles may be one of the important causes of chronic neck pain.
Therefore, we investigated themechanical effects ofmultifidusmusclemorphologic
changes on cervical spine tissues by constructing cervical spinemodels of multfiidus
muscle with different degrees of atrophy.

Method: Three-dimensional finite element models of the cervical spine with
100%, 80%, and 50% with the multifidus muscle were constructed by referring to
previous literature. According to the mechanical loading conditions in previous
literature, the patient’s head weight and 1 Nm of loading were considered to be
applied to the cervical spine, and the mechanical differences in the cervical
intervertebral discs, joint capsule, cartilage endplates and range of motion (ROM)
due to the morphological changes of the multifidus muscle were recorded
and analyzed.

Result: Under anterior flexion loading, model C increasing by 55% and 22% at the
C5-6 segment compared to A and B, respectively. Among the three model groups,
the stresses in the discs of the lower segments (C4-C7) were significantly higher than
those in the upper segments. Under posterior extension loading, the strain values of
the joint capsule were higher in the lower cervical segments, with the maximum
strain values in the C5-6 segments. Themaximum strain values in the lower cartilage
endplates were in the C5-6 segments in model group A, whereas the maximum
values were in the C4-5 segments in both models B and C. The maximum values in
the lower cervical segments were in the C4-6 and C4-5 segments. In addition, a
similar trend described above occurs in lateral bending and axial rotation conditions.
The ROM of the lower cervical was higher than that of the upper cervical vertebrae,
except in lateral bending conditions.

Conclusion: In this study, we constructed the morphology of the multifidus
muscle to more realistically simulate the mechanical environment of the cervical
spine in vivo and quantitatively explored the effects of multifidus muscle atrophy
on cervical spine tissues. The results showed that volume atrophy of the
multifidus muscle altered the mechanical response of cervical spine tissues.
Volume atrophy of the multifidus muscle significantly increased the
mechanical indexes of the cervical spine tissues, in which the cervical disc
stresses, joint capsule strains, and cartilage endplates increased significantly.
Compared with the mechanical changes in the upper cervical segments, the
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mechanical changes in the lower cervical segments were higher. Therefore, it is
important to moderately increase the functional exercise of the multifidus muscle
to prevent atrophy leading to abnormal stress concentrations in cervical tissues.
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1 Introduction

Muscle fat infiltration and atrophy were common
pathomorphological changes in the paravertebral muscles and are
associated with various spinal disorders (Huang et al., 2022; Shi
et al., 2022; Suo et al., 2023). Degeneration of the paravertebral
muscles may be an important factor in chronic neck pain and
cervical rehabilitation (Li et al., 2024; Naghdi et al., 2023). Patients
with cervical spondylosis had a greater degree of fatty infiltration and
sagittal imbalance in the multifidus muscle compared to healthy
subjects, which correlated with cervical spine pain and injury (Li
et al., 2023). In addition, intervertebral disc degeneration was
associated with fatty infiltration of the paraspinal muscles, especially
of muscles such as the multifidus muscle (Li et al., 2024). The deep
extensors, composed of muscles such as the multifidus, play an
important role in maintaining sagittal balance in the cervical spine
and correlate with the severity of neck symptoms (Gu et al., 2023). The
cervical multifidus muscle CSA was generally smaller in women with
bilateral chronic neck pain than healthy women (Fernández-de-las-
Peñas et al., 2008). Thus, morphological changes in the multifidus
muscle may be important in cervical spondylosis.

The results showed a correlation with reduced sensorimotor
function in cervical spondylosis by calculating the amount of fat
infiltration in the bilateral multifidus muscles on MRI images
(Cloney et al., 2018). Alterations in muscle composition may
reduce the ability to produce or maintain muscle strength, and
may contribute to chronic pain (Snodgrass et al., 2024).
Strengthening the paraspinal muscles is one of the most effective
ways to reduce neck pain due to fatty infiltration and volume
changes in the paraspinal muscles. Kang et al. (2021) suggested
that increasing the volume of the paraspinal muscles through
strengthening exercises can reduce the load on the spine and
have a pain-relieving effect. Due to the complexity of the in vivo
structure of the spine, studies on morphological changes in the
multifidus muscle that affect neck tissues were limited.

In this study, we simulated the morphological changes of the
multifidus muscle by constructing cervical spine models with
different degrees of atrophy, and quantified the mechanical
effects on cervical spine tissues. The mechanical differences in
cervical intervertebral discs, joint capsules, cartilage endplates and
mobility were analyzed by loading the cervical spine in different
working conditions with multifidus muscle morphological changes.

FIGURE 1
Overall view of the cervical spinemodel. (A) Internal view of the vertebral body. (B) Intersegmental ligaments. (C) Lateral view of cervical spinemodel.

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Xu et al. 10.3389/fbioe.2025.1524844

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1524844


2 Methods

2.1 Model construction

A finite element model of the cervical spine was constructed
based on a healthy male volunteer, which referred to the modeling

approach of previous study (Chen et al., 2024), and the
intervertebral discs were constructed in the model was
improved, as shown in Figure 1. A cross-sectional scan of the
cervical spine of the volunteer was performed using spiral CT and
the images were saved in DICOM file format. The DICOM file was
imported into Mimics for 3D reconstruction, and the C2-C7

TABLE 1 Material properties of cervical tissue.

Component Element type Material type Material parameters

Cortical bone Triangular shell Isotropic elastic–plastic E = 10.0 GPa
v = 0.3

Cancellous bones Tetrahedral E = 300 MPa
v = 0.3

Bony endplate Triangular shell E = 5.6 GPa
v = 0.3

Nucleus pulpous Hexahedral Mooney-Rivlin c10 = 0.12, c01 = 0.03

Annulus fibrosus matrix c10 = 0.18, c01 = 0.045

Annulus fibrosus fibers Quadrilateral membrane Orthotropic nonlinear elastic N/A

Ligaments Non-linear curves N/A

N/A, Not applicable.

FIGURE 2
Finite element model of the cervical spine with the multifidus muscle. (A) View of part of the deep multifidus muscle. (B) Lateral view of the deep
multifidus muscle. (C) Lateral view of the superficial multifidus muscle. (D) A holistic view of the cervical spine including the multifidus muscle.
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cervical vertebral segment model was extracted using tools such as
masking and filling, after which the model was saved and imported
into Geomagic, and the model was initially adjusted and polished
using tools such as deletion of pegs, relaxation, noise reduction,
and other tools, and then processed by delineating the whorl lines

and constructing the surface pieces. The model was imported into
SolidWorks to construct the intervertebral disc structure.
Hypermesh software was used to construct and mesh the
components such as the joint capsule, endplates, and annulus
fibrosus, with a mesh size of 1 mm, and to assign each structural

FIGURE 3
Partial view of multifidus muscle atrophy. (A) Finite element model with 100% content of multifidus muscle. (B) Finite element model with 80%
content of multifidus muscle. (C) Finite element model with 50% content of multifidus muscle.

FIGURE 4
Comparison of ROM. (A) Results of the ROM under flexion. (B) Results of the ROM under extension. (C) Results of the ROM under lateral bending. (D)
Results of the ROM under axial rotation.
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parameter to the model as shown in Table 1 (Sun et al., 2022; Wang
et al., 2016; Purushothaman et al., 2021; Schmidt et al., 2007).
Cortical bone and Bony endplate were simulated using Triangular
shell with Isotropic elastic-plastic material. Intervertebral discs
were simulated constructed using their Hexahedral with Mooney-
Rivlin material properties. Annulus fibrosus fibers were defined as
Orthotropic nonlinear elastic and ligaments were defined as Non-
linear curves.

2.2 Constructing finite element models of
different degrees of atrophy of the
multifidus muscle

To assess the effects of morphological changes of the
multifidus muscle on the cervical spine tissues, a finite
element model of the cervical spine containing the multifidus
muscle was constructed in Figure 2 (Anderson et al., 2005).
Referring to previous literature (Kang et al., 2021), finite
element models with 100%, 80% and 50% content of
multifidus muscle were established in Figure 3. Among them,
the multifidus muscle was defined as nonlinear hyperelastic and
incompressible (Dao et al., 2014). The contact between the
multifidus muscle and the bone was set to be bound.

2.3 Loading conditions

In all the cervical spine models, C7 and the lower end of the
multifidus muscle were set to be completely fixed. According to the
mechanical loading conditions in previous literature (Sun et al.,
2023), the patient’s head weight and 1 Nm load were applied to the
cervical spine. The segmental range of motion in the model was
calculated and compared with the literature, which was used to
verify the validity of the model. Then, based on the above
mechanical loading conditions, the mechanical changes of the
cervical spine tissues by atrophy of the multifidus muscle were
recorded and analyzed in different working conditions.

3 Results

3.1 Validation of cervical model

The results of the cervical spine model were compared with the
data of Sun et al. (2023) by calculating the ROM results of the
cervical spine model in the four working conditions of forward
flexion, backward extension, lateral flexion and axial rotation. The
results were shown in Figure 4, and the trend and range of the model
results were in good agreement with the data of Sun et al. (2023).

FIGURE 5
Intervertebral disc stress result. (A) Stress results of the intervertebral disc under flexion. (B) Stress results of the intervertebral disc under extension.
(C) Stress results of the intervertebral disc under lateral bending. (D) Stress results of the intervertebral disc under axial rotation.
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3.2 Changes in intervertebral disc stress

Figure 5 showed the stress values of cervical intervertebral disc
stress under different working conditions. Under forward flexion
loading, the stress changes of the three models were more obvious.
Model C had the highest stress, which, at the C5-6 segment,
increased by 55% and 22% compared with models A and B,
respectively. Under posterior extension loading, the stress values
of the C5-6 intervertebral discs of the three models increased by 41%
and 20% in Model C compared with those of models A and B,
respectively. Under lateral bending and axial rotation conditions, the
intervertebral disc stress values at C4-5 and C5-6 segments were
greater than those at other segments. In the three models, the
stresses in the discs of the lower segments (C4-C7) were
significantly higher than those in the upper segments.

3.3 Strain changes of joint capsules

As shown in Figure 6, the joint capsule strain varied from C2 to
C7, and the stress distribution was not uniform. Under flexion
loading, the joint capsule strain value of model C was higher,
compared with models A and B, C4-5 increased by 33% and 13%
respectively, and C5-6 increased by 51% and 24% respectively.
Under extension condition, the strain values of the joint capsule
in model C were greater than those in models A and B. The strain
values of the joint capsule in the lower cervical segments were

significantly higher. The C5-6 segment with the greatest strain value,
which increased by 53% and 22%, respectively, compared with
models A and B. Under lateral bending and axial rotation
conditions, the capsular strain values of C4-5, C5-6 and C6-7
segments were higher than those of C2-3 and C3-4 segments.

3.4 Stress results of the lower
cartilage endplates

The stress results of the lower cartilage endplates in the three
groups showed an increasing trend change in Figure 7. Among
them, the maximum stress value in model A was 2.87 MPa at
segment C5-6, while the maximum value in both models B and C
was at segment C4-5. At the C4-5 segment under flexion loading, the
stress in model C increased by 69% and 10% compared to models A
and B, respectively. As the degree of multifidus atrophy increased, it
altered the stress distribution in the cervical segments and led to
stress concentrations in the lower cartilage endplates.

3.5 Comparison of ROM

Figure 8 showed significant differences in the ROM of the
segments with increasing degrees of multifidus atrophy. Under
flexion and extension loading, the increase in cervical spine ROM
was significantly more pronounced in the lower segments than in

FIGURE 6
Strain changes of joint capsules. (A) Strain changes of joint capsules under flexion. (B) Strain changes of joint capsules under extension. (C) Strain
changes of joint capsules under lateral bending. (D) Strain changes of joint capsules under axial rotation.
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the upper segments. The largest activity angles in the three models
were at the C4-5 and C5-6 segments. In particular, under flexion
loading, there was an 18% and 8% increase in C5-6 in model C
compared with models A and B, respectively. Under extension
loading, the C5-6 segments increased by 15% and 4% in model
group C compared to models A and B, respectively. In addition, a
similar trend described above occurs in lateral flexion and rotation
conditions.

4 Discussion

In the present study, we found that increased multifidus muscle
atrophy altered mechanical indices such as cervical disc stress, joint
capsule strain, and cartilage endplate stress, and to varying degrees
with increased multifidus muscle atrophy. In addition, changes in
cervical ROM are most obvious in the lower segments with
multifidus atrophy.

The paraspinalmuscles are a series of skeletalmuscles thatmaintain
the motor function and stability of the cervical spine (Suo et al., 2024).
Measurement of muscle CSA is an important indicator of fundamental
changes in muscle structure, particularly concerning muscle strength
and atrophy (De Pauw et al., 2016; Fortin et al., 2018; Airi et al., 2008).
The mechanical effects of multifidus atrophy on cervical spine tissues
were quantitatively analyzed through a finite element approach, and our
results suggest that normal cervical multifidus muscles efficiently

distribute loads applied to the cervical spine, and that, with atrophy,
the loadsmay be excessively concentrated on certain intervertebral discs
or joint capsule. These results are consistent with previous research that
fatty infiltration of the cervical multifidus muscle can cause cervical
injury and mechanical neck pain (Li et al., 2023). Deep neck muscle
weakness and associated atrophymay be a risk factor for the emergence
and recurrence of neck pain (Amiri-Arimi et al., 2020). This may be due
to the fascicular attachment pattern of the multifidus muscle in the
cervical region, which is directly attached to the small cervical joint
capsule in a manner that suggests an interaction between the multifidus
muscle and the joint capsule (Anderson et al., 2005). Therefore,
clarification of the mechanical changes in cervical spine tissues due
to atrophy of the multifidus muscle was important for subsequent
prevention and treatment.

Segmental mechanical dysfunction due to defects in the structure
and activation of the multifidus may result in cumulative damage to the
annulus fibrosus, which has been shown to lead to disc degeneration
(Maas et al., 2018). In addition, intervertebral disc degeneration may
lead to fibrosis of the multifidus muscle and structural changes in the
muscle spindle (James et al., 2024; James et al., 2022). The muscle
spindle of the multifidus muscle is mainly concentrated near the
vertebral plate, and when the multifidus muscle atrophies, there may
be a decrease in the stability of the cervical spine, which in turn affects
mobility (Boyd-Clark et al., 2002). In addition, atrophy or reduced
function of the multifidus muscle may directly increase segmental
mechanical overload and affect spinal stability (Ignasiak et al., 2018).

FIGURE 7
Stress results of the lower cartilage endplates. (A) Stress results of the lower cartilage endplates under flexion. (B) Stress results of the lower cartilage
endplates under extension. (C) Stress results of the lower cartilage endplates under lateral bending. (D) Stress results of the lower cartilage endplates
under axial rotation.
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Our results suggest that the increase of lower segmentmotion caused by
multifidus muscle atrophy also affects spinal stability.

Physiological degeneration of the cervical multifidusmuscle tissue
may be considered a potential pathological marker of cervical
spondylosis (Li et al., 2023). Altering the physical properties of
neck musculature can change its function (Thakar et al., 2014),
which is similar to our results that polydactyly atrophy increases
stress and strain in cervical spine tissues. Increased stress and strain
increase the risk of tissue degeneration and injury and increase the
occurrence of mechanical neck pain, which is one of the common
symptoms of cervical spondylosis. Recent Studies (Li et al., 2023; Li
et al., 2025) have pointed to a significant relationship between
paraspinal muscle degeneration and the progression of cervical
spondylosis. As only the effects of multifidus muscle atrophy on
cervical spine tissues were included in this study, in subsequent
studies, more complete neck muscles should be constructed and
combined with skeletal muscle dynamics to simulate the
mechanical effects of multifidus muscle atrophy on cervical spine
tissues under active muscle forces.

The following deficiencies still exist in this paper. Firstly, the
construction of the finite element model of the cervical spine is not
complete enough, lacking nerves, blood vessels, other muscle tissues,
etc., and a more complete model should be constructed in the
subsequent research; Then, the multifidus muscle tissue constructed
in this paper is a passive structure and an active muscle force model
should be incorporated into the subsequent research; Furthermore,
the construction of multifidus muscle atrophy in this study is

isometric atrophy, however, the muscle atrophy in the clinic will
lead to changes in muscle stiffness and fiber type, etc. However, due
to the technical limitations of the model construction, which led to a
certain error between the calculation results and the real situation,
future studies should establish a more realistic and accurate finite
element model and further validate its analysis results in the clinic.

5 Conclusion

This study indicates that multifidus atrophy alters the mechanical
response of cervical spine tissues. The more severe the degree of
multifidus atrophy, the more pronounced the increase in cervical
disc stress, joint capsule strain, and cartilage endplates, and resulted
in increased cervical spine mobility in the lower segments. Changes in
the above outcomes increase the risk of injury by increasing the stresses
on the cervical spine tissues. Therefore, it is important to moderately
increase functional exercises targeting themultifidusmuscle in the clinic
in order to prevent atrophy that can lead to abnormal concentrations of
stress in cervical spine tissues.
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FIGURE 8
Comparison of ROM. (A) Results of the ROM under flexion. (B) Results of the ROM under extension. (C) Results of the ROM under lateral bending. (D)
Results of the ROM under axial rotation.
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