
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Bioeng. Biotechnol.
Sec. Biosensors and Biomolecular Electronics
Volume 13 - 2025 | doi: 10.3389/fbioe.2025.1487020
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Convolutional neural networks are widely used in gesture recognition research, which employs surface electromyography. However, when processing surface electromyography data, current deep learning models still face challenges, such as insufficient effective feature extraction, poor performance in multi-gesture recognition, and low accuracy in recognizing sparse surface electromyography. To address these issues, this study proposed a multi-stream adaptive convolutional neural networks with residual modules (MSACNN-RM) for surface electromyography gesture recognition, which integrates multiple streams of convolutional neural networks , adaptive convolutional neural networks , and residual modules to enhance the model's feature extraction and learning capabilities. This improves the model's ability to extract and understand complex data patterns. The experimental results demonstrated that the model achieved recognition accuracies of 98.24%, 93.52%, and 92.27% respectively on the Ninapro DB1, Ninapro DB2, and Ninapro DB4 datasets. Compared with other deep learning models, MSACNN-RM achieves higher accuracy compared to existing models.
Keywords: sEMG, gesture recognition, Multi-Stream Convolutional Neural Network, Residual Modules, Adaptive Convolutional Neural Networks
Received: 27 Aug 2024; Accepted: 06 Mar 2025.
Copyright: © 2025 XIA, Qiu, Zhang and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Dawei Qiu, Shandong University of Traditional Chinese Medicine, Jinan, China
Jing Liu, Shandong University of Traditional Chinese Medicine, Jinan, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.