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In this work, we present a cost effective and open-source modular cone-and-
plate (MoCAP) device that incorporates shear stress in the popular Transwell

®

insert system. This system acts as a lid that incorporates flow into 24-well
Transwell

®
inserts while preserving the ability to conduct molecular profiling

assays. Moreover, the MoCAP device can be rapidly reconfigured to test multiple
shear stress profiles within a single device. To demonstrate the utility of the
MoCAP, we conducted select assays on several different brain microvascular
endothelial cell (BMEC) lines that comprise models of the blood-brain barrier
(BBB), since shear stress can play an important role in BBB function. Our results
characterize how shear stress modulates passive barrier function and
GLUT1 expression across the different BMEC lines. Overall, we anticipate this
low cost mechanofluidic device will be useful to the mechanobiology
community.

KEYWORDS

blood-brain barrier, shear stress, Transwell®, endothelial cell, mechanobiology, blood
flow, cone-and-plate

1 Introduction

In vitro models that require assessments of barrier function primarily rely on Transwell®

inserts, which are widely used due to their versatility and ease of implementation (Stone et al.,
2019; Petrovskaya et al., 2022; Nakayama-Kitamura et al., 2023; Kim W. et al., 2022; Mosiagina
et al., 2023; Kikuchi et al., 2019; Park et al., 2023; You et al., 2022; Haileselassie et al., 2020; Li et al.,
2023; Han et al., 2024). Transwell® inserts allow investigators to conduct a variety of assays related
to passive and active barrier function, including transendothelial electrical resistance (TEER) and
permeability measurements. Cells on Transwell® filters are also readily accessible for molecular
assays, including immunofluorescence staining, Western blots, and quantitative polymerase
chain-reaction (qPCR). Amajor disadvantage of Transwell® inserts is that cells are cultured under
static conditions, lacking shear stress to mimic the hemodynamic effects of fluid flow, although
some prior efforts have sought to overcome this issue. For example, Kim and colleagues utilized
an annular shaker device to house Transwell® inserts and introduce fluid flow over immortalized
brain microvascular endothelial cells (BMECs) as a blood-brain barrier (BBB) model, which
resulted in higher mRNA levels of tight junctions, a subtle but significant increase in TEER
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measurements, and decreased paracellular permeability of lucifer yellow
(Kim et al., 2024). As another example, Bolden and colleagues
incorporated shear stress into Transwell® inserts using a custom
fluidic device that could house Transwell® inserts. Using this device,
they mimicked reperfusion analogous to a traumatic brain injury and
observed a significant decrease in TEERmeasurements in a triculture of
primary BMECs, bone marrow-derived mesenchymal stem cells, and
astrocytes (Bolden et al., 2023). As an alternate to Transwell® setups,
microfluidic setups have been used to incorporate shear stress to better
recapitulate physiology (Hajal et al., 2022; Lauranzano et al., 2022; Yang
et al., 2023; Shi et al., 2023; Straehla et al., 2022; Kadry et al., 2024;
Hudecz et al., 2023; Yang et al., 2024; Fan et al., 2023; Meena et al., 2022;
Westerhof et al., 2023; Koo et al., 2018; Campisi et al., 2018; Tang et al.,
2020; Lee et al., 2020; Booth and Kim, 2012). However, most
microfluidic models substitute throughput capacity for the ability to
better recapitulate physiological shear stress conditions. Additionally,
current microfluidic models, as well as the Transwell® models detailed
above, are limited to testing a singular shear stress condition per device.
This hampers the number of shear stress conditions that can be tested at
a time. Thus, an unmet need for the field is a mechanofluidic device that
facilitates testing of multiple shear stress conditions simultaneously.
Ideally, this device would also be compatible with commercially available
Transwell® inserts to facilitate adoption by the broader
research community.

Here, we present a modular cone-and-plate (MoCAP)
mechanofluidic device that is compatible with Transwell® inserts and
can test multiple shear stress conditions within a 24-well plate setup.We
showcase the ease of use of thisMoCAPdevice and its compatibility with
the current workflow of Transwell® inserts by evaluating in vitromodels
of the BBB. The BBB is a restrictive physiological interface between the
brain vasculature and parenchyma that plays a crucial role in brain
homeostasis (Abbott and Friedman, 2012). The BBB is composed of
multiple cell types including BMECs, which are the primary barrier-
forming unit of the BBB. Blood flow generates a tangential force that
runs parallel to the lumen of BMECs, directly exerting this biophysical
shear stress on the vascular endothelium. The hemodynamic effects of
blood flow are known to influence the properties of the BBB, where shear
stress has been shown to regulate BMEC cell adhesion, tight junction
expression, and transporter expression and activity, which influence
drug permeability (Cucullo et al., 2011; Santa-Maria et al., 2021;
Choublier et al., 2022; Luissint et al., 2012). As such, we used the
MoCAP to evaluate how different continuous shear stress (CSS) and
pulsatile shear stress (PSS) profiles influence select BBB properties across
various BMEC lines. Overall, because theMoCAP device is cost efficient
and user friendly, we anticipate it will be a useful mechanobiological tool
for studying shear effects at biological interfaces, including the BBB.

2 Materials and methods

2.1 Fabrication of MoCAP device

All components for the MoCAP device were designed using a
computer aided design software (Autodesk Inc., One Market, Suite
400, San Francisco, CA 94105). A bill of materials lists all the necessary
hardware needed to build a fully functional MoCAP (Table 1).
Components of MoCAP device were printed using a
stereolithography Form 3+ 3D printer (Formlabs Inc., 35 Medford

Street, Suite 201, Somerville, MA 02143) and high-temperature resin
(RS-F2-HTAM-02). Low angle cones were coated with parylene-C using
a parylene deposition machine (Specialty Coating Systems,
7,645 Woodland Drive, Indianapolis, IN 46278) to ensure
biocompatibility (O’Grady et al., 2021). Commercially available
bearings (McMaster-Carr Supply Co., 2,828 No Paulina St, Chicago,
IL 60657) were purchased and utilized in the device. The gearbox within
the device was lubricated utilizing a small amount of medical grade
petroleum jelly (Covidiein, 15 Hampshire Street, Mansfield, MA 02048).
The gearbox in the MoCAP device was driven by a NEMA 17 stepper
motor (STEPPERONLINE Inc., 228 Park Ave S 79525, New York, NY
10003, United States) and held with four stainless steel screws
(McMaster-Carr Supply Co., 2,828 No Paulina St, Chicago, IL
60657). The software for the MoCAP device was developed in-house
utilizing a programming language (Python Software Foundation,
512 Lafayette Boulevard, Suite 2, Fredericksburg, Virginia 2,240). The
software was based on a prior design used to control a spinning
bioreactor for brain organoid culture (Romero-Morales et al., 2019).

2.2 Cell culture

All cells were grown in a standard humidified incubator (5% CO2,
37°C). Primary BMECs (ACBRI 376) and immortalized BMECs
(hCMEC/D3) (Weksler et al., 2005) were cultured and expanded
with endothelial cell growth medium (R&D Systems) supplemented
with Endothelial Cell Growth Supplement (R&D Systems), 10% fetal
bovine serum (Thermo Fisher), GlutaMAX (Thermo Fisher), and
gentamycin (25 μg/mL; Thermo Fisher). Primary and immortalized
BMECs were seeded at 100,000 cells/cm2 onto polyester Transwell®
filters (3,470; 0.4 µm pore size; Corning) coated with collagen IV
(400 μg/mL; Sigma-Aldrich) and fibronectin (100 μg/mL; Sigma-
Aldrich). Twenty-four hours later, the medium was changed to
remove floating cells. Induced pluripotent stem cells (iPSCs;
CC3 line) were cultured and seeded as previously published (Neal
et al., 2019; Hollmann et al., 2017). Briefly, iPSCs were seeded onto
Matrigel-coated plates with E8 medium supplemented with Y-27632
(Tocris) at a cell density of 15,600 cells/cm2. Cells were differentiated
24 h after seeding by changing to E6 medium. E6 medium was
replenished daily for 4 days. Then, cells were switched to human
endothelial serum-free medium (hESFM; Thermo Fisher Scientific)
supplemented with 10 µM retinoic acid (RA; Sigma-Aldrich), 20 ng/mL
human basic fibroblast growth factor (bFGF; Peprotech), and
B27 supplement (Thermo Fisher Scientific). Medium was not
changed for 48 h. Then, cells were collected and seeded at
100,000 cells/cm2 onto polyester Transwell® filters (3,470; 0.4 µm
pore size; Corning) coated with collagen IV (400 μg/mL; Sigma-
Aldrich) and fibronectin (100 μg/mL; Sigma-Aldrich). Twenty-four
hours after seeding, RA and bFGF were removed from the medium to
induce barrier phenotype. For all experiments, media volumes were
200 μL and 600 µL in the apical and basolateral chambers of the
Transwell® insert, respectively.

2.3 Increasing media viscosity using dextran

To increase the cell media viscosity to 3 mPa (6.5% dextran w/
w), we referenced data from two publications (Rouleau et al., 2010;
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Li et al., 2008), created a concentration curve with the data, and
performed a non-linear regression analysis to calculate the
concentration that would yield our desired media viscosity
(Supplementary Figure S1). Dextran powder (40 kDa; Sigma-
Aldrich) was dissolved in non-supplemented media utilizing a
heat plate (40°C) and sterilized by vacuum filtration using a pre-
heated filter (Sigma-Aldrich).

2.4 Mechanofluidic assay using
MoCAP device

The MoCAP device was sterilized in an autoclave before each
experiment. The motor is removed from the hardware and sterilized
separately with 70% ethanol. Cells were cultured on 24-well
Transwell® inserts for 2 days, as detailed above, before exposure

to flow. Cells were then continuously exposed to a defined CSS or
PSS profile except for the brief daily period when TEER
measurements were acquired. Culture medium (50 µL) was
added to the apical chamber of filters each day to account for
media loss during TEER measurements.

2.5 Calculating shear stress utilizing
analytical evaluations

To calculate the shear stress induced by the MoCAP device, we
utilized the analytical solution for a cone-and-plate system as
previously described in the literature (Franzoni et al., 2016;
Sucosky et al., 2008). The following formula was used to estimate
shear stress and calibrate the angular of the velocity of the
MoCAP device:

TABLE 1 Bill of materials.

Part name Link Cost Quantity

High Temperature Resin https://formlabs.com/store/materials/high-temp-resin/ $199.00 1

Bearings https://www.mcmaster.com/7804K113/ $6.46 48

Nema17 Motor Amazon:Nema17 Motor $9.62 1

Easy Driver for Motor https://www.amazon.com/SparkFun-EasyDriver-Stepper-Motor-Driver/dp/
B004G4XR60#customerReviews

$22.92 3

Raspberry Pi 3 A+ Raspberry Pi 3 Amps+| McMaster-Carr $31.25 1

Breakout Board Amazon.com: GPIO Breakout Board HAT for Raspberry Pi $18.99 1

2 Wire Connectors (2.45 mm) amazon.com: 2 wire Female-Connections-JST $9.99 1

3 Wire Connectors (2.45 mm) amazon.com: 3 wire Female-Connections-JST $8.59 1

4 Wire Connectors (2.45 mm) amazon.com: 4 wire Female-Connections-JST $8.59 1

Raspberry Pi Touch Test Amazon.com: Raspberry-Pi-7-Touchtest-Display $75.81 1

Solder Seal Wire Connectors Amazon.com: Solder Seal Connectors $31.99 1

Fans (30 Mm 5v) Amazon.com: Cooling 5V Fans $19.99 1

Hex Standoff mcmaster.com: Hex standoff $5.18 2

316 Stainless Steel Socket Head Screw mcmaster.com: Head Screw $15.60 1

Female To Female 2.54 mm Jumper Wires Amazon.com: Fem to Fem jump wires $11.98 1

12v/24v to 5v Power Converter Dc-Dc With
Micro-USB

Amazon.com: 12V to 5V power converter $9.99 1

Toggle Button for On/Off Power Amazon.com: on off toggle switch $7.99 1

Washers For 3 mm Screw https://www.mcmaster.com/98689A112/ $3.42 1

M3 X 12 mm Flat Head Socket Screws Amazon.com: M3 Head Screw $6.55 1

Power Cord Amazon.com: 12V Power Cord $15.99 1

Inline Switch Amazon.com: Inline Switch $8.99 1

4 Pin JST Male to Female Wire Connectors Amazon.com: JST 4 pin connectors $12.99 1

SD Card Pre-Loaded with Pi Operating System Amazon.com: Raspberry Pi Preloaded SD Card $9.99 1

Power Jack Cord Socket Amazon.com: Power Jack Cord Socket $8.99 1

4 Pin Male to Female JST Plugs Amazon.com: 4 pin JST Plugs M to F $9.99 1

Total Cost as of 08/07/2024 $ 925.49
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τ � µ
ω r

h + r tan α

Here, τ is shear stress, µ is the dynamic viscosity of the cell media
(3 mPa), ω is angular velocity, h is the gap between the tip of the low
angle cone and the cells (200 µm), r is the cone radius (0.29 cm), and
α is the angle of the cone (2°). The angular velocity was adjusted to
account for the dynamic viscosity of the cell media utilized during
experimentation. Supplementary Figure S2A shows these
parameters in the context of a single cone within a Transwell®

insert. While the constant distance between the cone and cells is
assumed, it is understood that Transwell® inserts are not perfectly
flat and can move slightly within the cell culture well; thus, the shear
stress is an estimate based on the constant distance assumption.

2.6 Calibration of MoCAP device

To calibrate the MoCAP device, an initial set of low angle cones
with an arbitrary shaft length were printed and parylene coated.
Plates were seeded with BMECs, and the MoCAP was placed on top
of the plates and run overnight. The next day, the MoCAP device
was removed, and the plates were inspected for cell monolayer
damage under a phase contrast microscope. The experiment was
then repeated with sequential additions of 100-micron shims
(McMaster-Carr Supply Co.; 90214A111) until no scratches were
detected in the BMEC monolayers. The low angle cones were then
reprinted taking into the account the number of shims utilized to
achieve zero damage to the cell monolayer. This final gap of 200 µm
between the tip of the low angle cone and cells was utilized for all
experimentation. Once fully assembled, reflective tape was placed on
top of the shaft cap to verify that the input angular velocity of the
software matched the output angular velocity of the motor utilizing a
digital tachometer (NEIKO Tools, Taiwan).

2.7 Calculating shear stress delay due to
gear backlash

To calculate the shear stress delay caused by gear backlash
within the MoCAP device, we utilized the following formula:

LagTime � Δθ backlash( )
ωinput

Here, Δθ represents the gear backlash angle and ωinput represents
the angular velocity input in the MoCAP device. The gear backlash
angle was measured to be 2.2° in the 3D printed gears utilized in the
MoCAP device.

2.8 TEER measurements

TEER measurements were taken daily during shear stress
treatments. Prior to measurements, the MoCAP was removed
from the filters and cells were equilibrated at room temperature
for 10 min. Then, measurements were acquired with a commercially
available electrode system (World Precision Instruments) with a
chopstick configuration (STX2). Chopsticks were carefully inserted

into the Transwell® filters to avoid scratching the cell monolayer.
The measurements were recorded after the signal had stabilized. The
reported TEER (TE) was determined with the following formula:

TE � TM − TB( ) × Area

The measured TEER from an endothelial monolayer (TM) was
subtracted by the measured TEER from a blank Transwell® insert
with no cells (TB). This quantity was then multiplied by the surface
area of the Transwell® insert (0.33 cm2) to determine TE. All TEER
measurements in this study are reported as Ω × cm2.

2.9 Immunofluorescent staining

Following the mechanofluidic assays, cells were immediately
fixed with 4% paraformaldehyde for 5 min. Cells were then washed
three times with phosphate buffered saline (PBS). Once rinsed, cells
were permeabilized with PBS containing 0.3% Triton X-100 for
5 min. After permeabilizing, the cells were blocked with PBS
containing 10% goat serum for 60 min. Cells were then
incubated with fluorescent-conjugated anti-GLUT1 antibody or
phalloidin in PBS containing 10% goat serum overnight at 4°C
on a shaker (R&D Systems FAB1418G, 1:250; Thermo Fisher
Scientific A12379, 1:250). The next day, cells were rinsed three
times with PBS and incubated with DAPI to label nuclei (Thermo
Fisher Scientific 62248, 1:1,000), then rinsed three final times with
PBS. The Transwell® inserts were then transferred into a 12-well
glass bottom plate (Cellvis). To improve imaging quality, a solution
of 2.5 M fructose and 60% glycerol was used as the final imaging
medium on the apical and basolateral sides of the Transwell® inserts
(Dekkers et al., 2019). Cells were imaged utilizing a Leica
DMi8 epifluorescent microscope.

2.10 Statistical analysis

All experimental results are shown as mean ± standard error of
the mean (SEM). Multiple comparisons between groups were
analyzed by two-way ANOVA followed by a Bonferroni’s post
hoc test. A two-tailed probability value p < 0.05 was considered
statistically significant. An independent replicate for each
experiment was considered as a singular Transwell® insert. One
MoCAP run refers to an experiment utilizing one MoCAP device
applying shear stress across a plate of 24-well Transwell® inserts.

3 Results

3.1 Designing and testing the MoCAP device

We created a modular cone-and-plate (MoCAP)
mechanofluidic device that is compatible with the 24-well
Transwell® insert system (Figure 1A). The MoCAP device
consists of a nesting three-part housing body made up of a lid,
an upper housing, and a lower housing (Figure 1B). A NEMA
17 stepper motor can be mounted to the lid in multiple column
positions to allow for rapid reposition using M3 stainless steel
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screws. A key and lock geometry were utilized on custommade gears
with a variety of gear ratios (1:1 and 2:1), as well as on the shaft of the
low angle cones that were 3D printed, to allow users to quickly
interchange components without the need for screws. A 2° low angle
was utilized on the cones, as this design has been extensively
characterized in the literature, (Chavarria et al., 2023; Spruell and
Baker, 2013; Spencer et al., 2016) and the low angle cones were
parylene coated to ensure biocompatibility (O’Grady et al., 2021).
Bearings were press fitted into designed recesses on the lower and
upper housings units to reduce friction during the rotation of the
cones. All components of the MoCAP device (except the bearings
and NEMA17 motor) were 3D printed with high-temperature resin,
which allows for the device to be sterilized with an autoclave. Once
fully assembled, theMoCAP device can be placed directly on top of a
24-well Transwell® insert system, acting as a plate lid (Figure 1C). A
final gap of 200 µm between the tip of the low angle cone and the
cells was utilized to prevent any accidental scratching of the cell
monolayer when operating and removing the MoCAP device from
the Transwell® inserts. The analytical evaluation of this gap
configuration, taking into account the thicknesses of endothelial
cells that are reported to range from 0.1–10 µm (Félétou, 2011),
demonstrated a negligible difference in the shear stress produced by
the MoCAP device at the cell surface creating similar shear stress
profiles with a maximum shear stress value closer to the edges of the
Transwell® inserts and a dead point at the center of the Transwell®

insert (Supplementary Figure S2B). A shaft cap was printed and
placed on top of the double shaft NEMA17 motor to visualize the

rotation of the motor shaft (Figure 1C). Reflective tape was placed on
top of the shaft cap to verify the input angular velocity of the
software matched the output angular velocity of the motor utilizing a
digital tachometer. The electronics and software were made in-
house based on prior designs (Romero-Morales et al., 2019; O’Grady
et al., 2018) and allow for the simultaneous operation of up to three
MoCAP devices (Figure 1D).

The MoCAP device generates different shear stress magnitudes
at each column by changing the gear ratio between the gears
connecting adjacent columns. For example, the gears illustrated in
gold in column C1 consist of a 1:1 gear ratio, resulting in the
transfer of the same angular velocity from one gear to its
neighboring connecting gear down the column (Figure 2A). The
white gears illustrated on the diagram are staggered on height
placement, allowing the gold and white gears to spin in different
planes without interference (Figure 1B). The white gears
connecting adjacent columns on the diagram have a 2:1 gear
ratio, therefore multiplying the angular velocity from left to the
right column by a factor of two. On the diagram shown, we start
with an input of 28 rotations per minute (RPM), corresponding to
0.6 dyn/cm2 from the NEMA17 motor that is doubled every
column, which yields 32 times the initial angular velocity
(896 RPM) at the last column in the MoCAP gearbox system
(Figure 2A). This gear ratio principle allows the MoCAP device to
achieve angular velocities of 28, 56, 112, 224, 448, and 896 RPM,
with the corresponding shear stress values of 0.6, 1.3, 2.5, 5, 10, and
20 dyn/cm2 at columns C1, C2, C3, C4, C5, and C6, respectively

FIGURE 1
Diagram and pictures of Modular Cone-and-Plate (MoCAP) mechanofluidic device. (A, B) Diagrams generated utilizing a computer-aided design
program showing a translucent angled (A) and side view (B) of the MoCAPmechanofluidic device. (C) Picture of 3D printedMoCAP device prototype fully
assembled. (D) Picture of three fully assembled and operational MoCAP devices inside of a cell culture incubator operating of one set of electronics.
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(Table 2). Thus, when the MoCAP device is run at a constant
angular velocity, we can generate CSS ranging from 0.6 to 20 dyn/
cm2 by filling the entire gearbox with these 1:2 gear ratios between
columns (Figure 2B). The maximum shear stress the MoCAP can
generate using this configuration is 20 dyn/cm2, as higher angular
velocities exceed the maximum bipolar frequency of the stepper

motor. An advantage of CAP systems is that they allow for the
creation of intricate flow patterns. As such, in the MoCAP device,
we can also generate PSS profiles with minimum to maximum
shear stress values ranging from 0.4 to 0.6, 0.7 to 1.3, 1.4 to 2.5,
2.8 to 5, 5.6 to 10, and 11.2–20 dyn/cm2 (Figure 2C). For
experimental testing, we chose to focus on only shear stress

FIGURE 2
Diagram of MoCAP device gearbox for the generation of multiple shear stress magnitudes and flow profiles. (A) Diagram of the top-view of the
MoCAP gearbox illustrating the different gear ratio combinations. The white and black gears are offset on height allowing for their rotation without
interference. By modifying the gear ratio between the gears connecting adjacent columns (shown in blue), the MoCAP device can double the initial
rotational velocity every column. This rotational velocity of the low angle cones is directly proportional to the shear stress generated at the cell
surface. (B) Plot of predicted maximum continuous shear stress profiles that can be generated by the MoCAP device inside a Transwell

®
insert. (C) Plot of

predicted maximum pulsatile shear stress profiles that can be generated by the MoCAP device inside a Transwell
®
insert (1 Hz frequency).
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profiles with a maximum shear stress value of 0.6 and 10 dyn/cm2

for CSS and PSS as these shear stress values approximate
commonly used values on previous in vitro models of the BBB
ranging from 0.4–12 dyn/cm2 (Meena et al., 2022; Santa-Maria
et al., 2021; Suprewicz et al., 2022; Yeon et al., 2012; DeStefano
et al., 2017; Peng et al., 2020; Harding et al., 2022). For PSS
conditions, we chose to utilize an arbitrary frequency of 1 Hz
(Hz) to mimic a normal adult resting heart rate (Nanchen, 2018),
however, the frequency can be adjusted as needed for any system
of interest.

3.2 Impact of shear stress on BMEC passive
barrier function

To demonstrate the capabilities of the MoCAP, we conducted
exploratory evaluations into the effects of CSS and PSS on BBB
function across several common BMEC sources (primary,
immortalized, and iPSC-derived). The MoCAP device was
reconfigured with a 1 to 16 gear reduction ratio (Figure 3A). In
this configuration, the motor drives the gold gears at an angular
velocity of 28 RPM creating 0.6 dyn/cm2 (Figure 3B). The white
gears inside the top compartment of the MoCAP device then
increase the input angular velocity and transfer it down to the
black gears increasing the angular velocity to 448 RPM and thus
generating 10 dyn/cm2 of shear stress inside the Transwell® inserts
(Figure 3B). In this configuration, the application of shear stress to
the cell culture monolayer is almost instantaneous, with a small
millisecond delay (13 m) caused by the gear backlash within the
MoCAP gearbox (Supplementary Figure S3). We exposed cells to
CSS and PSS for 2 days, utilizing a high and low threshold described
above (10 and 0.6 dyn/cm2, respectively). We included dextran at a
concentration of 6.5% (w/w), which increased media viscosity to
3 mPa based on rheology data from previous studies (Rouleau et al.,
2010; Li et al., 2008). This allowed us to run the MoCAP device at a
lower angular velocity to minimize the incorporation of bubbles into
the cell media, while still achieving our desired shear stresses. Daily
TEER measurements were collected throughout the course of the
experiment for each cell line (Figure 3C). After 2 days of CSS and
PSS acclimation, final TEER measurements were collected and
compared across shear stress conditions within the same cell line.
For the primary BMECs, there was a statistically significant decrease
in TEER in the 0.6 dyn/cm2 CSS, 10 dyn/cm2 CSS, and 10 dyn/cm2

PSS conditions when compared to the static control group
(Figure 3D). There was a statistically significant increase in TEER

for the immortalized BMECs exposed to 0.6 dyn/cm2 CSS and
0.6 dyn/cm2 PSS (Figure 3D). It is important to note that the
magnitude of TEER differences in the primary and immortalized
BMECs was very low, since these cells have poor passive barrier
properties (Supplementary Figure S4). In contrast, for the iPSC-
BMECs, which have comparably higher baseline TEER
(Supplementary Figure S4), there were no statistically significant
differences detected after 2 days of CSS or PSS acclimation. Upon
visual inspection, approximately 65% of the filters had intact
monolayers regardless of exposure to PSS or CSS, and we
anticipate this number could be improved with additional
optimization of media and culture conditions. Only filters with
intact monolayers were utilized for downstream cellular and
molecular analyses.

3.3 Impact of shear stress on BMEC nuclei
density and morphology

To determine whether CSS and PSS exposure affected nuclear
morphology, we analyzed the three BMEC lines using a DAPI
nuclear stain (Figure 4A). The number of cell nuclei per field of
view (FOV) was counted and analyzed, which first revealed
statistically significant differences in cell nuclei numbers
between all cell lines (Supplementary Figure S5A), indicative of
different packing densities. In terms of responsiveness to shear
stress, we observed a statistically significant decrease in the number
of cell nuclei per FOV for the primary BMECs acclimated to
0.6 dyn/cm2 PSS, and 10 dyn/cm2 PSS when compared to the static
primary BMEC control (Figure 4B). The analysis also revealed a
statistically significant decrease in cell nuclei count per FOV in all
the immortalized BMECs acclimated to shear stress when
compared to their corresponding static control (Figure 4B).
Further, there was a statistically significant decrease in cell
nuclei per FOV in all iPSC-BMECs acclimated to shear stress
when compared to their respective static control (Figure 4B). These
results suggest a change in cell density induced by different shear
stress conditions within all the cell lines. We next analyzed the
average nuclei area. Here, we observed a statistically significant
decrease in cell nuclei area for primary BMECs acclimated to
0.6 dyn/cm2 CSS when compared to the statically cultured primary
BMECs (Figure 4C). There was also a statistically significant
increase in cell nuclei area for primary BMECs acclimated to
0.6 dyn/cm2 PSS and iPSC-derived BMECs acclimated to
0.6 dyn/cm2 CSS when compared to their respective static

TABLE 2 Angular velocities and corresponding maximum shear stress values.

MoCAP column position Frequency (RPM) Shear stress (dyn/cm2)

C1 28 0.6

C2 56 1.3

C3 112 2.5

C4 224 5

C5 448 10

C6 896 20
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control (Figure 4C). Cell nuclei area remained constant for all
other shear stress conditions in all three BMEC lines when
compared to their respective static control groups (Figure 4C),
although we further note a statistically significant difference
between the statically cultured primary, immortalized, and
iPSC-BMEC average cell nuclei area (Supplementary Figure
S5B), mirroring the differences in cell density between the lines.
Overall, our results illustrate differential responses of the BMEC
lines to shear stress, while all BMEC lines are resistant to shear
stress induced nuclear shrinkage, which has been previously noted
to occur in other cell types (Sahni et al., 2023; Jetta et al., 2019; Jin
et al., 2020).

3.4 Impact of shear stress on
GLUT1 expression

We investigated the effects of CSS and PSS on glucose
transporter 1 (GLUT1) expression, as previous reports noted an
upregulation in GLUT1 transporter expression when primary
BMECs were exposed to 10 dyn/cm2 of CSS, (Chavarria et al.,
2023; Garcia-Polite et al., 2017), whereas GLUT1 expression in
iPSC-BMECs is reported to be insensitive to CSS (DeStefano et al.,
2017). We repeated the previously mentioned shear stress
experiment and then performed immunofluorescent staining for
GLUT1 (Figure 5A). The quantification of pixel intensity of

FIGURE 3
Effects of continuous and pulsatile shear stress on passive barrier function in BMECs. (A, B) Side view diagram (A) and top view of gear configuration
(B) of MoCAP device configuration for applying 0.6 and 10 dyn/cm2 shear stress. (C) Daily TEER measurements of primary, immortalized, and iPSC-
derived BMECs during the 2 days of continuous or pulsatile shear stress acclimation. For reference, cells are seeded on day −2 and shear stress is initiated
on day 0. Data represent mean ± SEM from N = 6 (immortalized and primary-BMECs) and N = 4–12 (iPSC-derived BMECs) Transwell

®
filters per

condition. Any filter where cell detachment was observed at the end of the experiment was excluded from the analysis. (D) TEER summary for primary,
immortalized, and iPSC-derived BMECs after 2 days of exposure to shear stress. Data represent mean ± SEM from N = 4–12 Transwell

®
filters per

condition, aggregated across two independent MoCAP runs. Statistical significance was calculated using a one-way ANOVA applied to each cell type (*,
p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001).
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GLUT1 showed a statistically significant decrease in primary
BMECs exposed to 0.6 dyn/cm2 CSS and 0.6 dyn/cm2 PSS
compared to their respective static control, as well as an increase
in response to 10 dyn/cm2 CSS that was not quite statistically
significant (p = 0.0781) (Figure 5B). There was also a statistically
significant decrease in GLUT-1 intensity in the immortalized
BMECs exposed to 10 dyn/cm2 CSS, 0.6 dyn/cm2 PSS, and

10 dyn/cm2 PSS compared to their respective static control
(Figure 5B). No significant differences were noted in the iPSC-
BMECs between any of the experimental conditions. Thus, our
results are generally consistent with the published literature.

3.5 Impact of shear stress on BMEC
morphology and alignment

To examine the impact of shear stress on BMEC cytoskeleton
morphology, we additionally performed immunofluorescent
staining of the actin cytoskeleton utilizing a fluorescently labeled
phalloidin after the cells had been exposed to CSS or PSS
(Figure 6A). From the actin labeling, we manually measured cell
width and length to calculate the inverse aspect ratio (IAR) and
evaluate morphological changes in each BMEC line exposed to CSS

FIGURE 4
Effects of pulsatile and continuous shear stress on nuclei
morphology in BMECs. (A) Nuclei visualization with DAPI in primary,
immortalized, and iPSC-derived BMECs after 2 days of shear stress
treatment. Scale bar indicates 100 µm. (B) Quantification of
number of cell nuclei per field of view. (C) Quantification of average
cell nuclei area. In (B, C), data represent mean ± SEM from N =
10 Transwell

®
filters per condition, aggregated across two

independent MoCAP runs. Statistical significance was calculated using
a one-way ANOVA applied to each cell type (*, p < 0.05; **, p < 0.01;
***, p < 0.001; ****, p < 0.0001).

FIGURE 5
Effects of pulsatile and continuous shear stress on
GLUT1 expression in BMECs. (A) Immunofluorescent staining of
GLUT1 in primary, immortalized, and iPSC-derived BMECs after 2 days
of shear stress treatment. Scale bar indicates 100 µm. (B)
Quantification of GLUT1 expression. For each condition, fluorescence
intensity from each treated group was normalized to the static control
within a given cell line (grey dotted line). Data represent mean ± SEM
from N = 5 Transwell

®
filters per condition from a single MoCAP run.

Statistical significancewas calculated using a one-way ANOVA applied
to each cell type (*, p < 0.05; **, p < 0.01).
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or PSS. The IAR of each BMEC line remained constant irrespective
of the shear stress condition it was exposed to (Figure 6B). The
primary BMECs cultured under static conditions had significantly
smaller IAR compared to immortalized BMECs and iPSC-BMECs

(Supplementary Figure S6). This finding implies baseline differences
in IAR between cell lines under static conditions. We then proceeded
to calculate cell orientation based on the angle created between the
flow vector and the length measured of each cell. This cell
orientation measurement was not calculated on the static control
groups as these cells were not exposed to flow conditions and did not
have a flow vector. This analysis revealed that all cell lines, regardless
of shear stress condition, align approximately perpendicular to the
flow direction (~90°; Figure 6C).

4 Discussion

In this study, we have developed a modular, versatile, and cost-
effective mechanofluidic device that is compatible with commercial
24-well Transwell® inserts. The device can introduce continuous and
pulsatile shear stress conditions in a Transwell® insert across a range
of shear stress magnitudes. Since the MoCAP is compatible with
Transwell® inserts, this device allows for the exploration of the
effects of shear stress on barrier-forming cells. The MoCAP can
therefore aid mechanofluidic studies by rapidly testing shear stress
conditions in 2D in conjunction with molecular biology assays
before moving into more intricate 3D models such as microfluidics.

To demonstrate the utility of the MoCAP system, we conducted
exploratory evaluations of the responses of three BMEC lines
(primary, immortalized, and iPSC-derived) to different shear
stress profiles. Similar to prior reports, we report shear-induced
changes to GLUT1 expression in primary and immortalized BMECs,
but not iPSC-BMECs (Chavarria et al., 2023; Garcia-Polite et al.,
2017). These results illustrate the importance of considering the
differences in cell line responses to shear stress in mechanobiological
experiments. Further, all three BMEC lines aligned perpendicular to
the flow direction in our cone-and-plate device acclimated on
Transwell® inserts, which agrees with a previous report on
immortalized BMECs (Choublier et al., 2022). However, there are
also contradictory reports on cell alignment with respect to flow
direction for immortalized BMECs (Choublier et al., 2021), primary
BMECs (Garcia-Polite et al., 2017) and iPSC-BMECs (DeStefano
et al., 2017; Motallebnejad et al., 2019; Reinitz et al., 2015). These
differences may be due to the mechanofluidic devices utilized during
testing, which apply shear forces in different ways. We also found
that all three BMEC lines did not experience any elongation due to
flow as seen by the IAR measurements when compared to their
respective static control, which is consisted with literature
(DeStefano et al., 2017; Reinitz et al., 2015; Bogorad et al., 2017).
In addition, all BMEC lines exhibit decreased cell density in response
to shear stress, which could be related to cell packing or altered
proliferation, but more experiments will be needed to tease out these
effects. Lastly, we found that the immortalized BMECs had a subtle
but significant increase in TEERmeasurements when exposed to low
shear stress, which is consistent with previously reported results
(Kim et al., 2024). Overall, these experiments highlight that the
MoCAP enables higher throughput evaluation of different cellular
and molecular properties after exposure to a range of shear stresses.

Although we have only presented a limited number of molecular
assays, the MoCAP can enable the incorporation of shear stress in
molecular assays that have been traditionally performed under static
conditions. For example, shear stress plays an important role in

FIGURE 6
Effects of pulsatile and continuous shear stress on actin
alignment in BMECs. (A) Images of actin cytoskeleton in primary,
immortalized, and iPSC-derived BMECs after 2 days of shear stress
treatment. Scale bar indicates 100 µm. (B) Quantification of cell
inverse aspect ratio (IAR). (C) Quantification of cell alignment angle
relative to flow direction, where the grey line represents cell alignment
perpendicular (90°) to the fluid flow vector generated by the MoCAP
device. In (B, C), data represent mean ± SEM from N = 5 Transwell

®

filters per condition from a single MoCAP run. Statistical significance
was calculated using a one-way ANOVA applied to each cell type (no
differences).
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cancer metastasis (Qin et al., 2021; Dombroski et al., 2021; Kim O.-
H. et al., 2022; Zhou et al., 2023; Huang et al., 2018; Bouchalova and
Bouchal, 2022; Spencer and Baker, 2016; Spencer et al., 2021),
therefore traditional migration and invasions assays performed in
Transwell® inserts can now be performed with external shear stress
by utilizing the MoCAP device. This would enable scientists to
screen the effects of different shear stress magnitudes and flow
profiles on the metastatic potential of different cancer cell lines.
Additionally, the MoCAP device can be used with other cell lines
from different tissues in which the incorporation of flow is
important for cellular function. Some potential examples include
the blood-cerebrospinal fluid barrier (MacAulay et al., 2022; Solár
et al., 2020), liver (Sun et al., 2019; Poisson et al., 2017; Duan et al.,
2022), and peripheral vascular system (Obi et al., 2014; He et al.,
2022; Chistiakov et al., 2017; Kutikhin et al., 2018; Ryu et al., 2021;
Bertani et al., 2021; Voyvodic et al., 2014; Le et al., 2021; Le et al.,
2021; Chatzizisis et al., 2011). Overall, we have presented a new
mechanofluidic device that is cost effective, versatile, and
incorporates shear stress into widely used Transwell® models. We
anticipate this tool will be broadly useful to the mechanobiology
research community.
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