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The development of facial expression recognition (FER) and facial expression
generation (FEG) systems is essential to enhance human-robot interactions (HRI).
The facial action coding system is widely used in FER and FEG tasks, as it offers a
framework to relate the action of facial muscles and the resulting facial motions
to the execution of facial expressions. However, most FER and FEG studies are
based on measuring and analyzing facial motions, leaving the facial muscle
component relatively unexplored. This study introduces a novel framework
using surface electromyography (sEMG) signals from facial muscles to
recognize facial expressions and estimate the displacement of facial keypoints
during the execution of the expressions. For the facial expression recognition
task, we studied the coordination patterns of seven muscles, expressed as three
muscle synergies extracted through non-negativematrix factorization, during the
execution of six basic facial expressions. Muscle synergies are groups of muscles
that show coordinated patterns of activity, asmeasured by their sEMG signals, and
are hypothesized to form the building blocks of human motor control. We then
trained two classifiers for the facial expressions based on extracted features from
the sEMG signals and the synergy activation coefficients of the extracted muscle
synergies, respectively. The accuracy of both classifiers outperformed other
systems that use sEMG to classify facial expressions, although the synergy-
based classifier performed marginally worse than the sEMG-based one
(classification accuracy: synergy-based 97.4%, sEMG-based 99.2%). However,
the extracted muscle synergies revealed common coordination patterns
between different facial expressions, allowing a low-dimensional quantitative
visualization of the muscle control strategies involved in human facial expression
generation. We also developed a skin-musculoskeletal model enhanced by linear
regression (SMSM-LRM) to estimate the displacement of facial keypoints during
the execution of a facial expression based on sEMG signals. Our proposed
approach achieved a relatively high fidelity in estimating these displacements
(NRMSE 0.067). We propose that the identifiedmuscle synergies could be used in
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combination with the SMSM-LRM model to generate motor commands and
trajectories for desired facial displacements, potentially enabling the generation
of more natural facial expressions in social robotics and virtual reality.

KEYWORDS

facial expression recognition, sEMG, muscle synergy, musculoskeletal model, facial
keypoints estimation

1 Introduction

In human-human interactions, facial expressions are often more
effective than verbal methods and body language in conveying
affective information (Mehrabian and Ferris, 1967; Scherer and
Wallbott, 1994), which is essential in social interactions (Blair,
2003; Ekman, 1984; Levenson, 1994; Darwin, 1872; Ekman and
Friesen, 1969). The importance of facial expressions has also been
shown in human-robot interactions (HRI) (Rawal and Stock-
Homburg, 2022; Stock-Homburg, 2022; Yang et al., 2008;
Bennett and Šabanović, 2014; Fu et al., 2023; Saunderson and
Nejat, 2019), which are poised to become widespread in service
industries (Gonzalez-Aguirre et al., 2021; Paluch et al., 2020),
educational areas (Belpaeme et al., 2018; Takayuki Kanda et al.,
2004), and healthcare domains (Kyrarini et al., 2021; Johanson et al.,
2021). In such social settings, the use of facial expressions in robots
can influence the users’ cognitive framing towards the robots,
providing perceptions of intelligence, friendliness, and likeability
(Johanson et al., 2020; Gonsior et al., 2011; Cameron et al., 2018).
Expressive robots can also promote user engagement (Ghorbandaei
Pour et al., 2018; Tapus et al., 2012) and enhance collaboration
(Moshkina, 2021; Fu et al., 2023), improving performance in a given
task (Reyes et al., 2019; Cohen et al., 2017). Therefore, the
development of robots with the ability to recognize and generate
rich facial expressions could facilitate the application of social robots
in daily life.

Due to the visual nature of facial expressions, most facial
expression recognition (FER) systems use computer vision to
detect faces and determine the presence of facial expressions (Liu
et al., 2014; Zhang et al., 2018; Yu et al., 2018; Boughida et al., 2022).
These systems have achieved high accuracy (Yu et al., 2018;
Boughida et al., 2022) in the recognition of predefined
expressions, but suffer from robustness issues stemming from the
sensitivity of vision systems to environmental variables such as
illumination, occlusion and head pose (Zhang et al., 2018; Li and
Deng, 2020). On the other hand, robots (Toan et al., 2022; Berns and
Hirth, 2006; Faraj et al., 2021; Pumarola et al., 2020; Asheber et al.,
2016) and animation software (Zhang et al., 2022a; Guo et al., 2019;
Gonzalez-Franco et al., 2020) have been developed to generate facial
expressions for HRI systems, although it is unclear what features of
the generated expressions are important for successful HRI, and the
goodness of the expressions has not been evaluated systematically
(Faraj et al., 2021). Research on the recognition and generation of
facial expressions in robotics has heavily relied on the facial action
coding system (FACS), which is a framework that catalogs facial
expressions as combinations of action units (AUs), which relate
facial movements to the actions of individual muscles or groups of
muscles (Hager et al., 2002). However, FACS only provides a
qualitative relationship between facial motions and muscle

activations. Therefore, ad hoc methods based on empirical
measurements and calculations are required to define the precise
temporal and spatial characteristics of facial points (Tang
et al., 2023).

The measurement of surface electromyography (sEMG) of facial
muscles offers an alternative to understand the temporal and spatial
aspects of facial expressions in detail, as it provides information
about the activation of muscles. Some studies have explored the use
of sEMG signals for FER, although the resulting performance is not
yet comparable to the performance of established computer vision
methods due to limitations in the collection of facial sEMG (Lou
et al., 2020; Hamedi et al., 2016; Cha et al., 2020; Kehri et al., 2019;
Mithbavkar and Shah, 2021; Chen et al., 2015; Gruebler and Suzuki,
2010; Egger et al., 2019). Furthermore, given that facial expressions
result from the coordinated action of different muscles (AUs as
described by FACS), muscle synergy analysis offers tools to analyze
these coordinated actions when measuring facial sEMG. A muscle
synergy is a group of muscles that shows a pattern of coordinated
activation during the execution of a motor task. Similar to the
concept of AUs in the facial expression domain, muscle synergies are
hypothesized to serve as the building blocks of motor behaviors
(d’Avella et al., 2003). In practice, muscle synergies are identified
through dimensionality reduction methods applied on the sEMG
data, with non-negative matrix factorization (NMF) being favored
for its interpretability of the identified synergies, as it organizes
synergies into a spatial component containing the contribution of
individual muscles, and a temporal component that dictates the
non-negative activation coefficients of each synergy during the task
(Rabbi et al., 2020; Lambert-Shirzad and Van der Loos, 2017).
Surprisingly, there is little research using muscle synergies for
FER related tasks (Perusquia-Hernandez et al., 2020; Delis et al.,
2016; Root and Stephens, 2003; Chiovetto et al., 2018). Here, we
propose using muscle synergy analysis for the FER task by extracting
muscle synergies from sEMG and using features of the synergy
activation coefficients to classify different facial expressions.

sEMG can also be applied in facial expression generation tasks,
as granular spatial and temporal information about the action of
facial muscles can inform the design of robotic systems capable of
generating facial expressions. In particular, sEMG can be exploited
to build musculoskeletal models (MSM) that estimate a physical
output such as muscle force or joint torque based on sEMG
measurements. Such models have been leveraged to build
controllers for robotic upper and lower limbs (Zhang et al.,
2022b; Bennett et al., 2022; Lloyd and Besier, 2003; Rajagopal
et al., 2016; Qin et al., 2022; Mithbavkar and Shah, 2019).
However, in the problem of the generation of facial expressions,
the output of interest is the deformation of skin caused by muscle
action. The field of computer graphics has excelled in modeling
facial skin deformations to generate 3D models of facial expressions

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Shu et al. 10.3389/fbioe.2025.1490919

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1490919


(Kim et al., 2020; Sifakis et al., 2005; Zhang et al., 2001; Lee et al.,
1995; Kähler et al., 2001). However, these advanced CG models do
not address the relationship between sEMG signals and facial
deformations, which are necessary to inform the design of
expressive robots. Other studies have used convolutional neural
networks to predict the position of facial landmarks from sEMG
signals to generate facial expressions in a virtual reality (VR)
environment, but these methods treat the relationship between
muscle activity and facial motions as a black box, forgoing the
functional relationship between them (Wu et al., 2021). Here, we
combine techniques developed by the robotics and the computer
graphics fields by modeling both muscles (Shin et al., 2009; He et al.,
2022) and skin (Zhang et al., 2001) as coupled non-linear springs,
allowing us to estimate the displacement of facial points based on
muscle activations. Additionally, we found that combining the skin-
musculoskeletal model with a linear regression model enhanced the
estimation performance when compared to the performance of both
models in isolation.

The paper is organized as follows: in Section 2, we present the
Materials and Methods for developing the FER systems and the
facial keypoint displacement estimation system. Sections 2.1–2.4
describe the experimental protocol we used to collect the sEMG
signals in a facial expression task. Section 2.5 provides details on the
development of two FER systems based on individual muscle and
muscle synergies, respectively. Section 2.6 describes the
development of the skin-musculoskeletal model (SMSM) and the
SMSM enhanced with a linear regression model (SMSM-LRM) for
estimating the displacement of facial keypoints. Section 3 outlines
the results of the proposed approaches in the FER and facial

keypoint displacement estimation. In Section 4, we discuss the
results of the muscle synergy analysis, FER analysis, and the
estimation of displacement of facial points. Finally, Section 5
provides conclusions and prospects for future work.

2 Materials and Methods

We propose a methodology to use facial sEMG signals to
recognize facial expressions and estimate the displacement of
facial keypoints (Figure 1). We extracted muscle synergies from
processed sEMG data of facial muscles, used their synergy activation
coefficients for feature extraction, and used a random forest classifier
for the classification of facial expressions. For comparison, we also
built an RF classifier based on the same features, but extracted from
processed sEMG signals. Then, we used the processed sEMG data
and the displacement of facial keypoints measured from video data
to develop and compare the performance of three models (SMSM,
LRM, and SMSM-LRM) in estimating the displacements
based on sEMG.

2.1 Participants

Ten participants (5 men), aged from 23 to 29 years old (mean
age: 25.7 years (SD 2.7)), participated in the study after providing
written informed consent. All the research procedures complied
with the ethics committee of the Tokyo Institute of Technology and
were conducted in accordance with the Declaration of Helsinki.

FIGURE 1
Methodology for recognition of facial expressions and estimation of displacement of facial points. Facial expression recognition: sEMG signals are
measured through electrodes and bandpass filtered, rectified, normalized, and low-pass filtered. Subsequently, muscle synergies are extracted using
non-negative matrix factorization (NMF), with the extracted synergy activation coefficients used for feature extraction. These features are then employed
for facial expression recognition using a random forest classifier. Estimation of facial points displacement: displacements of facial points are
measured using DeepLabCut, and these measurements, along with downsampled sEMG signals, are used to train the SMSM (Skin-Muscle-Skeletal
Model), LRM (Linear Regression Model), and SMSM-LRM models.
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2.2 Experimental setup

Participants sat on a chair in front of a laptop computer and
faced a webcam (resolution: 1280 × 720, frame rate: 25 Hz).
Participants were asked to face the webcam for the length of the
experiment. We asked participants to sit upright and lean on the
back of the chair during all experimental trials to keep a fixed
distance from the webcam. During the experimental sessions,
illustrations of target facial expressions were displayed on the
laptop screen and participants were asked to replicate the target
expression.

We recorded sEMG signals from seven facial muscle regions
associated with the target facial expressions: inner frontalis region
(IF), outer frontalis region (OF), corrugator supercilii region (CS),
levator labii superioris alaeque nasi region (LLSAN), zygomaticus
major region (ZM), depressor anguli oris region (DAO), and
mentalis (Me). Hereafter, muscle names refer to their respective
regions. Active bipolar electrodes were used to record EMG activity
wirelessly (Trigno mini sensors, Trigno wireless system, Delsys) at a
sampling rate of 1,024 Hz. Figure 2 shows the general placement of
the electrodes. The placement process was meticulously
standardized to ensure consistent and accurate signal collection
across all participants. While healthcare professionals were not
involved in this process, the accuracy of muscle identification
and electrode placement was ensured through the use of
established handbooks, anatomical atlases, and prior research
literature. Additionally, the operator underwent extensive training
under the guidance of experienced faculty members specializing in
biotechnology and bio-interfaces, including theoretical sessions
using established handbooks, anatomical atlases, and prior
research literature. Initially, we identified the general areas,
ranges, and actions of the targeted facial muscles (Cohn and
Ekman, 2005; Mueller et al., 2022; Fridlund and Cacioppo, 1986;
Hager et al., 2002; Kawai and Harajima, 2005). Especially, there is an
atlas of EMG electrode placements for recording over major facial
muscles (Fridlund and Cacioppo, 1986). Then, participants were
asked to perform specific facial actions that engaged the targeted
muscles while we manually palpated the expected location of each
muscle, allowing us to pinpoint suitable sites for electrode
placement. Before fixing the electrode placement, we temporarily
placed electrodes at the identified sites and asked participants to
perform the facial actions again. This step allowed us to monitor the

EMG signals during each action to ensure that the muscle
contraction produces measured EMG signals that match
expectations. The positions were marked, compared with the
atlas of EMG electrode placements (Fridlund and Cacioppo,
1986), and electrodes were then securely attached. This
standardized procedure ensured that the data collected were both
reliable and consistent. Because of electrode size and individual
differences in participants’ facial structure, the electrodes were
distributed differently for each participant. That is, in general, the
electrodes were placed on the target muscle on different sides of the
face, except for the muscle pairs IF and OF, and ZM and DAO,
which were always placed on the same side of the face. The
participants’ skin was cleaned before electrode placement to
optimize the interface between electrodes and the skin.

The sEMG signal data was transferred to a laptop computer
(Dell Precision 7510). Video of the participants’ facial expressions
during the experiment was recorded using the laptop’s webcam to
track the displacement of facial keypoints. We attached stickers on
five facial keypoints (outer eyebrow, inner eyebrow, superior end of
the nasolabial fold, mouth corner, chin) to use computer vision-
based object-tracking software (DeepLabCut) to track their
positions. Figure 2C shows the general position of the facial
keypoints. These specific locations were standardized across all
participants using a combination of the FACS (Hager et al.,
2002), previous research (Mueller et al., 2022; Fridlund and
Cacioppo, 1986; Kawai and Harajima, 2005) and established
facial landmarks detection maps (Köstinger et al., 2011; Sagonas
et al., 2016). The stickers were attached according to the electrode
placement, such that the distribution of stickers across participants
also varied (except for the outer and inner eyebrow points which
were always attached to the same side of the face). The Lab
Streaming Layer software (Stenner et al., 2023) was used to
synchronize the sEMG and video data. The experimental routines
were created using MATLAB (MathWorks, United States).

2.3 Experimental protocol

Before the main experiment, participants underwent
comprehensive training to accurately perform six different facial
expressions derived from the FACS system (anger, disgust, fear,
happiness, sadness, surprise) as depicted in Figure 3B (Hager et al.,

FIGURE 2
Experimental setup. (A) sEMG electrode placement. We used seven facial muscles: ① inner part of frontalis (inner frontalis, IF), ② outer part of
frontalis (outer frontalis, OF),③ corrugator supercilii (CS),④ levator labii superioris alaeque nasi (LLSAN),⑤ zygomaticus major (ZM),⑥ depressor anguli
oris (DAO), and⑦mentalis (Me). (B) Experimental setup. (C) Facial keypoints. We tracked the displacement of five facial keypoints during the experiment:
outer eyebrow (red), inner eyebrow (orange), superior end of the nasolabial fold (green), mouth corner (dark blue), and chin (blue).
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2002). These basic six facial expressions are universally common in
different cultures (Ortony and Turner, 1990), although more recent
research opposes this view (Jack et al., 2012). Nonetheless, these
expressions have been extensively analyzed in both academic (Wolf,
2015; Küntzler et al., 2021) and applied settings (Rawal and Stock-
Homburg, 2022; Tang et al., 2023) due to their role in human
emotional communication. Therefore, our study uses this
background to facilitate the comparison of results with past and
future research. The training session consisted of the introduction
stage and guided practice. In the introduction stage, we showed
participants illustrations (Figure 3B) of each target facial expression,
alongside verbal explanations on how to move different parts of the
face to express the target facial expression. In the guided practice,
participants were guided through each expression, receiving verbal
cues to adjust their facial movements on how to correct the facial
movement. During the training, we also monitored the EMG signals
to ensure that only the muscles involved in the desired expression
were activated. If we detected erroneous facial actions or EMG
signals, we provided verbal cues to the participants to correct the
action. It is a combination of subjective and more or less objective
procedures. We evaluated that the expected Action Units (AUs) are

moving, and that the expected EMG signals for the AUs are activated
(without other AUs activating significantly).

In our study, the data acquisition and processing protocols were
rigorously developed based on established methodologies within the
field. To ensure the robustness of our procedures, we adhered closely
to the protocols described in previous studies (Lou et al., 2020;
Hamedi et al., 2016; Cha et al., 2020; Kehri et al., 2019; Chen et al.,
2015; Mueller et al., 2022; Fridlund and Cacioppo, 1986). The main
experiment consisted of two parts: the maximum voluntary
contraction (MVC) task, and the facial expression task. In the
MVC task, participants were asked to perform five different
actions as intensely as possible to obtain MVC values for the
recorded muscles. We used five actions to measure MVC:
eyebrow elevation, eyebrow furrowing and nose elevation, eyelid
closure, elevation of mouth corners, and depression of mouth
corners (Cohn and Ekman, 2005). Figure 3A illustrates the
structure of the MVC task. At the beginning of the task, the
screen displayed a neutral expression, which participants
maintained for 4 s. Then, the first trial started. A trial consisted
of cycles of neutral expression and target actions. At the beginning of
the first trial, the screen displayed the neutral expression for 4 s.

FIGURE 3
Structure of experimental tasks. (A) MVC task. i � 1, 2, 3,4,5, denotes the action index. In the ith trial, the participant started from the neutral state,
performed the ith action, and returned to the neutral state. This was repeated five times. The screen displayed the target action to be performed. For the
neutral state, participants were instructed to relax theirmassetermuscles, as indicated by themarks in the figure (B) Facial expression task. i � 1, 2, 3,4, 5,6,
denotes the six facial expressions separately: 1). anger, 2) disgust, 3) fear, 4) happiness, 5) sadness, and 6) surprise. In the ith trial, the participant
started from the neutral expression, performed the ith target facial expression, and returned to the neutral expression. This was repeated 12 times. The
screen displayed the target facial expression.
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Next, the screen displayed an illustration of the target action for 4 s.
Participants were instructed to replicate the facial actions that were
displayed on the screen at all times. This cycle was repeated 5 times
within a single trial. The duration of a trial was 40 s. There were five
trials in total. Each trial was associated to a different facial action.

In the facial expression task, participants were asked to perform
six basic facial expressions included in the Facial Action Coding
System: anger, disgust, fear, happiness, sadness, and surprise (Hager
et al., 2002). Participants rested around 10 min between the MVC
and facial expression task. Figure 3B illustrates the structure of the
facial expression task. At the beginning of the task, the screen
displayed the image of a neutral expression, which participants
maintained for 7 s. Then the first trial started. A trial consisted of
cycles of neutral and target facial expressions. First, the screen
displayed the neutral expression for 5 s. Next, the screen
displayed an illustration of the target expression for 5 s. Finally,
the screen displayed the neutral expression again for 1 s. Participants
were instructed to replicate the facial expression that was displayed
on the screen at all times. This cycle was repeated 12 times within a
single trial. The duration of a trial was 132 s. There were six trials in
total. Each trial was associated to a different facial expression. In
order to prevent muscle fatigue, participants were asked to rest 2 min
between trials, and 10 min between two experiment tasks. After data
collection, we reviewed the footage post-trial to identify and exclude
any instances where the expressions were incorrectly performed.

2.4 Data processing

The sEMG data from both the MVC and facial expression tasks
was filtered using a 20–450 Hz band-pass filter, rectified, and low-
pass filtered using a 2 Hz cutoff frequency (Lou et al., 2020; Hamedi
et al., 2016; Cha et al., 2020; Kehri et al., 2019; Mithbavkar and Shah,
2021; Chen et al., 2015; Gruebler and Suzuki, 2010; Egger et al.,
2019). Additionally, before low-pass filtering, the sEMG data from
the facial expression task was normalized using the maximum values
of sEMG obtained in the MVC task.

We used the DeepLabCut (DLC) software (Mathis et al., 2018) to
track five different facial keypoints: the inner eyebrow, outer
eyebrow, nose, mouth corner, and jaw, to which we attached
stickers (Figure 2C). First, we extracted 275 frames from a video
sample (corresponding to 11 s) of each participant and manually
labeled the stickers for training DLC. We also manually labeled one
of the medial canthi and the upper point of both ears to use them as
reference points, as they are immobile with respect to each other.
This allowed us to compute a linear transformation that consistently
aligned the extracted facial points in each frame to a canonical frame
of reference (frontal view of the face), using the methods described
in (Wu et al., 2021). Next, we used the trained DLC to track the facial
keypoints in the rest of the video data and extracted the x and y
coordinates of the facial keypoints. Finally, we calculated the
displacement of the five facial keypoints during the task with
respect to the canonical frame.

Because of the differing sampling rates between the sEMG
signal (1 KHz) and the video data (25 Hz), we resampled the sEMG
data to 25 Hz for the training of the model relating to sEMG and
displacement of the facial keypoints. This resampling involved
synchronizing the sEMG and video data using Lab Streaming

Layer software. The experimental routines emitted trigger
signals at the start and end of each expression, ensuring precise
alignment. The sEMG signals were then downsampled by selecting
one sample point every 40 ms based on these trigger points,
reducing the sampling rate to match that of the video data.
Additionally, there is noisy data caused by friction between the
skin and the electrodes during the transitions between the neutral
and target expressions. To eliminate this noise, we discarded 1 s of
the data adjacent to the transitions. This applied to both the neutral
and expression segments of both the sEMG and displacement data.
Finally, to train the facial expression recognition system and the
models for facial keypoint displacement estimation, we randomly
selected one target expression from each trial. These periods were
combined to create 12 reordered trials. Therefore, each reordered
trial contained six different facial expressions in a
randomized sequence.

2.5 Facial expression recognition system

We developed a facial expression recognition system that
classifies participants’ expressions based on the synergy activation
coefficients of muscle synergies extracted from the recorded facial
muscles. This system relies on two procedures: muscle synergy
extraction and facial expression classification.

2.5.1 Muscle synergy extraction
We used the non-negative matrix factorization (NMF) method

(Lee and Seung, 1999) to obtain muscle synergies and their synergy
activation coefficients according to:

U � Ws × C + E (1)
where U is a m × t matrix (m denotes the number of muscles, t
denotes the number of samples) of recorded sEMG signals in all
trials for each participant, Ws is a m × s matrix of muscle synergies
(s denotes the number of synergies), C is a s × t matrix of synergy
activation coefficients and E is a m × t matrix of unexplained
variation in the muscle activations. In NMF, the number of
muscle synergies s is a hyperparameter. We selected s so that the
variance accounted for (VAF) by the extracted synergiesWs reached
at least 90%, which is a commonly used criteria in muscle synergy
research (d’Avella et al., 2006; Turpin et al., 2021; Antuvan et al.,
2016). We used the NMF implementation provided in the scikit-
learn (Version: 1.3.2) package with the coordinate descent solver
and Frobenius norm objective function, with multiple random
initializations.

2.5.2 Facial expression classification
We used a random forest classifier to classify facial expressions

based on features derived from the muscle synergy activation
coefficients C. We extracted features from isolated segments of
the C synergy activation coefficients obtained by a sliding
window of 150 ms (Nakayama et al., 2017) with a step of 40 ms.
The 40 ms step was chosen to match the period defined by the 25 Hz
video frame rate. The data contained in the sliding window was used
to compute the classification features: root mean square (RMS),
which measures the signal’s average power; variance (VAR), which
measures signal fluctuation; mean absolute value (MAV), which
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measures the amplitude of the signal; and integrated EMG (IEMG),
which measures increases in signal power and amplitude
(Mithbavkar and Shah, 2019). The features in one sliding
window are defined as Equations 2–5:

RMSj �

�������
1
R
∑R
i�1

c2i,j

√√
(2)

VARj � 1
R
∑R
i�1

ci,j − cj( )2 (3)

MAVj � 1
R
∑R
i�1

|ci,j| (4)

IEMGj � ∑R
i�1

|ci,j| (5)

where ci,j represents the value of the synergy activation coefficient of
muscle synergy j � 1, 2, 3 (or sEMG signal of muscle j) and R
represents the number of sampled points in one sliding window
(here, R � 125). cj represents the mean value of synergy activation
coefficient of muscle synergy j � 1, 2, 3 (or mean value of sEMG
signal of muscle j) in one sliding window. We also built a classifier
that uses sEMG signals directly to classify the facial expressions
using the same procedure as described above, with the values of the
synergy activation coefficients replaced by the values of the EMG
signals. Therefore, the input to the random forest classifier is an
array of the features extracted from synergy activation coefficients or
sEMG signal, that is, an array of s × 4 elements for the classifier
based on muscle synergies, and m × 4 for the classifier based on
sEMG signals.

The classifiers were trained based on pooled data from all
participants without downsampling. The synergy activation
coefficients or sEMG signals was separated into training and test
sets. The training set contained a random permutation of 10 out of
the 12 reordered trials per participant (see Section 2.4). We used
five-fold cross-validation to train the classifiers. The remaining two
reordered trials per participant were included in the test set. The
training dataset waw in the shape of 100 trials, 3 synergies,
36,000 samples for the synergy-based classifier (100 trials,
7 muscles, 36,000 samples for the sEMG-based classifier), and the
testing dataset was in the shape of 20 trials, 3 synergies,
36,000 samples for the synergy-based classifier (20 trials,
7 muscles, 36,000 samples for the sEMG signals-based classifier).
Then we calculated the features extracted from sEMG signal and
features from synergy activation coefficients to classify facial
expressions. We used the scikit-learn package to implement the
random forest classifiers with the parameters at their default values
(setting the number of estimators to 100).

To evaluate classifier performance, we used the receiver
operating characteristic (ROC) curve, F1-score, precision, recall,
accuracy, and the confusion matrix. The ROC curve plots the true
positive rate (TPR, also known as sensitivity or recall) against the
false positive rate (FPR). The F1 score, defined as the harmonic
mean of precision and recall, symmetrically incorporates the
characteristics of both measures into one comprehensive metric.
The confusion matrix visualizes algorithm performance, with rows
indicating predicted classes and columns indicating actual classes.

2.6 Facial keypoint displacement estimation

We developed a skin-musculoskeletal model (SMSM) and a
linear regression model (LRM), and combined them into a skin-
musculoskeletal model with linear regression (SMSM-LRM) to
estimate the displacement of facial keypoints using sEMG signals
during the execution of facial expressions.

2.6.1 Skin-musculoskeletal model
During the execution of a facial expression, facial muscles apply

force on the skin, which produces skin deformation. Because skin is
viscoelastic in its response to deformation (Zhang et al., 2001), it
opposes the action of muscle force. Therefore, the forces generated
by the contraction of facial muscles and those resulting from the
deformation of skin are in a state of equilibrium. By integrating
models of skin deformation with musculoskeletal models, we can
delineate the relationship between muscle activation and skin
deformation.

The relationship between stress and strain in the skin is non-
linear, and can be modeled as a mass-spring-damper system with
non-linear stiffness (Zhang et al., 2001). However, for simplicity,
here we make three basic assumptions to model forces originating
from skin deformation: 1. Skin stiffness is constant (KH = 100 N/m),
2. The velocity of skin deformation is low, so that the dampening
effect can be ignored, and 3. Skin deformation Δli is equivalent to the
displacement of an associated facial keypoint (Δli � xi − xi0, where
xi is the current position of the facial keypoint i, and xi0 is the
neutral position of the facial keypoint i). Following these
assumptions, the force fi generated by the deformation of skin
at point i, is:

fi � KHΔli (6)
Next, to model forces produced by muscles, we use the Mykin

model, which models muscles as springs with muscle activation-
dependent stiffness and rest length (He et al., 2022; Shin et al., 2009).
Thus, the force Fm generated by muscle m is:

Fm � k0 + k1u( ) l0 + l1u − Δlm( ) (7)
where k0 is the intrinsic stiffness of the muscle, k1 is the muscle
stiffness determined by muscle activation u, l0 is the intrinsic rest
length of the muscle, l1 is a factor to determine the muscle rest length
as a function of u, and Δlm is the current contraction length of
the muscle.

To integrate the skin and musculoskeletal models, we classified
the facial points measured experimentally (Section 2.2) as single-
muscle systems or double-muscle systems (Hager et al., 2002; Waller
et al., 2008). Single muscle systems included the outer eyebrow point
with the outer frontalis muscle, the point on the superior end of the
nasolabial fold with the levator labii superioris alaeque nasi muscle,
and the point on the chin with the mentalis muscle. The outer
frontalis elevates the outer eyebrow. The levator labii superioris
alaeque nasi wrinkles the skin alongside the nose, elevating the
position of the marker on the superior end of the nasolabial fold. The
mentalis acts to depress and evert the base of the lower lip, while also
wrinkling the skin of the chin, elevating the marker on the chin. On
the other hand, the double muscle systems included the inner
eyebrow point with the inner frontalis and corrugator supercilii
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muscle group, and the point on the corner of the mouth with the
zygomaticus major and depressor anguli oris muscle group (Waller
et al., 2008).

For the single muscle systems, the structure of the skin-
musculoskeletal model is illustrated in Figure 4A. In this case,
the stretch length of the muscle, Δlm, and the deformation length
of the skin, Δli, are the same:

Δlm � Δli (8)

The neutral position for each single muscle system is defined as
the position of the facial point when muscles are not activated. By
combining Equations 6, 7, the force equilibrium equation is:

k0 + k1u( ) l0 + l1u − Δlm( ) − KHΔli � 0 (9)

Therefore, according to the skin-musculoskeletal model, by
combining the Equations 8, 9, the displacement of the facial
point defined in each single muscle system (outer eyebrow,
superior end of the nasolabial fold, and chin, as shown in Figure
4D) can be expressed as Equation 10:

Δli � k0 + k1u( ) l0 + l1u( )
KH + k0 + k1u( ) (10)

In single-muscle systems k0, k1, l0, and l1 are free parameters
that are optimized to fit the experimental data as described in
Section 2.6.4.

Figures 4B, C shows the structure of the skin-musculoskeletal
model for double-muscle systems, that is, for the mouth corner
muscle system, and the inner eyebrow muscle system. Here, we
develop the skin-musculoskeletal model for the mouth corner
system, but note that the resulting model is directly applicable to
the inner eyebrow system. Even though the displacement of facial

points in double-muscle systems is two-dimensional, here we
assume that in the facial expression tasks, the direction of the
displacement is highly biased in a single direction, allowing us to
describe the displacement of the point as a one-dimensional
quantity. Furthermore, the displacement of the facial point is
associated with a change in the length of each of the two muscles
in the system. For small displacement magnitudes, this relationship
can be assumed to be linear. In the mouth corner system with the
zygomaticus major and the depressor anguli oris muscles, this
relationship can be expressed as:

ΔlZ � λZΔlM
ΔlD � λDΔlM{ (11)

where ΔlZ and ΔlD are the changes in length of the zygomaticus
major and depressor anguli oris muscles, respectively, ΔlM is the
displacement of the mouth corner, andλZ and λD are linear
coefficients that depend on the geometry of the attachment of
muscle and skin to the facial point. The muscle forces FZ and
FD and the skin deformation force fM at the mouth corner are in
equilibrium, as Equation 12:

FZ + FD + fM � 0 (12)

The magnitude of the force exerted by the skin can be expressed
in terms of the magnitudes of the muscle forces as:

‖fM‖ � aZ‖FZ‖ + aD‖FD‖ (13)
where aZ and aD denote projection coefficients of FZ and FD onto
the direction of fM, which also depend on the geometry of the
attachment of muscle and skin to the facial point, but for small
displacements can be assumed to be constant. Inserting Equation 11
into Equations 6, 7, and the resulting expressions into Equation 13,

FIGURE 4
Skin-musculoskeletal models. (A) Single-muscle systems. A facial point is subject to Fm , the force exerted by musclem, and fi, the force exerted by
skin deformation at facial point i. Muscle force is modeled as a spring with variable stiffness, as a function of muscle activation um . Single muscle systems
include the outer frontalis, levator labii superioris alaeque nasi, and mentalis. (B) Double-muscle system: skin-musculoskeletal model of the mouth
corner. Themouth corner is subject to forces FZ and FD , generated by the zygomaticusmajor and depressor anguli oris muscles, respectively, and fM,
the force generated by the skin deformation ΔlM at the mouth corner. The neutral position of themouth corner is given by xM0, and its current position by
xM. (C)Doublemuscle system: skin-musculoskeletal model for the inner eyebrow. The inner eyebrow is subject to forces FI and FC , generated by the inner
frontalis and corrugator supercilii muscles, respectively, and fO , the force generated by the skin deformation ΔlO at the outer eyebrow. The neutral
position of the outer eyebrow is given by xO0, and its current position by xO . (D) Facial keypoints, as shown in Figure 2.
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the displacement ΔlM of the corner of the mouth becomes
Equation 14:

ΔlM � ∑i�Z,Dai k0i + k1iui( ) l0i + l1iui( )
KH +∑i�Z,Daiλi k0i + k1iui( ) (14)

Following a similar procedure, the displacement of the inner
eyebrow ΔlIE can be expressed as Equation 15:

ΔlIE � ∑i�IF,CSai k0i + k1iui( ) l0i + l1iui( )
KH +∑i�IF,CSaiλi k0i + k1iui( ) (15)

In double-muscle systems k0i, k1i, l0i, l1i, ai, and λi are free
parameters that are optimized to fit the experimental data as
described in Section 2.6.4.

2.6.2 Linear regression model
We used a multivariate linear regression model (LRM) to relate

the sEMG signals (or muscle activations) of all seven muscles to the
displacements of all five facial points in the experiment. The LRM
can be expressed as Equation 16:

ΔLLRM � WLRMU + LRM (16)
where ΔLLRM is a matrix of displacements of five facial points
estimated by LRM (shape: [5, T], T represents the number of
samples), WLRM is the weight matrix computed via linear
regression (shape: [5, 7]), U is a matrix of the sEMG signal from
all seven muscles in the experiment (shape: [7, T]), and lrm is a
matrix containing the residuals unaccounted by the linear
regression. The weights in WLRM are free parameters optimized
as described in Section 2.6.4.

2.6.3 Skin-musculoskeletal model with linear
regression model

The SMSM does not take into account the effects of the
displacement of facial points outside the single or double muscle
systems to estimate the displacement of a given facial point.
However, facial points may be connected to other facial points
through skin, and thus may be subject to forces other than those
considered in the single and double muscle systems. Here, we
addressed this issue by combining the SMSM and the LRM to
integrate their estimation capabilities. The skin-musculoskeletal
model with linear regression (SMSM-LRM) can be expressed as
Equation 17:

ΔL � WΔlSMSM +  (17)
where ΔL is the matrix of displacements of facial points estimated by
the SMSM-LRM (shape: [5, T]), W is a weight matrix computed by
linear regression (shape: [5,5]), ΔlSMSM is a matrix of facial point
displacements produced by the SMSM (shape: [5, T]) and ϵ
represents residuals unaccounted by the SMSM-LRM (shape:
[5, T]). The free parameters in the SMSM component of the
model and the weights in W are optimized to fit the
experimental data as described in Section 2.6.4.

2.6.4 Training the SMSM, LRM and
SMSM-LRM models

The free parameters in the SMSM, LRM, and SMSM-LRM
were determined through iterative optimization within a

supervised learning framework. We initialized a set of
parameters which were subsequently refined across
18,000 epochs using gradient descent, facilitated by the Adam
optimizer. The optimization process aimed to minimize the mean
squared error between the estimations of the models and the actual
data. The training data and test data sets were the same sets as
those defined for the facial expression recognition task with
downsampling. The training dataset was in the shape of
10 trials, seven muscles, 900 samples, and the testing dataset
was in the shape of two trials, seven muscles, 900 samples per
participant. We used 5-fold cross-validation to enhance the
model’s generalizability and prevent overfitting. The model with
the best performance across the five folds was selected for use on
the test dataset.

2.6.5 Evaluation methods
We evaluated the model’s performance using two standard

metrics: the coefficient of determination (R2) and the normalized
root-mean-square error (NRMSE) with respect to the difference in
maximum and minimum values in the data. We assessed
differences in the metrics associated with each model using
ANOVA tests. We used Tukey’s Honestly Significant Difference
(HSD) post hoc test to identify specific group disparities. We used
the stats module from the scipy package to perform the
statistical analysis.

3 Results

3.1 Muscle synergies allow low-dimensional
visualization of facial muscle control

The normalized sEMG signals and the displacement of the five
measured facial keypoints in a reordered trial of the facial
expression task of a representative participant are illustrated in
Figure 5. These reordered signals were employed to extract both
muscle synergies and relevant classification features for the
classification of facial expressions. To determine the optimal
number of muscle synergy modules, we computed the variance
accounted for (VAF) with the synergy module number ranging
from 1 to 7 per participant. For all participants, 3 synergies were
enough to account for 90% of the variability in the muscle
activation data (Figure 6A).

Figure 6B shows the muscle synergies and synergy activation
coefficients for a representative participant in one of the
reordered trials of the facial expression task. Synergy
1 primarily activated corrugator supercilii, levator labii
superioris alaeque nasi, and depressor anguli oris; synergy
2 involved significant activation in inner and outer frontalis,
depressor anguli oris, and mentalis; synergy 3 predominantly
activated zygomaticus major and depressor anguli oris. We
compared the extracted muscle synergies across all
participants using the cosine similarity metric (Rimini et al.,
2017; d’Avella and Bizzi, 2005). We found that the three extracted
synergies were similar across participants, especially synergy 2
(average cosine similarity; synergy 1: 0.75 (SD 0.16), synergy 2:
0.87 (SD 0.10), and synergy 3: 0.72 (SD 0.20). Synergy 1 was
predominantly activated during anger, disgust, and sadness
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expressions; synergy 2 was predominantly activated during fear,
sadness, surprise and disgust expressions; synergy 3 was
predominantly activated during disgust and happiness
expressions. Figure 6C shows clusters of synergy activation
coefficients in the three-dimensional synergy space for a
representative participant. Interestingly, the synergy activation
coefficients for the expressions of anger, surprise, and happiness
are predominantly clustered around a single dimension of the
synergy space for all participants. Anger is mainly associated with

synergy 1, surprise with synergy 2, and happiness with synergy 3.
The remaining expressions are associated mainly with
combinations of two or three dimensions in the synergy space.
For example, for participant 2, the expressions of disgust,
sadness, and fear are clustered in regions of the synergy space
spanning a combination of synergies 1, 2, and 3, synergies 1 and
2, and synergies 2 and 3, respectively. Results for the rest of the
participants are provided in the Supplementary Material
(Supplementary Figure S1).

FIGURE 5
Normalized sEMG signals and displacement of facial keypoints during the facial expression task for a representative participant (participant 2). (A)
Normalized sEMG signals of seven muscles during one reordered trial containing a single repetition of each facial expression. (B) Displacement of five
facial key points during one reordered trial containing a single repetition of each facial expression.

FIGURE 6
Muscle synergies of facial muscles during facial expressions. (A) VAF in the measured sEMG signals as a function of the number of synergy
components extracted across all participants. Three synergies were enough to account for at least 90% of the variance in all participants. (B) Extracted
synergy components for a representative participant (participant 2), and synergy activation coefficients for each synergy during a representative trial in the
facial expression task (participant 2, trial 2). (C) Clusters of synergy activation coefficients in the 3-dimensional synergy space across all trials
(participant 2). The shaded regions in the figure show the convex hulls containing themuscle synergy activations produced during each facial expression.
The convex hulls are computed in three-dimensional space from the points representing the synergy activations and reflect the range and shape of each
expression within the muscle synergy activation space. The convex hulls were calculated using the ConvexHull function from the scipy library.
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3.2 Performance of synergy-based
classification of facial expressions is good
enough compared to sEMG-based
classification

Figures 7A–D shows the results of the facial expression classifier
based on synergy activation coefficients and the classifier based on
sEMG signals. The synergy-based classifier achieved expression-
specific accuracies across all participants of 99.5% for the neutral
expression (vs. sEMG-based classifier: 99.5%), 98.5% for anger (vs.
99.5%), 97.3% for disgust (vs. 99.2%), 93.3% for fear (vs. 99.0%), 97.4%
for happiness (vs. 98.82%), 89.5% for sadness (vs. 97.4%), and 93.2%

for surprise (vs. 98.5%), as shown in the confusionmatrix (Figure 7A).
Furthermore, the synergy-based classifier achieved average accuracies
across all participants of 97.4% (vs. sEMG-based classifier: 99.2%) and
accuracy for each participant of 96.6%, 99.5%, 98.4%, 97.6%, 97.5%,
98.1%, 97.1%, 95.3%, 96.7% and 97.5% (Figure 7B). Additionally, both
classifiers maintain a high level of performance across all expressions,
with most precision, recall, and F1 scores exceeding 0.9 (Figure 7C).
Finally, the proximity of the ROC curve of each expression to the
upper left corner of the graph indicates a high true positive rate (TPR)
and a low false positive rate (FPR) (Figure 7D). Notably, all
expressions exhibit an area under the curve (AUC) value close to
1 for both classifiers.

FIGURE 7
Evaluation metrics for the facial expression recognition systems. (A) Confusion matrices across all participants of the synergy- and sEMG-based
classifiers. Each row and column represents the true labels and predicted labels, respectively. The intensity of the shade in each box is proportional to the
displayed accuracy. (B) Average classification accuracy across all facial expressions and participants for the synergy- and sEMG-based classifiers. Error
bars indicate the standard deviation in overall accuracy across all participants. Points represent the accuracy for individual participants. (C) Recall,
precision, and F1 score of each facial expression across all participants for the synergy- and sEMG-based classifiers. (D) ROC curves for each expression
for the synergy- and sEMG-based classifiers. The line representing the performance of a classifier with an Area Under the Curve (AUC) of 0.5 is not shown
due to the scale of the axes.
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3.3 SMSM-LRM has the best performance in
estimation of displacement of facial points

Figure 8 presents representative results on the test set
(participant 2) of the SMSM, LRM and SMSM-LRM models in
the estimation of the displacements of five facial points defined in
the experiment. We evaluated the performance of the three models
by computing the coefficient of determination (R2) and Normalized
Root Mean Square Error (NRMSE) (Figure 9) across participants.
Notably, the SMSM-LRM model demonstrated the highest
performance in predicting the displacements of all five facial
points across all participants, according to both R2 (77.02 (SD
2.45)) and NRMSE (0.0668 (SD 0.0051)), compared to the
SMSM (R2: 57.07 (SD 6.17), NRMSE: 0.0890 (SD 0.0068)) and
LRM (R2: 62.58 (SD 3.61), NRMSE: 0.0842 (SD 0.0049)) models. A
one-way ANOVA revealed that there was a statistically significant
difference in R2 scores between at least two models (F (2, 27) =
5.5699, p = 0.0094). Tukey’s HSD Test for multiple comparisons
found that the mean value of R2 scores was significantly different
between LRM and SMSM-LRM (p = 0.0242) and between SMSM
and SMSM-LRM (p = 0.0182). However, there was no statistically
significant difference between LRM and SMSM (p = 0.5715).
Similarly, a one-way ANOVA revealed that there was a
statistically significant difference in NRMSE between at least two
models (F (2, 27) = 4.2775, p = 0.0243). Tukey’s HSD Test for

multiple comparisons found that the mean value of NRMSE was
significantly different between LRM and SMSM-LRM (p = 0.0243)
and between SMSM-LRM and SMSM (p = 0.0120). However, there
was no statistically significant difference between LRM and SMSM
(p = 0.4542).

4 Discussion

In this study we defined two aims: 1. To establish a framework
for recognizing facial expressions based on muscle synergies of facial
muscles, and 2. To estimate the displacement of facial keypoints
from the sEMG signals of the facial muscles as a step towards
generating facial expressions in robotic systems. For the facial
expression recognition task, we employed non-negative matrix
factorization (NMF) to identify muscle synergies and their
synergy activation coefficients from the measured sEMG of seven
facial muscles, and used the synergy activation coefficients to train a
random forest classifier to recognize six different facial expressions.
For the facial expression generation task, we introduced the skin-
musculoskeletal model combined with linear regression (SMSM-
LRM) as a novel approach to estimate the displacements of five facial
keypoints: inner eyebrow, outer eyebrow, superior end of the
nasolabial fold, mouth corner, and chin, which we measured
using video-based object tracking software. The FER system

FIGURE 8
Estimation results of facial keypoints by SMSM, LRM, and SMSM-LRM (participant 2): the displacement of the inner eyebrow, the outer eyebrow, the
nose, the mouth corner, and the chin, respectively. The blue lines represented the measured displacements of five facial points calculated based on
DeepLabCut. The orange dashed, green dotted, and red lines represent the prediction results from the LRM, SMSM, and SMSM-LRM, respectively.

FIGURE 9
Comparisons of five-fold cross-validation results of all participants: (A) the average NRMSE of each model. (B) The average R2 of each model.
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based on muscle synergies had a high accuracy in classifying facial
expressions compared to existing methods, but a slightly lower
accuracy than using an sEMG-based classifier. We also found
that the proposed SMSM-LRM outperforms the SMSM and LRM
in estimating the displacement of the facial keypoints.

4.1 Muscle synergy-based facial recognition
system has good performance

Our facial expression recognition system based on muscle
synergies yielded enhanced performance for all six facial
expressions compared to previous research (Chen et al., 2015;
Cha et al., 2020; Kehri et al., 2019; Mithbavkar and Shah, 2021;
Gruebler and Suzuki, 2010). Notably, the recognition rates for the
expressions of fear (93.3% vs. 65.4% (Cha and Im, 2022)), sadness
(89.5% vs. 78.8% (Cha and Im, 2022)), surprise (93.7% vs. 88.9%)
(Chen et al., 2015) and anger (98.5% vs. 91.7% (Chen et al., 2015))
observed considerable improvements. The main reason for this
superior performance is likely that previous studies primarily
focused on sEMG signals collected around the eyes, whereas our
method expanded its scope to include sEMG signals collected
around the mouth. For instance, the depressor anguli oris
influences the motion of the mouth corner, which is useful to
discern expressions of fear and sadness, enhancing the
recognition accuracy of our system.

However, we found that a classifier based on sEMG from
individual muscles outperforms the classifier based on muscle
synergies (average accuracy: sEMG-based - 99.2% vs. muscle
synergy-based - 97.4%). This aligns with the finding that the
residuals E in the sEMG signals U that the identified muscle
synergies Ws cannot account for may contain task-relevant
information (Equation 1) (Barradas et al., 2020). However, the
difference in performance of the FER systems based on
individual muscles and muscle synergies is small, and the
performance of the muscle synergy-based system is considerably
better than previously developed systems. Therefore, the muscle
synergy-based FER system is good enough for this classification task.

Figure 6C and Supplementary Figure S1 show the contribution
of each identified muscle synergy to the execution of each facial
expression. Across all participants, the neutral expression is
associated to a null activation of all three synergies, as expected.
Interestingly, across all participants, synergies 1, 2, and 3 are each
predominantly related to only one facial expression: anger, surprise,
and happiness, respectively. On the other hand, the facial
expressions of disgust, fear, and sadness are associated with
combinations of synergies 1, 2, and 3. As shown in Figure 6C,
participant 2 showed clearly separate clusters of synergy activation
coefficients for each facial expression. However, for other
participants, the clusters of expressions of fear, happiness,
sadness, and surprise showed some overlap (Supplementary
Figure S1). This is especially true for participants 1, 8, 9 and 10,
resulting in lower recognition accuracy than for other participants
(Figure 7B). We also found instances of global misclassification of
facial expressions due to common synergies involved in the
execution of different expressions. Particularly, the accuracy for
fear, sadness, and surprise expressions did not exceed 95%. This may
be because the activation of synergy 2 for these emotions is similar,

given that synergy 2 predominantly activates the inner and outer
frontalis muscle, which belongs to action unit (AU) 1 in the facial
action coding system (FACS), and AU1 is known to be involved in
these facial expressions (fear, sadness, surprise) (Tables 1, 2 (Hager
et al., 2002).

Nevertheless, the impact of the misclassified instances described
above is not too large, as our facial expression recognition system
showed uniform high scores for precision, recall and F1-score
(Figure 7C). This indicates a balanced classification performance,
with no significant trade-off between precision and recall for any of
the expressions. Such consistent results underscore the robustness of
the classification model in recognizing and differentiating between
the different facial expressions. This conclusion is also supported by
the ROC curve and its area (AUC) (Figure 7D), which demonstrate
the model’s ability to achieve a high true positive rate with a very low
false positive rate, and a strong capability to distinguish between
facial expressions, with good potential for practical applications.

4.2 SMSM and LRM complement each other
to achieve higher quality estimations of
facial keypoint displacements

In predicting the displacement of facial points, the SMSM-LRM
method showed the most effective performance as measured by R2

and NRMSE metrics (Figure 9). On the other hand, in isolation, the
SMSM and LRM models showed indistinguishable R2 and NRMSE
scores, indicating no significant differences between SMSM and
LRM in their performance to estimate displacements of facial
keypoints. However, a closer examination of the estimations
produced by each model in isolation for individual participants
revealed notable distinctions (Figure 8; Supplementary Figure S2).
Specifically, SMSM showed difficulty in predicting the displacement
of facial points with substantial skin connectivity to other facial
points. Here, we used separate local SMSM models for each
considered facial point. However, skin and muscle forces in one
point may interact with other nearby points, which the SMSM
model does not account for. This is evident in the case of the disgust
expression across all participants, where SMSM consistently
deviated from the measured results in predicting the movement
of the outer eyebrow (Figure 8), as this point is relatively close to the
inner eyebrow. In contrast, LRM was more successful in estimating
displacements in these cases, as it establishes a multivariate relation
between sEMG signals and facial point displacements, albeit without

TABLE 1 Facial expressions and corresponding action units (AU) (Hager
et al., 2002).

Facial expression Action units (AU)

Happiness 6 + 12

Sadness 1 + 4 + 15

Surprise 1 + 2 + 5 + 26

Fear 1 + 2 + 4 + 5 + 7 + 20 + 26

Anger 4 + 5 + 7 + 23

Disgust 9 + 15 + 16
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considering muscle characteristics. However, LRM predictions
exhibited greater fluctuations than those from SMSM and
SMSM-LRM. For instance, the LRM estimations of displacement
of the inner and outer eyebrow were highly variable for expressions
producing large displacements (Figure 8). This may be because large
displacements are usually associated with larger sEMG signals,
which contain considerable signal-dependent noise (Harris and
Wolpert, 1998). Therefore, combining the SMSM and LRM
creates a connectivity map between facial points (obtained
through multivariate linear regression) informed by muscle and
skin mechanics (obtained through SMSM), improving over each
method applied in isolation. This approach is supported by results in
the field of computer graphics, where models of skin elasticity and
connectivity are crucial in achieving realistic and natural facial
expressions (Kim et al., 2020; Sifakis et al., 2005; Zhang et al.,
2001; Lee et al., 1995; Kähler et al., 2001).

4.3 Identified muscle synergies may provide
insights for generation of facial expressions

In its current form, the SMSM-LRM model is not directly
applicable to the facial expression generation task because it is a
forward model of the physics of facial motion. That is, it relates
muscle activations (sEMG signals) to the displacement of facial
keypoints. However, in the facial generation task, an inverse model
of the facial motion is needed: a mapping from desired
displacements of facial points (or desired facial expressions) to
muscle activations. Here, we notice that the results of the muscle
synergy analysis could be used in conjunction with the SMSM-LRM
model to build an actual facial expression generation system.

As mentioned above, the different facial expressions are
associated with clusters of specific combinations of muscle

synergies (Figure 6C). Therefore, it is possible to generate
trajectories in the synergy activation space from one expression
cluster to another. These trajectories in synergy space can be
mapped directly to muscle activations U by using Equation 1
and ignoring the residual term E. These muscle activations could
in turn be used as an input to the SMSM-LRM model to produce
trajectories for the defined facial keypoints. Therefore, the clusters
associated to the different facial expressions in the muscle synergy
activation space could act as the inverse model needed by the
SMSM-LRM to achieve a desired expression. Moreover, these
trajectories in synergy activation space could be used to create
transitions between different expressions and between different
intensities of a given expression, creating a continuum in the
space of facial expressions, as opposed to a discrete encoding of
predefined expressions.

Evidently, this approach is not exclusively achievable using the
extracted muscle synergies, as transitions between facial expressions
could also be defined in a space where the activation of each
individual muscle constitutes a different dimension. However,
using muscle synergies simplifies the visualization of these
transitions, and ensures that the transitions follow realistic
muscle coordination patterns, resulting in potentially more
natural transitions.

4.4 Limitations

Here, we have described an effective system to recognize facial
expressions and estimate displacements of facial points based on
sEMG measurements, muscle synergy analysis, and a skin-
musculoskeletal model enhanced with linear regression. However,
there remain some limitations in implementation, experimental and
application aspects that should be addressed in future work. In the

TABLE 2 Action units (AU) and corresponding muscles (Hager et al., 2002).

AU number Description Muscle

1 Inner Brow raiser Frontalis* (pars medialis)

2 Outer brow raiser Frontalis* (pars lateralis)

4 Brow lowerer Depressor Glabellae, Depressor Supercilli, Corrugator Supercilli*

5 Upper lid raiser Levator Palpebrae Superioris

6 Cheek raiser Orbicularis Oculi (pars orbitalis)

7 Lid tightener Orbicularis Oculi (pars palpebralis)

9 Nose wrinkler Levator Labii Superioris Alaeque Nasi*

12 Lip corner puller Zygomatic Major*

15 Lip corner depressor Depressor Anguli Oris (Triangularis)

16 Lower lip depressor Depressor Labii Inferioris

17 Chin raiser Mentalis*

20 Lip stretcher Risorius

23 Lip tightener Orbicularis Oris

26 Jaw drop Masseter, Temporal and Internal Pterygoid relaxed

*represents muscle measured in our study.
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implementation aspect, the accuracy of facial point displacement
measurements needs to be quantitatively verified. We measured the
displacement of facial points with a 2D camera using object tracking
software. Tracking of the position of objects using vision systems is
prone to measurement errors due to changes in the pose of the
objects. Methods to alleviate this problem have been addressed in the
tracking of facial points by using linear transformations to align the
measured points given the coordinates of fixed landmarks (Wu et al.,
2021). However, in our experimental setup, electrodes for the
measurement of sEMG occluded large portions of the face,
making it difficult to stably detect facial landmarks using
established algorithms. For this reason, we trained a custom
algorithm using DeepLabCut to track facial points that we
physically marked using stickers on participants’ faces. We
manually labeled a subset of the captured images based on
stickers, and used this labeled set to train the DeepLabCut
algorithm to track the facial points in unlabeled images. This
makes it difficult to evaluate the error in our displacement
measurements, as we do not have a ground truth for the
predictions obtained by DeepLabCut. However, visual inspection
of the tracked facial points in the unlabeled images suggests that the
tracking performance is adequate.

An additional limitation regarding implementation aspects is
that we only measured sEMG frommuscles without measuring their
contralateral counterparts. This prevents analyzing more complex
facial expressions that may be asymmetric, and may reveal more
complex patterns of coordination across muscles. The main obstacle
for this problem is the number of electrodes that can be placed on
the face without obstructing the placement of other electrodes. In
our case, the upper limit in the number of electrodes was close to 7.
Therefore, analysis of other types of expressions would require
removing electrodes from muscles that may provide valuable
information. This may be alleviated by future miniaturization of
hardware, or use of intramuscular EMG, but this has obvious
disadvantages for participant comfort during the execution of
facial expressions.

In the experimental aspect, the inter-subject variability in sEMG
measurements revealed some limitations in the muscle synergy
analysis. The similarity of muscle synergies across all participants
suggests a mostly consistent pattern of muscle activation during the
six facial expressions (Figure 6B), which correlates with our
experimental design based on FACS. However, the structure of
synergy 3 was somewhat variable across all participants. These
results may be attributable to at least 3 different factors:
individual differences in facial structure across participants,
differences in the execution of the task across participants, and
inconsistency across participants in the measured sEMG caused by
cross-talk (Ekman and Rosenberg, 1997). Furthermore, participants
provided feedback that some of the facial expressions were similar
and challenging to differentiate, making it easy to confuse them
during a single trial. They noted that certain expressions were
difficult to perform and were not commonly used in their regular
emotional expressions, which could result in different activation of
specific muscles. This observation aligns with the findings that the
facial expressions used to convey emotions in non-photographic
scenarios differ from the classic expressions outlined in the FACS
(Sato et al., 2019). These variations in muscle activation and
expression habits could be contributing factors to the observed

differences in muscle synergies among participants. However,
these differences do not seem to severely affect performance in
the FER task.

Furthermore, we acknowledge a limitation regarding the
reliance on a single operator for muscle palpation, electrode
placement, and keypoints identification, without external
validation. While the operator underwent extensive training,
operator-dependent bias cannot be completely eliminated. Future
work should incorporate cross-operator validation or automated
placement systems to further enhance the reproducibility and
consistency of the experimental protocol.

In the context of muscle fatigue, although participants were
given rest periods during each trial and experiment to minimize the
risk of fatigue, no quantitative measures were employed to monitor
or evaluate the occurrence of muscle fatigue. Despite the potential
influence of muscle fatigue, our results demonstrate high
performance in both recognition and estimation tasks. Future
work should incorporate methods to quantitatively assess muscle
fatigue, particularly to explore its impact on outcomes in longer
experiments and real-world application scenarios.

In the application aspect, the proposed SMSM-LRM model
focused on five facial keypoints, which is significantly fewer than
the number typically used in facial landmarks detection tasks.
However, the proposed model is able to handle the estimation of
additional facial keypoint displacements by combining the
musculoskeletal model estimations with the linear regression
estimations, which allows us to bypass the physical modeling of
point-to-point skin interactions. For instance, while the inner and
outer points of the eyebrow are influenced by common muscles,
their direct interactions are limited. By incorporating the LRM, we
can effectively model these types of interrelationships, thereby
improving the accuracy of predictions for additional keypoints.
We recognize the benefits of including more keypoints and are
exploring advances that may allow us to expand our model in future
studies. Additionally, we plan to augment the dynamics of the
proposed model by employing dynamic models (Chen et al.,
2024; Xu et al., 2024), focusing on the transition duration
between different facial expressions in our future research.

Finally, regarding the application aspect, the system we propose
here is not currently a feasible alternative to vision-based FER. As
mentioned above, the placement of the sEMG electrodes makes it
difficult to integrate our proposed system into practical applications,
especially those involving a direct interaction with a robotic agent.
Other studies have explored attaching sEMG sensors to virtual
reality (VR) headsets, which could be useful for facial expression
generation in VR environments to bypass the use of real-time
camera capture, but the placement of the electrodes is limited to
the area of the face that the headset covers (Wu et al., 2021).
Therefore, new headset designs and further work into the
miniaturization of sEMG electrodes could increase the
applicability of our system in VR.

5 Conclusion

This study presents a framework for facial expression
recognition and generation using facial sEMG signals in the
realm of Human-Robot Interaction (HRI). We used muscle
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synergy analysis to accurately recognize facial expressions and
developed a skin-musculoskeletal model with linear regression
(SMSM-LRM) to predict the displacement of facial keypoints.
We achieved significant advancement in performance in a facial
expression recognition task based on sEMG signals and muscle
synergy activations. The extracted muscle synergies offer a more
detailed understanding of the coordination of muscles during the
execution of facial expressions. Additionally, our proposed SMSM-
LRM shows high fidelity in estimating facial point displacements,
showing potential as a useful tool in the field of facial expression
generation. Specifically, the relation between muscle activity and
facial motions extracted by our model could create the basis to study
relationships between muscle synergies and the coordinated motion
of facial keypoints. This could be applied to develop a library of
controllers for facial actuators in expressive robots that produce
more human-like facial motions. By combining muscle synergy
analysis and skin-musculoskeletal dynamics, we provide a new
perspective in understanding and replicating human facial
expressions, paving the way for more expressive humanoid
robots, potentially enhancing human-robot interactions.
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