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Protein function prediction is crucial in several key areas such as bioinformatics
and drug design. With the rapid progress of deep learning technology, applying
protein language models has become a research focus. These models utilize the
increasing amount of large-scale protein sequence data to deeply mine its
intrinsic semantic information, which can effectively improve the accuracy of
protein function prediction. This review comprehensively combines the current
status of applying the latest protein language models in protein function
prediction. It provides an exhaustive performance comparison with traditional
prediction methods. Through the in-depth analysis of experimental results, the
significant advantages of protein languagemodels in enhancing the accuracy and
depth of protein function prediction tasks are fully demonstrated.
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1 Introduction

As key macromolecules in the life sciences, proteins play a cornerstone role in a variety
of biological processes within the cell. Accurate characterization of protein function is of
vital importance for disease research (Barabási et al., 2011; Xuan et al., 2019), drug discovery
(Kissa et al., 2015; Zeng et al., 2016), and biotechnology advancement (Shehu et al., 2016).
However, traditional experimental methods are not only time-consuming and labor-
intensive but also inefficient (Colin et al., 2015; Cui et al., 2019; Torres et al., 2021). As
of February 2024, while the UniProt database contains over 240 million protein sequences,
less than 0.3% of these sequences have functionalities that have been experimentally
validated and standardly annotated (uni, 2023). This huge gap between sequencing and
annotation urgently calls for the development of efficient and reliable automated function
prediction tools to save human resources and time costs (Radivojac et al., 2013).

Prior to the advent of the protein language model (PLM), numerous high-performance
computational methods based on sequence similarity and deep learning have been proposed
to address this challenge (Kulmanov et al., 2018; You et al., 2018; 2019; Li et al., 2024).
Although these methods have made significant progress in function prediction, they fail to
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fully utilize the large amount of unannotated protein information.
The amount of data on these unannotated proteins is growing, and
the imbalance between the ratio of unannotated proteins to
annotated proteins is widening (Kihara and Kihara, 2017).
Furthermore, traditional deep learning methods rely on hand-
designed feature extractors. These feature extractors cannot
adequately capture the complexity and diversity of protein
sequences, which limits the predictive power of the model
(Aggarwal and Hasija, 2022; Bonetta and Valentino, 2020;
Bernardes and Pedreira, 2013). The introduction of protein
language models has skillfully overcome these long-standing
problems and revolutionized the research field.

Inspired by the success of large-scale models in computer vision
and natural language processing, the field of bioinformatics has also
seen the rise of pre-trained protein language models. The
introduction of the Transformer architecture has laid a solid
foundation for the rapid growth of protein language models.
Since the introduction of the Transformer architecture,
researchers have begun to apply it to the processing of protein
sequence data, and the ensuing growth of protein language models
has been a springtime phenomenon. These large-scale protein
language models, based on tens of millions to billions of protein
sequences that are self-supervised and pre-trained, represent the
state-of-the-art in predicting protein sequence function and fitness.
By pre-training on huge datasets of unlabeled protein sequences,
these models are capable of automatically extracting features from
massive data and fine-tuning them on specific downstream tasks.
Protein language models focus on three core tasks: protein function
prediction, protein sequence generation, and protein structure
prediction (Lin et al., 2023; Weissenow et al., 2022). These
models play an important role in genomics, helping researchers
to deeply interpret complex genomic data and reveal the subtle
relationship between genes and proteins (Hu et al., 2024). In
synthetic biology, protein language models help researchers
design novel proteins or optimize the properties of existing
proteins (He et al., 2024; Chen et al., 2024). In addition, in drug
design, these models provide powerful support for the design and
development of next-generation drugs by accurately predicting the
structure of proteins and their interactions with small molecules
(Zheng et al., 2024). Among the many tasks, protein function
prediction, as the most basic and direct task, can intuitively
reflect the effect of self-supervised training of protein language
models. Therefore, this paper chooses to comprehensively review
protein language models in the context of protein function
prediction to comprehensively evaluate and compare the
performance of these models on function prediction tasks and
reveal their advantages.

Within the field of protein function prediction, the ESM 1b
model (Rives et al., 2021) has attracted attention for its wide range of
applications. The model achieves accurate prediction of protein
function by analyzing the evolutionary information of protein
sequences. The use of ESM 1b as a coding tool has significantly
improved the accuracy of the protein function prediction task (Li
et al., 2023; Yao et al., 2021). Not only ESM 1b but also many other
protein language models can also outperform most of the protein
function prediction methods in the CAFA Challenge. In recent
years, emerging methods have commonly adopted pre-trained
protein language models to extract sequence features (Wang S.

et al., 2023; Pan et al., 2023; Zhang et al., 2023; Wang Z. et al.,
2023; Kulmanov et al., 2024; Yuan et al., 2023). Thus, it has become
an irreversible trend for protein language models to gradually
replace the traditional sequence coding methods. In the current
research context, the adoption of protein language models has
become an inevitable choice if protein function prediction
models are to remain competitive. In view of the central position
of protein language modeling in function prediction, this review was
born. By deeply analyzing and comparing the architectures,
functions, training strategies, and datasets used in various protein
language models, we aim to help researchers fully grasp and
understand protein language models, and then be able to
skillfully apply them. By effectively utilizing these advanced tools,
researchers will be able to significantly improve the accuracy of
protein function prediction tasks and promote their wide
application in the biomedical field, which will ultimately
contribute to the solution of cutting-edge scientific problems
such as drug design and disease mechanism research.

This review is structured as follows: Section 2 reviews the
development history of protein function prediction, and Section
3 introduces representative methods in the development history of
protein function prediction methods, including statistically based
methods, machine learning, and deep learning methods. Section 4
comprehensively combines through the various protein language
models currently available for ontology prediction tasks, comparing
their architectures, functions, and training datasets to compare the
effectiveness of each protein language model in ontology prediction
downstream tasks. Section 5 describes the protein sequence dataset
and evaluation metrics. Section 6 shows the results and analysis of
the fine-tuned protein language models on three datasets. Section 7
will select the human tRNA pseudouridine (38/39) synthetase
protein as a case study, aiming to assess the prediction
effectiveness and depth of different protein language models
through specific examples. Section 8 summarizes this review,
assesses the existing issues and trends in the field, and looks into
the future direction of protein language modeling and protein
function prediction.

2 A brief history of protein function
prediction

In order to deeply explore and verify the specific functions of proteins
and their mechanisms of action in living organisms, researchers first
relied on biochemical experiments for protein function prediction. In
1875, science first revealed the biological function of hemoglobin, an
achievement made possible by the use of the spectrophotometer (Ma
et al., 2007; Thein, 2011). With this technique, scientists observed that
hemoglobin can bind oxygen reversibly, thus recognizing its key function
of transporting oxygen in vertebrate blood. Subsequently, between
1926 and 1930, research methods of crystallization and activity
determination successfully revealed that enzymes, molecules with
biocatalytic functions, are composed of proteins (Simoni et al., 2002;
Manchester, 2004). Between the 1950s and the 1970s, protein isolation
and purification techniques became increasingly sophisticated, with
salting out, ion-exchange chromatography, gel-filtration
chromatography, and affinity chromatography enabling proteins to be
separated from complex cellular structures.
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In the 1970s and 1980s, with the creation of protein sequence
databases, scientists discovered that proteins with similar sequences
often have similar functions. Using sequence comparison tools,
researchers were able to hypothesize about the functions of
unknown proteins by comparing them to proteins with known
functions.Into the 1990s, it was gradually recognized that the key to
a deeper understanding of protein function lay in accurately
predicting its three-dimensional structure. Although the detailed
mechanism of how proteins form their functional structures
through the dynamic folding process is not yet fully understood,
the concept of “structure determines function” has gradually become
a consensus in the scientific community (Avery et al., 2022). With
the advancement of computer technology, it became feasible to
study protein behavior using molecular dynamics (MD) simulations
in the late 1990s. Researchers began to use computational methods
to predict protein functions from known protein structures in the
Protein Data Bank (PDB) (Berman et al., 2000; 2003), thus
promoting the formal formation and development of the field of
protein function prediction.

From 2018, the remarkable achievements of protein language
models in structure prediction have provided a great boost to protein
function prediction. The breakthroughs in 3D structure prediction
made by models such as AlphaFold and RosettaFold have made it
possible to obtain a large number of protein structures from
sequence data (Jumper et al., 2021; Baek et al., 2021). The
structures predicted by AlphaFold have been proven to apply to
protein function prediction (Ma et al., 2022; Gligorijević et al., 2021),
with an accuracy of more than 92%, and an average error of 1 Å
(Varadi et al., 2024), which is almost indistinguishable from the real
structural information, effectively solving the difficult problem of
mismatch between structure and massive sequence data in protein
function prediction. This effectively solves the problem of mismatch
between structure and massive sequence in protein function
prediction.

Figure 1 illustrates the evolution of protein function prediction
methods. The progression of protein function prediction has
transitioned from relying on individual biochemical experiments
to assess protein functions, to utilizing sequence similarity
comparisons (Needleman and Wunsch, 1970), and eventually to
employing computational methods based on machine learning and
deep learning (Jensen et al., 2002). Each phase in this development
has significantly advanced protein research and laid a robust
foundation for modern, precise, and automated function
prediction techniques. While each method has been instrumental

in its era, they all have had their limitations. In light of this, the
advent of protein language modeling is particularly pressing and
significant. The emergence of protein language modeling not only
represents a technological innovation but also indicates the
inevitable trajectory of scientific research in harmony with the
March of time (Rives et al., 2021).

3 Previous methods

3.1 Statistically based protein function
prediction

The use of protein sequence homology to develop
computational tools for protein function annotation was a
classical early approach. This approach is based on the
assumption that proteins with similar sequences usually possess
similar structures and functions during evolution. Homologous
proteins derive from a common ancestor and have evolved to
retain key amino acids to perform similar or identical biological
functions. The prediction logic is: that proteins whose functions are
experimentally verified can be used as references, and proteins
whose functions are unknown but whose amino acid sequences
are known can be used as targets. The amino acid sequence
similarity between known functional proteins and the target
proteins can be calculated by using a sequence comparison tool
(Pearson, 2016; Altschul et al., 1997; Remmert et al., 2012) and the
similarity can be used to determine whether the target proteins have
the same functions as the known functional proteins or not. It is
generally believed that if the amino acid sequence similarity of two
proteins exceeds 30%, they may have the same function (Chagneau
et al., 2024).

In 1990, Altschul et al. (1990) developed the BLAST tool for
pairwise sequence comparison, which is able to directly approximate
and optimize the comparison of local similarities. BLAST first uses
proteins with known functions to build a search database, then
compares the target proteins in the database, ranks the comparison
results according to the level of similarity, and uses the functions of
the most similar proteins to infer the function of the target protein.
The invention and application of BLAST marked an important
milestone in bioinformatics tools, enabling scientists to more
efficiently utilize the growing amount of biological sequence data
to predict protein function, making it one of the most widely used
tools in bioinformatics.

FIGURE 1
A brief history of the development of protein function prediction tasks, from statistically based methods to machine learning, deep learning to
today’s protein language models.
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Released in November 2014, DIAMOND (Buchfink et al., 2015)
is a highly efficient protein sequence comparison tool that uses a
dual-indexing algorithm to accelerate the comparison process,
making it particularly suited to the rapid analysis of high-
throughput sequencing data. The core of the algorithm lies in its
high speed and sensitivity, making it excellent at handling large-scale
protein sequence databases. DIAMOND rapidly retrieves and
matches query sequences during the alignment phase by
converting protein sequences from reference databases into a
compressed index format. It also introduces the use of spacer
seeds to improve performance in sequence comparison.
DIAMOND is used in a wide range of applications, including
genome annotation, metabolic pathway analysis, and microbial
community analysis. Due to its high speed and efficiency, it has
become an important tool in bioinformatics research and big
data analysis.

Statistical methods based on homology play an important role in
the early stages of protein function prediction. However, when the
amino acid sequence similarity decreases, the reliability of the
prediction results of this homology-based method decreases
rapidly (Devos and Valencia, 2000; 2001). When the amino acid
sequence similarity between the target protein and known functional
proteins is low, it is easy to generate false propagation of functional
information, leading to poor prediction results. Only when the
sequence similarity reaches 60% or more, do the results of
homology-based inference methods have a high degree of
confidence (Cruz et al., 2017). Moreover, structurally similar
proteins may also possess similar functions, and structurally
similar proteins may not necessarily be similar in sequence,
whereas statistically based methods can only utilize sequence
information. Thus statistically based methods have significant
limitations in data to ensure accuracy in the task of protein
function prediction, and better methods need to be proposed to
meet this challenge.

3.2Machine learning-based protein function
prediction

Machine Learning-based Protein Function Prediction
Considering protein function prediction as a multi-label, multi-
classification problem, machine learning algorithms solve this
problem by constructing multi-label classification models. This
type of approach usually consists of four steps: feature extraction,
feature selection, training the model, and classification prediction.
Feature extraction involves defining and extracting sequence
features, mainly in terms of compositional features,
physicochemical properties, and structural features of amino acid
sequences. Common protein sequence features include the
frequency, position, and order of amino acid residues, as well as
the hydrophobicity, polarity, and charge of amino acids, and
structural domains. Feature selection, on the other hand, involves
denoising and de-redundancy of the feature set obtained in the
feature extraction stage to improve the training efficiency and
prediction accuracy of the model. The training model stage is
based on the feature set after feature selection and uses specific
machine learning algorithms to build the classification model.
Commonly used machine learning methods include Genetic

Algorithm, KNN (K-Nearest Neighbor), and SVM (Support
Vector Machine). Classification prediction, on the other hand,
inputs the features of the sequence to be tested into the model
built in the training phase and uses the model to determine whether
the sequence to be tested belongs to the same class as a protein
sequence with a specific function.

The deepNF proposed in 2018 (Gligorijević et al., 2018) uses a
multimodal deep autoencoder to extract features, which are then
passed to an SVM. The SVM is one of the most commonly used
algorithms in the initial attempts to use machine learning techniques
for protein function prediction. GODoc is a protein function
prediction method that utilizes TFPSSM(Term Frequency based
on PSSM) features (Liu et al., 2020). TFPSSM is a feature vector
based on the frequency of the gapped dipeptides in the position-
specific scoring matrix (PSSM). They proposed three different
methods TFPSSM 1NN(1-Nearest Neighbor), TFPSSM
CATH(Dynamic-KNN with FunOverlap), and TFPSSM Vote
(Combines Fixed-KNN, Dynamic-KNN, and Hybrid-KNN voting
schemes) to improve the accuracy, and also proved that the KNN
variant with a dynamic voting scheme can outperform the
traditional KNN method.

PANNZER (Törönen and Holm, 2022) is another tool for
predicting protein function using weighted KNN classifiers,
designed for automated function prediction tasks and supporting
genome-level queries. KNNmethods are favored for their simplicity,
ease of understanding, ease of implementation, lack of need for
estimating parameters, and low retraining costs. However, KNN has
some limitations, such as it is a lazy learning method,
computationally intensive, and the output results are weakly
interpretable. In recent years, KNN has been mainly applied in
the fields of text classification, cluster analysis, predictive analysis,
pattern recognition and, image processing.

Protein function prediction algorithms based on shallow
machine learning are able to annotate protein functions to a
certain extent, but their effectiveness is often limited by noise
interference in the data. The sensitivity of these algorithms to
noise makes the prediction results susceptible to the quality of
the data, leading to reduced accuracy. In addition, these
algorithms are highly dependent on biological prior knowledge
and complex feature engineering, limiting their ability to be
applied to large and diverse datasets. Shallow machine learning-
based methods make it difficult to achieve a qualitative
breakthrough in the accuracy and coverage of protein function
prediction. With the explosive growth of protein and the
improvement of computational power, applying deep learning
methods in protein function prediction is more promising
(Radivojac et al., 2013). It provides a new way to address the
limitations of current methods.

3.3 Deep learning-based protein function
prediction

In recent years, the successful applications of deep learning
techniques in computer vision, natural language processing,
structure prediction, and sentiment analysis have demonstrated
their powerful feature-learning capabilities (Abramson et al.,
2024; Lin et al., 2023). For better proteomics research,
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researchers have proposed a number of protein function annotation
methods that utilize deep learning techniques to extract deep
features from protein characterization and integrate multiple data.

Convolutional neural networks (CNN) were first proposed in
the late 1980s and early 1990s (LeCun et al., 1989), but did not gain
widespread attention until after AlexNet’s (Krizhevsky et al., 2012)
breakthrough performance in the ImageNet competition in 2012.
CNN locally extract features through a convolutional layer, reduce
spatial dimensionality through a pooling layer, and classify or
regress through a fully connected layer. DeepGOPlus proposed
by Kulmanov and Hoehndorf (2020). uses convolutional neural
networks to extract functional features on protein sequences for
annotation, which is valuable for functional annotation of a large
number of newly sequenced unknown genes in macro genomes.
However, the method uses amino acid solo heat codes to represent
sequences, which does not take into account the semantic
information of amino acids, and the sparsity of solo heat codes
may adversely affect model training.

Recurrent Neural Networks (RNN) are designed for processing
sequence data such as time series analysis, language modeling, and
machine translation. RNN are able to process input sequences of
different lengths and capture temporal dynamics in sequences
through hidden states. The GONET model (Li et al., 2020) uses
RNN to extract long-range links of protein sequences based on CNN
to extract local features of sequences. The conserved region features
related to the tertiary structure are extracted through the attention
mechanism to effectively identify the protein structure domains and
modalities. Thus, the prediction performance is improved.

The Transformer model, proposed by Vaswani et al. (2017) in
2017, is entirely based on the attention mechanism, discarding the
traditional loop structure and effectively capturing global
dependencies by considering all elements in the sequence
simultaneously through the self-attention mechanism. The TALE
algorithm, proposed by Cao and Shen (2021) in 2021, applies the
Transformer model to protein function prediction The global
features of protein sequences are extracted by the self-attention
mechanism, and the hierarchical associations between functional
tags are extracted by joint sequence-functional tag embedding
learning, which improves the prediction performance by
combining protein sequence similarity. The DeepGOA model
(Zhou G. et al., 2019) innovatively introduces a graph
convolutional neural network to learn the dependencies between
gene ontology terms extracts the sequence features by CNN, and
finally minimizes the differences between the tags and the
differences in the distribution between features for function
prediction.

Although deep learning methods have made significant progress
in protein function prediction, they still have obvious limitations
compared to protein language models. Specifically, the feature
representations of deep learning methods are too sparse to reflect
the complex relationships between amino acids, are less efficient in
dealing with long-range dependencies and long sequences, and
require significant computational resources and time for training.
In addition, deep learning models usually fail to effectively integrate
prior knowledge of biology, leading to unsatisfactory performance
on cross-species datasets (Yang et al., 2024; Elhaj-Abdou et al.,
2021). Also, the interpretability and controllability of these models
are relatively weak. In contrast, protein language models are able to

efficiently utilize unlabeled data through the pre-training phase to
deeply mine the rich information of biological evolution, thus
demonstrating a stronger capability in dealing with large-scale
and complex biological data.

Protein function prediction can be likened to a natural language
processing task in the field of bioinformatics, where amino acids are
regarded as the basic units of a “vocabulary”and protein sequences
are the equivalent of “sentences”composed of these “vocabularies”.
Sentences”are composed of these “words” (Ofer et al., 2021).
Compared with the traditional natural language processing
problem, the protein sequence composed of 20 amino acids is
closer to the character-level natural language processing. In
natural language processing, the choice of an appropriate
encoding method is crucial to the performance and
interpretability of the model, and this principle should not be
ignored in the field of protein function prediction as well.
Traditional coding methods, such as one-hot coding and bag-of-
words models, often fail to effectively capture the intrinsic
connections between amino acids due to the sparseness of their
representations. In contrast, the adoption of protein language
modeling as a coding tool can better capture long-distance
dependencies in sequences and provide a deeper understanding
of amino acid interactions. In addition, the positional embedding
function of protein language models integrates evolutionary
information, providing richer and more detailed sequence
characterization for protein function prediction.

4 Protein language modeling approach

The emergence of protein language models solves the notable
problems of previous approaches by efficiently utilizing large
amounts of unlabeled protein sequence data through self-
supervised learning, which can identify amino acids that have
remained unchanged during the evolutionary process and are
often critical for protein function. Their training data contains
protein sequences across multiple species, which enables the
models to learn the commonalities and differences in protein
sequences across species, reflecting the changing trends during
evolution and capturing evolutionary information in protein
sequences. These models are based on the distributional
assumption that amino acids appearing in similar contexts tend
to have similar meanings (Bepler and Berger, 2021). With
autoregressive formulas or masked position prediction formulas,
protein language models can be trained using probability
distributions of amino acids to extract deep semantic information.

In an autoregressive language model, the probability of a sequence
is decomposed into the probabilities of individual tokens, and the
probability of each token depends only on the tokens that precede it.
The drawback of this approach is that the representations learned at
each location only take into account the preceding context, which may
limit their effectiveness as full contextual representations. The Masked
Language Modeling (MLM) approach, on the other hand, overcomes
this limitation by considering the probability distribution of the tokens
at each position conditional on all other tokens. Although masked
language modeling does not allow the calculation of correctly
normalized probabilities for the entire sequence, this approach is
more appropriate when the learned representation is the main concern.
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Common protein language models employ bidirectional long
short-term memory networks (BiLSTM) (Huang et al., 2015),
Transformer, and their variants. BiLSTM requires less training
data and computational resources. As hardware resources
increased and protein sequence data continued to grow, later
protein language models began to adopt deep Transformer
architectures, such as BERT (Devlin et al., 2018), T5 (Raffel et al.,
2020), and variants of GPT (Radford et al., 2019; Madani et al., 2020;
Nijkamp et al., 2023; Ferruz et al., 2022; Shuai et al., 2021; Munsamy
et al., 2022) (for generative tasks). These models are trained on a large
number of protein sequences to generate so-called embeddings
(values extracted from the final hidden layer of the protein
language model), which not only contain local and global features
of the sequences, but also efficiently utilize the implicit information in
the large-scale unannotated data, and can be easily migrated to a wide
variety of protein prediction tasks, including functional prediction
(e.g., gene ontology, signaling, binding residues or subcellular
localization) and protein structure prediction, etc.

The process of function prediction by protein language model is
shown in Figure 2. Firstly, the protein sequences are input into the
pre-trained protein language model, and the features in each protein
sequence are extracted using its encoder part. These features are
constructed into a feature matrix, which is then fed into its own
model for learning. Specifically, the feature matrix is nonlinearly
transformed and features are extracted through a number of fully
connected layers, which include activation functions and dropout
layers between them to enhance the expressiveness of the model and
prevent overfitting. Finally, the feature vectors are fed into a linear
layer that maps the high-dimensional features to the final
classification result space, outputting the classification results
predicted by the protein function.

4.1 Autoregressive model

Table 1 shows the size and architecture of the encoder part of the
protein language model used in this paper. SeqVec is a protein
language model that employs an autoregressive model that is able to
take into account previous information. It also borrows features
from the BERT model, which predicts blocked words given all
unblocked words. The architecture of SeqVec is based on the
ELMO model using the CharCNN (Zhang et al., 2015) algorithm
to obtain local features of amino acids and two layers of BiLSTM that
introduce contextual information about the surrounding words. The
feature vector for each amino acid is obtained by averaging the bi-
directional outputs of the CharCNN and LSTM layers.

4.2 Masked language modeling objective
based on the BERT architecture

All models except the SeqVecmodel (Heinzinger et al., 2019) use
a masked language modeling objective to train the model. These
models take the amino acid sequence of a protein and randomly
mask certain amino acids in the input sequence. The processed
sequences are encoded using one-hot coding, and their
representation is enhanced by positional coding and is
subsequently fed into a network structure consisting of a
plurality of self-attention blocks (Zhu et al., 2022). Each self-
attention block contains within it multiple attention heads, linear
transformation units, and feedforward neural networks. At the last
attention layer of the model, the output is a probability matrix that
demonstrates the model’s predicted probability distribution of
amino acid species for each masked location. As the depth of the

FIGURE 2
Protein sequences are fed into a pre-trained protein languagemodel to get the output features of its encoder. These features are constructed into a
feature matrix, which is then input into the model for training and testing. The final GO term probability predicted by each protein is obtained.
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network increases, the output of each layer of the attention block
forms a feature embedding that is progressively able to capture more
fine-grained sequence features. These feature embeddings provide
rich amino acid contextual information for subsequent protein
function prediction tasks.

ProtBERT employs the BERT architecture, which is a pure
encoder model without a decoder component and is particularly
suited for Natural Language Understanding (NLU) tasks. ProtBERT
increases the number of layers to 30 on top of the original BERT,
with 420M parameters and UniRef100 protein sequence dataset to
complete training. Compared to models based on convolutional
neural networks and recurrent neural networks, ProtBERT uses a
self-attentive mechanism to process each character in the sequence,
expanding the global receptive field and enabling more effective
capture of global contextual information.

ESM 1b and ESM2 (Lin et al., 2023) are protein language models
based on the RoBERTa architecture (Liu et al., 2019), which
improves and optimizes the traditional BERT model. RoBERTa
improves performance by increasing the model size, using larger
model parameters, larger batch sizes, and more training data. Unlike
BERT, RoBERTa removes the Next Sentence Prediction task from
BERT and employs a dynamic masking strategy that generates a new
masking pattern each time a sequence is input, thus better adapting
to different linguistic representations and further improving the
model performance.

ESM 1b was proposed in 2020, which employs a masked language
modeling objective to train themodel through a self-supervised learning
technique, and trains a RoBERTa model with 650M parameters and
33 layers on theUniRef50 dataset. And in 2022, ESM2was trained using
masked language modeling over millions of different natural protein
evolutions with up to 15 B. During training, protein sequences are
presented to themodel with a portion of the residuesmasked, randomly
aligned to different amino acids, or left unmodified. The task of the
model is to predict those masked residues in a bidirectional context of
all unmasked residues in the input.

Compared to traditional RNN and LSTM models, RoBERTa is
able to execute concurrently, improving the computational
efficiency of the model. However, static masking may result in
the model not being able to adequately adapt to different
masking strategies. Therefore, RoBERTa employs a dynamic
masking strategy with more training data and a deeper network

structure, but this also leads to longer training time and increased
complexity in training and deployment.

4.3 Masked language modeling objective
based on the T5 architecture

PortT5 (Elnaggar et al., 2021), ProstT5 (Heinzinger et al., 2023), and
Ankh (Elnaggar et al., 2023) are protein language models based on the
T5 (Text-to-Text Transformer) architecture. The T5 model was
originally designed to deal with sequence-to-sequence problems,
such as machine translation. The unique feature of T5 is that it
unifies a variety of NLP tasks into a single text-to-text
transformational process, by embedding the task T5 is unique in
that it unifies various NLP tasks into a text-to-text transformation
process by embedding the tasks into the input text to solve various NLP
tasks. This design makes the T5 model highly task-adaptable and
capable of being fine-tuned to accomplish many different NLP tasks.

In these models, ProstT5 further extends the initial pre-training
target of ProtT5 to amino acid (AA) and 3D structure (3Di)
sequences. By transforming protein structures into one-
dimensional strings, conversion from sequence to structure and
from structure to sequence can be achieved. However, not all protein
prediction tasks directly benefit from the coupling of 3Di and AA,
and may even fall short in functionally relevant tasks.

Ankh uses a T5-like architecture with a 48-layer Transformer
that performs 1-g random token masking with a default probability
of 20% in the input sequence and performs complete de-masking/
reconstruction of the sequence. In contrast, Ankh has a larger
embedding dimension, more attention heads, and more
feedforward layers, which enhances the model’s representational
capabilities. However, the T5 model needs to be applied and adapted
with caution due to its reliance on a large amount of pre-training
data and the fact that its complexity can lead to overfitting problems,
especially on small datasets.

5 Dataset and evaluate

For the protein function prediction task, researchers can utilize
two open databases, The UniProt Consortium (2023) and Protein

TABLE 1 Utilized protein language models.

Model Base model Dataset Parameters (encoder) Encoder layers Emb.Size

ESM 1b RoBERTa UniRef50 650M 33 1,280

ESM2 650M RoBERTa UniRef50 650M 33 1,280

ESM2 3B RoBERTa UniRef50 3B 36 2,560

PortT5 T5 UniRef50 1.2B 24 1,024

PortBert BERT UniRef100 420M 30 1,024

ProstT5 T5 BFD 1.2B 24 1,024

Seqvec ELMO UniRef50 93M 3 1,280

Ankh Base T5 UniRef50 450M 48 768

Ankh Large T5 UniRef50 1.1B 48 1,536
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Data Bank (PDB), to obtain protein sequence data from different
species. These data can be used to train prediction models through
batch downloading, data cleaning, and pre-processing. In addition,
researchers can also use the CAFA dataset, which relies heavily on
the Uniprot database and contains protein sequences across species.
These sequences may have retained similar functions during
evolution or may have undergone functional divergence. CAFA
aims to assess and improve the applicability of functional prediction
methods across organisms, provide standardized data to address the
challenges of building computational models for protein function
classification, and provide a valuable resource for evaluating and
improving prediction models.

In order to standardize functional annotations, the Gene
Ontology Consortium introduced Gene Ontology (GO), which
classifies protein annotations into Molecular Function (MF),
Biological Process (BP), and Cellular Component (CC).
Molecular Function describes the role of a gene product at the
molecular level, such as the catalytic activity of an enzyme or the
signaling function of a protein. Biological processes involve specific
biological events or pathways in which the gene product is involved,
such as cell cycle regulation or immune response. Cellular
components, on the other hand, are concerned with the location
of the gene product within the cell, including structures such as
organelles and cell membranes. As scientific knowledge continues to
accumulate and be updated, the GO framework is constantly being
improved to ensure its accuracy and currency as a standard for
functional annotation in biological research.

In our study, we used the human protein sequence dataset as
well as the CAFA3 (Zhou N. et al., 2019) and CAFA4 datasets from
DeepGOPlus. For the CAFA3 and CAFA4 datasets, we utilized the
Gene Ontology (GO) data provided by the CAFA Challenge. For the
human dataset, the reviewed and manually annotated human
protein sequence dataset (Human2024) was collected from the
SWISS-PROT (Boutet et al., 2016) database. Based on the
timestamp information, we used proteins with experimental
annotations obtained before 24 January 2014, as the training set,
proteins with experimental annotations obtained between
24 January 2014, and 24 January 2017, as the validation set, and
proteins with experimental annotations obtained between
24 January 2017, and 24 January 2024, as the test set. We used
annotation information from the Gene Ontology Annotation
(GOA) database (Ashburner et al., 2000; Aleksander et al., 2023)
and filtered it to remove non-experimental GO annotations as well
as terms not in the GO tree. Table 2 summarizes the details of the
datasets used in this study. Through the statistical plots of protein
lengths in the above three datasets presented in Figure 3, we can
learn that most of the protein sequences are within 1,000 lengths, so
we intercepted the amino acid sequences with lengths ranging
from 0 to 1,000.

Since the protein function prediction problem is usually
transformed into a multi-label learning problem, the evaluation
metrics chosen can also be based on the criteria commonly used in
multi-label learning, and the following four evaluation metrics are
chosen in this paper:

1. Fmax (Maximum F metric): Fmax is the maximum F metric
value computed over all prediction thresholds. F metric is
the harmonic mean of Precision (TP/(TP + FP)) and Recall

(TP/(TP + FN)), where TP denotes true positives, number of
functions of a protein that are correctly labeled, and FP denotes
false positives, number of functions of a protein that should not
be, but are incorrectly labeled. Where TP denotes true
positives, the number of proteins whose function is
correctly labeled, and FP denotes false positives, the number
of proteins whose function is incorrectly labeled as a negative
sample function, and FN denotes false negatives, the number of
proteins whose functions are incorrectly labeled as negative
sample functions.

2. AUPR (area under the precision-recall curve): AUPR is used to
approximate the region under the precision-recall curve by
using the trapezoidal rule, which is commonly used for the
evaluation of multi-label, multi-classification tasks. A higher
AUPR value indicates a better performance of the model in
protein function prediction. AUPR focuses on high precision
and recall, which is especially important for the precision
requirement in protein function prediction.

3. AUC (area under the ROC curve): The AUC is calculated by
considering all possible classification thresholds and reflects the
overall classification performance of the model at all thresholds.
TheAUCvalue ranges between 0.5 and 1, where one indicates that
the model classifies perfectly at all possible classification
thresholds, and 0.5 indicates that the model’s classification
performance is indistinguishable from a random guess. Since
protein functional classes may be unbalanced, the AUC can
provide a balanced assessment of the model’s performance
across classes, even if some classes have fewer or more samples.

4. MCC (Matthews correlation coefficient): MCC is a metric for
evaluating the performance of classifiers to effectively handle
class imbalance and multi-labeled data. MCC takes into
account true positives, false positives, true negatives, and
false negatives across all labels. The value of MCC ranges
between −1 and 1, where one indicates a perfect positive
correlation, −1 indicates a perfect negative correlation, and
0 indicates no correlation. As a comprehensive metric, it is able
to assess both the precision and recall of the model, ensuring a
balanced consideration of the prediction results for both
positive and negative samples, thus providing a more
comprehensive performance assessment.

TABLE 2 Number of proteins and number of GO terms on the three sub-
ontologies of the dataset.

Dataset Ontology Train Valid Test Terms

CAFA3 MF 28,679 3,228 1,035 677

BP 42,250 4,748 2,185 3,992

CC 39,893 4,510 1,117 551

CAFA4 MF 25,773 7,318 3,739 725

BP 36,423 10,445 5,236 4,507

CC 35,972 10,284 5,129 628

Human2024 MF 6,106 2,608 676 540

BP 6,707 792 480 2,577

CC 8,499 1,174 1,330 398
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6 Experiments

We used PyTorch version 2.0 deep learning framework and
trained the models on an NVIDIA A40 graphics card. We
downloaded the following pre-trained models from GitHub and
Huggingface: the ESM 1b https://huggingface.co/facebook/esm1b_
t33_650M_UR50S, ESM2 650M, and ESM2 3B https://huggingface.
co/facebook/esm2_t33_650M_UR50D, ProtT5 https://huggingface.
co/Rostlab/prot_t5_xl_uniref50, ProstT5 https://huggingface.co/
Rostlab/ProstT5, ProtBERT https://huggingface.co/Rostlab/prot_
bert, Seqvec https://github.com/mheinzinger/SeqVec?tab=readme-
ov-file, Ankh Base https://huggingface.co/ElnaggarLab/ankh-base,
and Ankh Large https://huggingface.co/ElnaggarLab/ankh-large.
During model training, we set the input dimensions of the MLP
according to Table 1, and the output dimensions correspond to the
number of GO terms in the sub-ontology. We used a binary cross-
entropy loss function and Adam optimizer for model training, with
the learning rate set to 0.0001 and a dropout ratio of 0.2 in the
model. In addition, we put the batch size to 16 and the number of
training rounds epoch to 100. On the validation set, we selected the
model with the highest Fmax value as the final model.

In terms of model design, we adopt the architecture shown in
Figure 2, where the strategy first utilizes the encoder part of each of
the eight pre-trained protein language models that have been
downloaded to extract features from the protein dataset. These
features are constructed into a feature matrix, which is then fed
into a multilayer perceptron (MLP) for processing. Specifically, the
feature matrix is nonlinearly transformed and features are extracted
through a number of fully connected layers, which include activation
functions and dropout layers between them to enhance the
expressiveness of the model and prevent overfitting. Finally, the
MLP-processed feature vectors are input to a linear layer that maps
the high-dimensional features to the final classification result space,
outputting classification results for protein function prediction.

Through the above process, we are able to effectively utilize the
advantages of deep learning models to extract deep features from
protein sequences and improve the accuracy and robustness of
protein function prediction through a simple MLP network
structure and training strategy. This approach not only improves
the generalization ability of the model but also ensures flexibility and
consistency when dealing with protein sequences of
different lengths.

In the experimental part, we used nine models, ESM 1b, ESM2
650M, ESM2 3B, ProtT5, ProstT5, ProtBERT, Seqvec, Ankh Base,
and Ankh Large, to conduct comparative experiments with four
methods on three datasets, Human2024, CAFA3, and CAFA4: the
homology-based dual sequence comparison method Diamond, the
Naive method, Deep_CNN_LSTM_GO (Elhaj-Abdou et al., 2021),
and DeepGOCNN. Tables 3–5 show the Fmax, AUPR, AUC, and
MCC metrics of these protein language model methods on the test
set, and Figure 4 illustrates the Fmax values for the comparison
experiments of ESM-1b and ProtT5 with the same four methods.

The Naive method, as a statistically based method, annotates
proteins based on the frequency of occurrence of GO terms in the
dataset. In thismethod, all samples in the test set are uniformly assigned
with the same annotation. Diamond, as a commonly used sequence
comparison tool, assigns the functions of similar proteins to the target
proteins by comparing the predicted protein sequences with the
training set sequences. DeepGOCNN, on the other hand, employs
convolution kernels of different sizes in order to extract multiscale
sequence features, and predicts the GO terms through the fully
connected layer. The Deep_CNN_LSTM_GO method, on the other
hand, skillfully combines the advantages of CNN and Long Short-Term
MemoryNetworks (LSTM) to generate more reliable prediction results.
For a comprehensive comparison with the protein language model, we
downloaded the source code of the above four methods and
implemented and evaluated them on three different datasets.

The results show that the ESM series of models achieved
excellent performance on all three sub-ontologies of the CAFA3,
CAFA4, and Human2024 datasets, especially on the Fmax metric.
Specifically, ESM 1b achieved Fmax values of 0.456, 0.626, and
0.736 on the biological process (BP), molecular function (MF), and
cellular component (CC) sub-ontologies of the CAFA4 dataset,
respectively, with the best results on all three sub-ontologies,
which demonstrated that the ESM 1b significantly outperforms
other models in terms of the overall prediction accuracy. On the
CAFA3 dataset, ESM 1b achieved the best Fmax values of 0.557 and
0.638 on the BP and MF sub-ontologies, respectively. However, on
the CC sub-ontology, ESM2 3B surpassed ESM 1b with an Fmax
value of 0.696 as the optimal model on this sub-ontology. In the
Human2024 dataset, ESM2 650M achieves Fmax values of 0.670 and
0.671 on theMF and CC sub-ontologies, respectively, which are both
optimal. On the BP sub-ontology, ESM 1b achieves a Fmax value of
0.395, which is the best result.

FIGURE 3
Distribution of lengths of sequences from the three datasets.
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TABLE 3 Experimental results on the CAFA3 dataset.

Model Fmax AUPR AUC MCC

BP MF CC BP MF CC BP MF CC BP MF CC

ESM 1b 0.557 0.638 0.691 0.454 0.628 0.671 0.957 0.968 0.967 0.482 0.593 0.624

ESM2 650M 0.542 0.619 0.693 0.448 0.610 0.673 0.953 0.967 0.967 0.479 0.582 0.629

ESM2 3B 0.549 0.622 0.696 0.451 0.616 0.678 0.955 0.969 0.968 0.478 0.575 0.628

PortT5 0.536 0.575 0.674 0.431 0.550 0.648 0.945 0.956 0.962 0.468 0.528 0.605

PortBert 0.435 0.482 0.639 0.337 0.427 0.606 0.927 0.918 0.949 0.368 0.440 0.570

ProstT5 0.521 0.557 0.671 0.404 0.514 0.643 0.940 0.947 0.954 0.442 0.504 0.601

Seqvec 0.520 0.513 0.662 0.414 0.483 0.636 0.939 0.938 0.955 0.449 0.480 0.592

Ankh Base 0.480 0.519 0.672 0.378 0.494 0.652 0.930 0.941 0.955 0.424 0.488 0.610

Ankh Large 0.441 0.504 0.667 0.362 0.471 0.647 0.927 0.935 0.954 0.400 0.476 0.604

TABLE 4 Experimental results on the CAFA4 dataset.

Model Fmax AUPR AUC MCC

BP MF CC BP MF CC BP MF CC BP MF CC

ESM 1b 0.456 0.626 0.736 0.404 0.608 0.743 0.945 0.970 0.980 0.418 0.583 0.671

ESM2 650M 0.443 0.599 0.73 0.385 0.576 0.732 0.937 0.966 0.978 0.405 0.558 0.664

ESM2 3B 0.452 0.62 0.734 0.397 0.603 0.741 0.940 0.968 0.979 0.415 0.579 0.670

PortT5 0.422 0.539 0.706 0.361 0.502 0.698 0.928 0.955 0.971 0.385 0.500 0.638

PortBert 0.376 0.416 0.657 0.295 0.327 0.624 0.902 0.917 0.952 0.337 0.371 0.585

ProstT5 0.414 0.52 0.689 0.343 0.47 0.676 0.92 0.947 0.966 0.374 0.478 0.621

Seqvec 0.402 0.487 0.689 0.331 0.432 0.669 0.919 0.941 0.964 0.364 0.447 0.616

Ankh Base 0.390 0.464 0.689 0.322 0.412 0.67 0.906 0.932 0.961 0.358 0.434 0.620

Ankh Large 0.386 0.45 0.689 0.318 0.4 0.669 0.905 0.928 0.96 0.356 0.421 0.621

TABLE 5 Experimental results on the Human2024 dataset.

Model Fmax AUPR AUC MCC

BP MF CC BP MF CC BP MF CC BP MF CC

ESM 1b 0.395 0.640 0.664 0.329 0.522 0.658 0.911 0.966 0.967 0.371 0.538 0.607

ESM2 650M 0.392 0.670 0.671 0.332 0.538 0.668 0.914 0.970 0.969 0.370 0.566 0.616

ESM3 3B 0.393 0.626 0.663 0.327 0.501 0.664 0.908 0.969 0.969 0.373 0.522 0.610

PortT5 0.373 0.608 0.632 0.315 0.468 0.621 0.906 0.954 0.961 0.356 0.498 0.582

PortBert 0.337 0.526 0.585 0.256 0.347 0.555 0.886 0.916 0.949 0.314 0.405 0.527

ProstT5 0.356 0.589 0.617 0.291 0.420 0.594 0.898 0.940 0.956 0.339 0.464 0.560

Seqvec 0.358 0.567 0.614 0.294 0.395 0.600 0.897 0.927 0.958 0.337 0.441 0.557

Ankh Base 0.360 0.579 0.632 0.309 0.426 0.626 0.898 0.944 0.961 0.353 0.475 0.581

Ankh Large 0.346 0.577 0.626 0.302 0.415 0.625 0.890 0.942 0.961 0.345 0.462 0.573
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The ESM family of models demonstrates excellent performance
on different datasets and sub-ontologies, especially in complex
protein function prediction tasks. Its deep learning architecture
and pre-training strategy can significantly improve prediction
accuracy and coverage. The analysis shows that ESM 1b and
ESM2 3B perform best on different datasets and sub-ontologies,
due to their dynamic masking approach and optimization in model
size, data volume, and training strategy. These results suggest that
deep learning models have great potential in protein function
prediction, especially when combined with large-scale data and
pre-training techniques.

As can be seen in Figure 4, methods using protein language
modeling are significantly better than the homology-based dual
sequence comparison methods Diamond and Naive methods.
frequently used methods such as ESM 1b and PortT5 outperform
the convolution-based deep learning method DeepGOCNN and
Deep_CNN_LSTM_GO in all the metrics. these results show that in
the cross-species protein datasets CAFA3, CAFA4, and the single-

species human dataset Human2024, the large language model is able
to efficiently recognize GO terms for proteins, demonstrating the
effectiveness of protein language models for protein function
prediction tasks.

Compared to Deep_CNN_LSTM_GO, the ESM 1b model
achieves a Fmax improvement of more than 10% on all sub-
ontologies of both datasets. This shows that deep semantic
information of sequences can be extracted using large language
models. Relative to DeepGOCNN, the protein language models
show less improvement on the BP and CC sub-ontologies and
more improvement on the MF sub-ontology. The MF sub-
ontology is usually concerned with specific molecular functions
of proteins, which are more directly related to the protein’s
sequence, and thus the models may be more likely to capture
features related to MF. If a model architecture is better at
capturing localized features, it may perform better on the MF
sub-ontology. the BP and CC sub-ontologies are more concerned
with the biological processes in which the protein is involved and the

FIGURE 4
Fmax values for ESM-1b, ProtT5, and the four comparison methods on the three datasets.
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cellular components in which it resides, and these functions may be
more relevant to the contextual environment of the protein, its
interactions, and its regulatory network. These factors are difficult to
infer directly from sequence data and require models with more
complex structures and longer memory to capture the location and
role of proteins in biological networks.

Figure 5 illustrates the precision-recall (PR) plots of the protein
language model on the CAFA3, CAFA4, and Human2024 datasets for
evaluating the trade-off between precision and recall of the classification
model at different thresholds. On all sub-ontologies of the above three
datasets, the ESM family of models performs the best, while the
PortBERT model has relatively low results. On the BP and CC sub-
ontologies, the performance of different models is similar, but on the
MF sub-ontology, the performance gap between models is more
obvious. This suggests that the ESM family of models is able to
better balance precision and recall when dealing with these datasets
and thus performs better in the function prediction task.

These PR curve results further confirm the superiority of the
ESM family of models in the protein function prediction task,
especially in achieving a better balance of precision and recall
when dealing with different sub-ontologies, which improves the
overall performance of the models.

7 Case study

We will illustrate the differences in the performance of the
various methods using the example of the protein Q9BZE2, a tRNA
pseudo-uracil (38/39) synthetase that forms a pseudo-uracil at
position 39 of the anticodon stem and loop of the transfer RNA.
Figure 6 shows a DAG plot of the BPO terms for this protein, where
the arrows represent is-a relationships, the direction they are
pointing in represents the parent class, and the root term is BP.
There are also methods used to correctly predict the corresponding

FIGURE 5
The precision-recall plots of the protein language model on the CAFA3, CAFA4 and Human2024 datasets.
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GO terms, and Table 6 shows the GO terms correctly predicted
(i.e., true positives) and the incorrectly predicted terms (i.e., false
positives), as well as the F1 scores.

According to the data in Table 6, there are a total of
26 experimentally validated BPO terms for the Q9BZE2 protein.
Of all the models evaluated, the ESM2 650M model predicted the
most GO terms, with 19 of the 20 predicted terms proving to be
correct and only seven terms failing to be predicted, with a Fmax
score of 0.826. The ESM 1b model correctly predicted 18 GO terms,
with an Fmax score of 0.816. Whereas the PortT5 and ESM2 3B
models both correctly predicted 16 GO terms with Fmax scores of
0.762. It is noteworthy that only these four models successfully
predicted the deep GO terms located in the lower half of the GO
map, which highlights the superiority of the ESM series and
PortT5 models in terms of predictive power. The PortT5 model
correctly predicted 15 GO terms with a Fmax score of 0.732. These
protein language models significantly outperformed the other four
compared methods, confirming their ability to effectively utilize
large-scale unannotated protein sequence data to deeply extract
contextual information between amino acids and capture the deep
semantic information of protein sequences.

It is clear from Figure 6 that the ESM family of models performs
better in predicting the depth of GO terms compared to the other
models. These models skillfully compute a scalar dot product of
attention between the query matrix, key matrix, and value matrix in
each attention header. Specifically, the model first creates a weight
matrix that reveals the degree of similarity between pairs of amino

acid sequences through a dot-product operation of the query and
key matrices. Subsequently, the model normalizes the weight matrix
using the scale parameter and the SoftMax function, a step that
ensures the effectiveness and reasonableness of the allocation of
attention. By multiplying the normalized weight matrix with the
value matrix, the model constructs the attention matrix. As a result,
the ESM2 650Mmodel was able to accurately predict the deepest GO
term, RNA processing. RNA processing is a key step in biomolecular
processes that involves the conversion of preliminarily transcribed
RNA into mature RNAmolecules, a process that plays a decisive role
in the precise regulation of gene expression.

The Diamond method based on sequence similarity
encountered challenges in predicting the function of the
Q9BZE2 protein due to the failure to find sequences homologous
to the Q9BZE2 protein in the training set. This situation highlights
the limitations of the Diamond method in dealing with uncommon
or novel protein sequences. In contrast, protein language models
such as ESM2 650M are able to dig deeper into the deep semantic
information of protein sequences for more accurate functional
prediction by virtue of their large-scale dataset utilization and
advanced model architecture.

Thus, although sequence similarity-based techniques are
effective in most cases, deep learning techniques, especially
protein language models, demonstrate superior performance and
higher prediction accuracy when dealing with complex or specific
protein sequences. This case further demonstrates the advantages of
protein language models in performing the task of protein function

FIGURE 6
DAG diagram of correct predicted BPO terms of Q9BZE2 using different methods.
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prediction, especially when confronted with challenging protein
sequences. These models are able to distill more semantic
information from the data, significantly improving the accuracy
and robustness of the predictions.

8 Conclusion

The emergence of protein language models has revolutionized
the field of protein function prediction. Starting from the use of the
ESM 1b model in NETGO 3.0 to the wide adoption of various
protein language models in many emerging protein function
prediction methods today, the deep semantic information
provided by these models has become an indispensable part of
protein function prediction. Their tight integration has significantly
improved the effectiveness of the prediction task.

In this paper, we first review the development of protein
function prediction, from the initial biochemical experiments to
the homology-based statistical sequence comparison methods to the
application of machine learning and deep learning techniques. We
sort out the key historical nodes in this field and introduce the
representative methods and the problems they face in each period.
Next, this paper provides a comprehensive overview of nine current
protein language models that can be used for the task of gene
ontology prediction, including ESM 1b, ESM2 650M, ESM2 3B,
ProtT5, ProstT5, ProtBERT, Seqvec, Ankh Base, and Ankh Large.

We elaborate on their architectures, functions, training strategies,
and datasets, and provide an in-depth comparative analysis of them.

We have experimentally evaluated the performance of these
protein language models exhaustively and compared them with
other comparative methods such as traditional sequence alignment,
machine learning, and deep learning. The experimental results
clearly show that most of the fine-tuned protein language models
significantly outperform other methods in feature encoding, which
fully demonstrates the superior ability of protein language models in
characterizing protein molecules. Meanwhile, the experiments also
confirmed that the deep semantic information in sequences can be
effectively extracted by using large-scale language models. The
overall accuracy of the protein function prediction task can be
significantly improved by employing protein language models.

With the continuous progress and optimization of protein
language models, they gradually replace the traditional coding
methods. This change has not only significantly improved the
accuracy of protein function prediction, but also brought us new
research perspectives and technical tools. However, despite the
remarkable achievements, we still face many challenges. Among
them, the size of the pre-training dataset has become a key factor
constraining the development of large-scale protein language
modeling (Unsal et al., 2022). Unlike the large-scale
accumulation of human natural language, developing protein
language models relies on advancing DNA and protein
sequencing technologies. With the continuous innovation of

TABLE 6 Predicted GO terms for Q9BZE2 in BPO by different methods. Terms that do not appear in Labels are added*.

Method Result F1

Naive GO:0009987, GO:0065007*, GO:0008152, GO:0050789*, GO:0071704, GO:0050794*, GO:0044238, GO:0044237, GO:0006807, GO:
0043170

0.389

Diamond 0

DeepGOCNN GO:0044238, GO:0071704, GO:0006807, GO:0008152, GO:0009987 0.323

Deep_cnn_lstm_GO GO:0065007*, GO:0050789*, GO:0071704, GO:0008152, GO:0009987 0.193

ESM 1b GO:0044238, GO:0071704, GO:0006807, GO:0043170, GO:0008152, GO:0009987, GO:0044237, GO:0006725, GO:1901360, GO:
0009059, GO:0009058, GO:1901576, GO:0046483, GO:0010467, GO:0034641, GO:0044249, GO:0006139, GO:0090304

0.818

ESM2 650M GO:0044238, GO:0071704, GO:0006807, GO:0043170, GO:1901564*, GO:0008152, GO:0009987, GO:0044237, GO:0006725, GO:
1901360, GO:0009059, GO:0009058, GO:1901576, GO:0046483, GO:0010467, GO:0034641, GO:0044249, GO:0006139, GO:0090304,
GO:0006396

0.826

ESM2 3B GO:0044238, GO:0071704, GO:0006807, GO:0043170, GO:0008152, GO:0009987, GO:0044237, GO:0006725, GO:1901360, GO:
0009059, GO:0009058, GO:1901576, GO:0046483, GO:0034641, GO:0044249, GO:0006139

0.762

PortT5 GO:0044238, GO:0071704, GO:0006807, GO:0043170, GO:0008152, GO:0009987, GO:0044237, GO:0006725, GO:1901360, GO:
0009058, GO:1901576, GO:0046483, GO:0034641, GO:0044249, GO:0006139, GO:0090304

0.762

PortBert GO:0071704, GO:0008152, GO:0009987 0.207

ProstT5 GO:0044238, GO:0071704, GO:0006807, GO:0043170, GO:0008152, GO:0009987, GO:0044237, GO:0006725, GO:1901360, GO:
0009058, GO:1901576, GO:0046483, GO:0034641, GO:0044249, GO:0006139

0.732

Seqvec GO:0044238, GO:0071704, GO:0006807, GO:0043170, GO:0008152, GO:0009987, GO:0044237 0.424

Ankh Base GO:0044238, GO:0071704, GO:0006807, GO:0008152, GO:0009987, GO:0044237 0.375

Ankh Large GO:0065007*, GO:0050789*, GO:0009987 0.069

Labels GO:0016070, GO:0006399, GO:0008033, GO:0009059, GO:0034660, GO:0010467, GO:0009058, GO:0009987, GO:0034641, GO:
0044238, GO:0044237, GO:0006725, GO:0071704, GO:0009451, GO:0046483, GO:0034470, GO:0006807, GO:0006139, GO:0043412,
GO:1901576, GO:0043170, GO:0044249, GO:1901360, GO:0090304, GO:0008152, GO:0006396
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these technologies, more and more gene and protein sequences have
been identified, providing the possibility of generating large-scale
and high-quality datasets. In addition, the length and complexity of
protein sequences far exceed that of natural language texts, but are
less diverse, which creates additional difficulty in learning and
interpreting protein representations for models.

Looking ahead, the research focus will gradually shift to
developing novel protein representation models capable of
integrating multiple external knowledge sources. The rich
connotations of proteins are closely linked to bioinformatics
data such as protein-protein interactions, post-translational
modifications, gene ontology, and gene and protein
expression, which provide a vast scope for potential synergies
between PLM and these external knowledge sources for
enhancement. By supervised integration of these rich and
structured resources, the capabilities of PLM will be
significantly enhanced (Öztürk et al., 2019; Doğan et al.,
2021). In addition, the introduction of additional resources
such as physical world simulations provided by the field of
molecular dynamics (MD) will greatly deepen our
understanding of molecular behavior and interactions. The
organic integration of PLM with MD not only complements
PLM’s strengths in data processing but also strengthens its
ability to analyze complex scientific phenomena, allowing for
finer and more accurate interpretations (Zhang et al., 2024). In
terms of coding strategies, the traditional linear positional coding
can be replaced by introducing biologically relevant positional
information, such as the distance matrix and contact map
between sequences, to better model long-distance dependencies.
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