
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
MINI REVIEW article
Front. Bioeng. Biotechnol.
Sec. Organoids and Organ-On-A-Chip
Volume 13 - 2025 | doi: 10.3389/fbioe.2025.1521044
This article is part of the Research Topic Insights In Organoids and Organ-On-A-Chip 2024: Novel Developments, Current Challenges and Future Perspectives View all 8 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Culture platforms that closely mimic the spatial architecture, cellular diversity, and extracellular matrix composition of native tissues can serve as invaluable tools for a range of scientific discovery and biomedical applications. Organoids have emerged as a promising alternative to both traditional 2D cell culture and animal models, offering a physiologically relevant 3D culture system for studying human cell biology. Organoids provide a manipulable platform to investigate organ development and function as well as to model patient-specific phenotypes. This mini review examines various methods used for culturing organoids to model normal and disease conditions in gastrointestinal tissues. We focus on how the matrix composition and media formulations can impact cell signaling, altering the baseline cellular phenotypes as well as response to perturbations. We discuss future directions for optimizing organoid culture conditions to improve basic and translational potential.
Keywords: Organoids, Matrix, growth factor signaling, Mechanotransduction, In vitro Models
Received: 01 Nov 2024; Accepted: 21 Mar 2025.
Copyright: © 2025 Kuhn, Wolcott and Langer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Ellen M Langer, Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, 97239, Oregon, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.