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Nitrate, a major groundwater pollutant from anthropogenic activities, poses
serious health risks when present in drinking water. Denitrification using bio-
electrochemical reactors (BER) offers an innovative technology, eco-friendly
solution for nitrate removal from groundwater. BER use electroactive bacteria
to reduce inorganic compounds like nitrate and bicarbonate by transferring
electrons directly from the cathode. In our work, two batch BER were
implemented at 1V and 2V, using anaerobic digestate from a full-scale
wastewater treatment plant as inoculum. Nitrate, nitrite, sulfate, total
ammoniacal nitrogen, and 16S rRNA analysis of bacterial community, were
monitored during BER operation. The results showed effective nitrate
removal in all BERs, with denitrification rate at 1V and 2V higher than the
Control system, where endogenous respiration drove the process. At 1V,
complete nitrate conversion to N2 occurred in 4 days, while at 2V, it took
14 days. The slower rate at 2V was likely due to O2 production from water
electrolysis, which competed with nitrate as final electron acceptor. Bacterial
community analysis confirmed the electroactive bacteria selection like the
genus Desulfosporosinus and Leptolinea, confirming electrons transfer
without an electroactive biofilm. Besides, Hydrogenophaga was enhanced
at 2V likely due to electrolytically produced H2. Sulfate was not reduced, and
total ammoniacal nitrogen remained constant indicating no dissimilatory
nitrite reduction of ammonia. These results provide a significant contribution
to the scaling up of electro-assisted autotrophic denitrification and its
application in groundwater remediation, utilizing a simple reactor configuration-
a single-chamber, membrane-free design- and a conventional power source
instead of a potentiostat.
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1 Introduction

Groundwater is an important fresh water source in the world,
supplying about 50% of the water used for domestic purposes and
about 25% of all water used for irrigation (UNESCO - World Water
Assessment Programme, 2022). However, groundwater quality can
be compromised due to diverse anthropogenic activities. For
instance, agricultural activities can contaminate groundwater with
nitrates (NO3

−), hampering the ability of natural systems to
decontaminate themselves (Rezvani et al., 2019; Kurwadkar et al.,
2020). Moreover, frequent human consumption of water containing
nitrates can be linked to serious health issues including fifteen forms
of cancer and two types of birth abnormalities (Alizadeh et al., 2024).
In this regard, theWorld Health Organization (WHO) recommends
a maximum nitrate concentration of 50 mg/L in drinking water.
Nonetheless, recent evidence suggests that this limit may be too
high, and it may increase the risk of suffering prostate and colon
cancer, as well as congenital diseases (Schullehner et al., 2018;
Damania et al., 2019; Donat-Vargas et al., 2023). For these
reasons, removing nitrate from groundwater is critical to ensure
a safe drinking water supply for human consumption.

Themost used technologies to remove nitrate from groundwater
are reverse osmosis and ion exchange resins (Jensen et al., 2014;
Abascal et al., 2022). However, physical nitrate removal methods
generate streams with nitrate levels up to 10 times more
concentrated than in the influent (Belkacem et al., 2007; Archna
Sharma and Sobti, 2012; Scholes et al., 2021), which need further
purification. In this context, technological interventions to return
nitrogen to the geological cycle in an environmentally friendly way
are urgently required.

Emerging technologies such as autotrophic denitrification using
bioelectrochemical reactors (BER) have arisen as a promising
alternative to remove nitrate from groundwater. These
technologies can improve groundwater’s quality reaching levels
that can be used to meet human consumption standards. During
autotrophic denitrification using BER, nitrate is reduced using an
electrical current as the sole electron source, and inorganic carbon as
a carbon source (Ceballos-Escalera et al., 2024). Among the
advantages of using BER are the absence of chemicals addition,
no brine generation, and potentially competitive prices compared
with similar technologies (Twomey et al., 2010; Cecconet
et al., 2018).

During the BER process, nitrate reduction depends on the
voltage applied, as well as the interaction between the
denitrifying bacterial community with the polarized electrodes
(Kondaveeti et al., 2014; Ortega-Martínez et al., 2024).
Consequently, a specific electroactive bacterial community is
needed that can harvest electrons from the electrode. Few
bacteria are known that can directly utilise electrons from a
cathode, as they need specific pathways for extracellular electron
transfer (EET) and are commonly identified by growing as a biofilm
on the polarised electrode surface (Moscoviz et al., 2016;
Lovley, 2017).

EET pathways have been well described in the bacterial genus
Geobacter and Shewanella oneidensis (Moscoviz et al., 2016; Lovley,
2017), but new research has revealed the ability of other bacteria
such as Lactiplantibacillus plantarum andClostridium pasteurianum
to harvest electrons from a polarized cathode by mechanisms that

are still being further elucidated (Choi et al., 2014; Tejedor-Sanz
et al., 2023). Various metabolic pathways are now known to be
conducted using electrons directly from the cathode, combined with
the reduction of sulfate, nitrate, iron, and CO2, which can be carried
out by microorganisms from different archaeal and bacterial phyla
such as Euryarchaeota, Actinobacteria, Firmicutes and
Proteobacteria (deCamposRodrigues and Rosenbaum, 2014;
Logan et al., 2019).

In full-scale applications, nitrate will probably not be the sole
electron acceptor that the microorganisms can use to harvest energy.
Commonly nitrate is accompanied by other potentially reduceable
species like sulfates. Sulfate in groundwater originates from different
sources, such as volcanoes, oxidation of igneous sulfides and organic
matter, fertilizers, and detergents (Clark and Fritz, 2013; Jorquera
et al., 2015; Novak et al., 2021). During autotrophic denitrification,
sulfate and nitrate in groundwater compete as the final electron
acceptor during cell growth. However, this competition is
determined by the thermodynamics of the metabolic reactions
involved. Equation 1 and Equation 2 show the catabolic
reduction reaction of nitrate and sulfate under standard
conditions, respectively (Dolfing and Hubert, 2017). As can be
seen from these equations, in almost all cases bacteria will
preferentially reduce nitrate over sulfate, as they can harvest
more energy per electron of each molecule (more negative ΔG0′).
However, thermodynamic analysis of catabolic reactions does not
determine whether bacteria have the necessary biochemical
machinery to conduct these reactions or the rate at which they
occur. These are determined by the species in the bacterial
community and the environmental conditions under which the
biochemical conversions are conducted.

1
5
NO-3 +

6
5
H+ + e- ↔ 1

10
N2 + 3

5
H2O ΔG0′ � -112.1

kJ
e-

(1)
1
8
SO2-

4 + 9
8
H+ + e- ↔ 1

8
HS- + 1

2
H2O ΔG0′ � -19

kJ
e-

(2)

This paper aims to evaluate the bacterial community dynamics
during nitrate reduction of a sulfate-rich synthetic groundwater in a
single-chamber BER. The working potential differences were set at
1V and 2V, to provide the bacteria with two possible denitrification
mechanisms depending on the electron source: (i) H2 produced by
electrolysis of water at 2V, and (ii) direct electron consumption at
1V. The novelty of our research, compared to previous similar
efforts, is the use of a power supply instead of a potentiostat to
establish the working potential differences, as well as the use of a
membrane-free BER. This allows progress towards the BER
application on an industrial scale through the implementation of
a simpler system.

2 Materials and methods

2.1 BER configuration and start-up

BER comprised two batch, completely stirred reactors with a
working volume of 600 mL, equipped with 2 carbon plate electrodes
fixed at 6 cm, and a surface of 10 cm2. Two electric potential
differences were tested and compared: 1V and 2V, which were
set using a power supply model ODP3033 (OWONTechnology Inc.,
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China). The reactors were continuously stirred at 300 RPM using a
magnetic stirrer and operated at room temperature without
pH control. The reactors’ headspace were flushed with dinitrogen
for 5 min to remove oxygen and promote anoxic conditions, and
sealed to prevent air intrusion. A third reactor without electrodes
was used as a control (named Control) and all experiments were
performed in duplicate. In addition, abiotic controls without micro-
organisms were carried out at 1V and 2V.

2.2 Inoculum and groundwater medium

Digestate from the wastewater treatment plant (WWTP) La
Farfana (Maipú, Chile) was used as inoculum. The WWTP contains
eight 15,000 m3 completely stirred anaerobic reactors which digest a
mix of primary and secondary sludge, with a hydraulic retention
time of 16–19 days. Once sampled, the inoculumwas resuspended in
a synthetic medium to reach a concentration of 1.5 gVSS/L (volatile
suspended solids per litre) in each BER and Control.

A synthetic medium resembling groundwater was used to
conduct the electrochemical reactions which aimed to induce
denitrification. The synthetic medium was designed to resemble
a polluted groundwater well in Chile, according to information
published by the General Water Directorate (Dirección General de
Aguas, in Spanish) (Villablanca Espinoza, 2016). The culture
medium comprised nitrate 37.6 ± 1.2 mg NO3

−-N/L (166.5 ±
5.2 mg NO3

−/L) and the following compounds in mg/L:
528 NaHCO3, 465 MgSO4·7H2O, 282 CaCl2 and 249 Na2SO4.
The final measured conductivity of the medium reached around
3,500 μS/cm.

2.3 Analytical methods

Homogenous bulk samples were taken from all reactors daily until
nitrate and nitrite concentrations were stable. Then, these were
centrifuged at 12,000 rcf for 15 min for analysis. The centrifugation
pellets were stored at −20°C to further extract DNA (See Section 2.4),
and the supernatant was filtered under 0.22 µm using syringe filters
model FN2522 (Zhejiang Aijiren Technology, Inc., China) to obtain the
soluble fraction. Concentrations of nitrate, nitrite and sulfate were
monitored using an ion chromatograph model 930 Compact IC
(Metrohm, Switzerland), coupled with a conductivity detector using
a Metrosep A Supp 5–150/2.0 column (Metrohm, Switzerland). To
ensure the ionization of the targeted analytes a solution of 1mmol/L and
3.2 mmol/L of NaHCO3 and Na2CO3 respectively, were used as mobile
phase, at a flow rate of 0.7 mL/min. Total ammoniacal nitrogen (TAN)
was measured using the Hach kit nitrogen, ammonia reagent set (Hach,
United States) using a portable colorimeter DR 900 from the same
brand. Total suspended solids were measured according to Standard
Methods protocols (Rice et al., 2017), using a glass fibre filter with a
nominal pore size of 0.4 µm (MACHEREY-NAGEL, Germany).

2.4 Bacterial community analysis

DNA samples were taken from the inoculum (Inoc) and from
reactors during denitrification time at 1V (1V1-d1, 1V1-d2, 1V2-

d1 and 1V2-d2), 2V (2V-d6, 2V-d7 and 2V-d14) and Control
(C-d9 and C-d15). The samples were selected according to the
denitrification dynamics observed under the conditions studied.
DNA was extracted using the DNeasy PowerSoil Pro Kit
(Qiagen, Germany) according to the manufacturer’s
instructions. Quality and quantity of the extracted DNA were
analysed using a Take3 microvolume plate (BioTek
Instruments, United States) and measured with a
spectrophotometer model Epoch (BioTek Instruments,
United States) and a fluorometer model Fluo-100 (Hangzhou
Allsheng Instruments Co., Ltd., China), respectively. The
V4 variable region of the 16S rRNA gene was amplified using
515F/806R primers in a single-step 30-cycles PCR reaction,
utilizing a HotStarTaq Plus Master Mix Kit (Qiagen,
United States). The PCR conditions are described as follows:
95°C for 5 min, followed by 30 cycles of 95°C for 30 s, 53°C for
40 s and 72°C for 1 min, after which a final elongation step at
72°C for 10 min was performed. To confirm the success of the
amplification, the PCR products were analysed in 2% agarose gel
and the relative intensity of the bands formed was determined.
The amplified samples were multiplexed using unique dual
indices and were pooled together in equal proportions, based
on their molecular weight and DNA concentrations. Pooled
samples were purified using calibrated AMPure XP beads
(Beckman Coulter, Inc., United States). The sequencing was
performed at Mr DNA laboratory (www.mrdnalab.com,
Shallowater, TX, United States) in a MiSeq (Illumina Inc.,
United States) following the manufacturer’s guidelines.
Sequenced data were processed using Mr DNA lab analysis
pipeline (MR DNA, Shallowater, TX, United States). Clustering
of the remaining sequences into OTUs was executed based on a
divergence threshold of 3%. For taxonomic classification of the
final OTUs, a curated database sourced from GreenGenes,
RDPII, and NCBI was employed, utilizing BLASTn (DeSantis
et al., 2006) (http://rdp.cme.msu.edu; www.ncbi.nlm.nih.gov).
Sequence data were uploaded into NCBI GenBank database
submission number PP819758–PP820317.

2.5 Data analysis and statistical tools

Shannon diversity index (H) was calculated to compare the
variation in the selected communities according to the applied
voltage. In addition, principal component analysis (PCA) was
performed from variance-covariance matrix based on genus
distribution of the bacterial communities during the
bioelectrochemical processes. Indicator species analysis
(IndVar) was also calculated to determine the characteristic
genera in the bacterial communities selected under the
conditions studied. In addition, a similarity percentage test
(SIMPER) was performed to determine which genera of the
bacterial community contributed to the differences between
the conditions studied. Besides, SIMPER was calculated using
Bray-Curtis distance, in which only genera with a contribution to
dissimilarity higher than 1.0% are shown. All statistical analyses
were conducted using the PAST (PAleontological STatistics)
software v4.16c (website https://www.nhm.uio.no/english/
research/resources/past/) (Hammer and Harper, 2001).
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3 Results

3.1 Reactor performance during
nitrate removal

Figure 1A shows the nitrate reduction during the operation time
of the two BER during autotrophic denitrification in nitrate and
sulfate-rich synthetic groundwater. Nitrate reduction was observed in
the first 48 h and 14 days of operation when 1V and 2V were applied,
respectively. The nitrate removal rate of 1V was considerably higher
than 2V, averaging 18.8 ± 0.6mgNO3

−-N/Ld (11.28 ± 0.72 gNO3
−-N/

m2·d) compared to 2.7 ± 0.1 mg NO3
−-N/Ld (1.62 ± 0.06 g NO3

−-N/
m2·d), respectively. During the Control experiments, i.e., without
electrodes, between 13.8% ± 2.0% and 43.6% ± 0.9% of nitrate was
reduced during the experiment. In addition, no chemical reduction of
nitrate was detected in the abiotic controls. In addition, no
electrochemical reduction of nitrate was detected in the abiotic
controls at 1V and 2V (data available in the SupplementaryMaterials).

Figure 1B shows that the maximum nitrite concentrations
reached 15.3 ± 3.8 mg NO2

−-N/L at 1V, 13.9 ± 4.7 mg NO2
−-N/

L at 2V and 4.6 ± 0.9 mg NO2
−-N/L in the Control in the days 1,

4 and 5, respectively. In all cases, nitrite was rapidly converted and
reached zero at the end of the operation.

The pH in the reactors was monitored during the whole operation
time and varied from 8.2 ± 0.2 at day 0–7.6 ± 0.2 at day 14 in all the
studied cases. Sulfate was also monitored, and despite the high sulfate
content in the synthetic groundwater, no sulfate reduction was observed
in any reactor (data available in the Supplementary Materials). TAN
production was also not detected in any of the studied reactors. As for
the electro-assisted operation of the experiments, a current flow smaller
than the detection threshold of 1 mA was observed.

3.2 Bacterial community structure

DNA samples were taken from the inoculum (Inoc) and from
reactors during denitrification time at 1V (1V1-d1, 1V1-d2, 1V2-d1 and
1V2-d2), 2V (2V-d6, 2V-d7 and 2V-d14) and Control (C-d9 and

C-d15). A total of 890 operational taxonomic units (OTUs) were
found after MiSeq sequencing in all samples. The Shannon diversity
index (H) in the inoculum reached 3.27, and a strong decrease in
diversity of 21% ± 4% (H = 2.59 ± 0.12) was observed when 1V was
applied. In contrast, when 2V was applied, diversity increased from day
6 (H = 3.99) to day 14 (H = 4.32) between 21.9% and 32.1%,
respectively. While in the Control, a slight decrease in diversity of
5.9% was observed on day 9 (H = 3.08), but by day 15 (H = 3.48) it
increased by 6.3% (more details in the Supplementary Materials).

Figure 2 shows a heatmap including the relative abundance of
bacterial genera in each bacterial community, according to the

FIGURE 1
Nitrate (A) and nitrite (B) concentrations during the conducted electro-assisted autotrophic denitrification experiments. The plotted values
represent the mean of the duplicates, and the gray-shaded area the standard deviation among the data.

FIGURE 2
Heatmap of the bacterial community structure based on relative
abundance at genus taxonomic level according to the
condition studied.
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condition studied. The bacterial community present in Inoc was
dominated by the genus Pseudomonas (29.9%), Desulfosporosinus
(22.1%), Leptolinea (9.6%) and Mariniphaga (4.8%). When 1V was
applied, three genera were significantly enriched with respect to Inoc:
Desulfosporosinus, Saccharicrinis and Caloramator representing 48.4% ±
4.2%, 11.0% ± 3.1% and 5.3% ± 0.7% of the bacterial community,
respectively. Additionally, the genus Pseudomonas decreased its
relevance in the bacterial community, reaching 16.6% ± 0.3% during
the first 24 h of operation and to 6.6% ± 4.3% when at 48 h of operation.
When 2Vwas applied, substantial differences in the bacterial community
between days 6 and 7 of operation were not observed, and on average,
the dominant genera were Desulfosporosinus (17.0% ± 4.6%),
Pseudomonas (12.2% ± 1.5%), Rheinheimera (12.0% ± 2.1%),
Leptolinea (11.0% ± 1.1%), Sterolibacterium (4.8% ± 0.5%) and
Mariniphaga (4.1% ± 0.03%). However, on day 14 at the end of the
operation, the bacterial community was dominated by Leptolinea
(17.4%), Rheinheimera (10.0%), Hydrogenophaga (7.8%),
Pseudomonas (5.6%) and Desulfosporosinus (4.8%). When it comes to
the control samples, at 9 days of operation, the bacterial community was
dominated by Acidovorax (42.1%), Petrimonas (13.8%),
Stenotrophomonas (7.0%), Leptolinea (5.1%) and Elizabethkingia
(4.6%). However, on day 15 at the end of the operation, the bacterial
community was dominated by Stenotrophomonas (20.3%),
Pseudoxanthomonas (19.0%), Petrimonas (11.9%), Thermomonas
(9.5%),Acidovorax (5.1%), Leptolinea (5.0%) andElizabethkingia (4.2%).

3.3 Relationship between the voltage
applied and bacterial community selection

Figure 3 shows a biplot of the PCA performed based on genus
distribution of the bacterial communities during the denitrification

process. About 85% of the variance was explained by the two first
components, evidencing high reliability in this data analysis.
PCA allows better visualization of the bacterial community
dynamics from the Inoc to operation at different applied
voltages, revealing characteristic bacterial genus groups for
each condition. Thus, the genera Desulfosporosinus,
Saccharicrinis and Caloramator are related to the 1V
operation, while Rheinheimera, Leptolinea, Hydrogenophaga
and Sterolibacterium are related to 2V operation. The Control
communities, although located in the same quadrant, show
greater dispersion along y-axis, evidencing a variation of the
bacterial community between days 9 and 15. Despite these
differences, the genera Acidovorax, Stenotrophomonas and
Pseudoxanthomonas are mainly correlated with the Control.
Since PC1 explains 64.5% of the total variability in the data,
the separation along the x-axis in the PCA is more relevant than
along the y-axis. In this context, the Control is positioned on the
far right, while the 1V operation is on the far left, reflecting the
greater distance between the two. The 2V operation, on the other
hand, appears close to the Inoc, indicating that it generated
minimal changes in the bacterial community composition with
respect to the Inoc, while the 1V treatment produced the most
pronounced modifications on the community, positioning that
community in a direction opposite to that of the Control.

An Indicator Species Analysis (IndVar) was performed to
determine the characteristic genera in the bacterial communities
selected under conditions studied, as shown in Table 1. For this
analysis, the samples were grouped as 1V, 2V, Control and Inoc. The
characteristic genera of the selected community when 1V was
applied were Desulfosporosinus, Saccharicrinis and Caloramator
with an indicator value of 58.0% (p-value = 0.0048), 90.3%
(p-value = 0.0022) and 68.4% (p-value = 0.0044), respectively.

FIGURE 3
PCA Biplot based on bacterial community distribution at genus level according to the conditions studied.
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For the selected bacterial community when 2V was applied, it is
observed that Rheinheimera, Hydrogenophaga and Sterolibacterium,
are characteristic of this condition with an indicator value of 80.6%
(p-value = 0.0073), 76.8% (p-value = 0.046) and 99.2% (p-value =
0.0057), respectively. In the Control reactor, a higher number of
species with a significant indicator value were found, including
Acidovorax (98.9%, p-value = 0.013), Stenotrophomonas (97.4%,
p-value = 0.013), Pseudoxanthomonas (98.3%, p-value = 0.013),
Petrimonas (80.8%, p-value = 0.0072), Thermomonas (69.5%,
p-value = 0.046) and Elizabethkingia (100%, p-value = 0.021).
While in Inoc, the genus Pseudomonas was the only one
significantly characteristic with an indicator value of 56.9%
(p-value = 0.0018).

In addition to the formerly described analysis, a SIMPER test
was performed to better understand which bacterial genera are
significantly responsible for the differences observed between the
conditions studied (Table 2). A comparison between the electro-
assisted reactors (1V + 2V) and Control revealed a dissimilarity of
87.5%, primarily attributed to Desulfosporosinus (19%),
Acidovorax (13.5%), Stenotrophomonas (7.7%), Petrimonas
(6.7%), Pseudoxanthomonas (5.8%) and Pseudomonas (5.7%).
Among these, Desulfosporosinus and Pseudomonas were more
abundant in the electro-assisted reactors, while Acidovorax,
Stenotrophomonas, Petrimonas and Pseudoxanthomonas were
more abundant in the Control. Comparing between electro-
assisted reactors (1V vs 2V), a dissimilarity of 71.5% was
observed, mainly by the abundance of Desulfosporosinus
(24.9%), Leptolinea (9.2%), Rheinheimera (7.9%), Saccharicrinis
(7.4%) and Pseudomonas (4.0%). Desulfosporosinus, Saccharicrinis
and Pseudomonas were more abundant in 1V reactors, while
Leptolinea and Rheinheimera in 2V reactors.

4 Discussion

4.1 Electro-assisted autotrophic
denitrification performances

When working with BER, researchers generally seek to promote
the formation of an electroactive biofilm during 2–3 weeks of
acclimation, which ends when a significant increase in electron
flow is observed (Patil et al., 2010; Mier et al., 2021; Hackbarth et al.,
2023). Interestingly, in some systems working in mode “Electro-
fermentation” there is no electroactive biofilm formation. In these
cases, the electron fluxes are very small, in the order of µA, but
significant changes in microbial communities and fermentation
products are observed (Toledo-Alarcón et al., 2019; 2021;
Cardeña et al., 2024). Our results show an increase of the

TABLE 1 IndVar based on bacterial community distribution at genus level
and grouped according to voltage applied. Statistical significance was
assessed considering a p-value ≤ 0.05 (*) and ≤0.01 (**).

Genus 1V 2V C Inoc

Desulfosporosinus 58.0** 15.5 0.1 26.5

Acidovorax 0.2 0.5 98.9* 0.3

Pseudomonas 22.1 19.0 2.0 56.9**

Stenotrophomonas 0.2 1.9 97.4* 0.4

Pseudoxanthomonas 0.1 1.5 98.3* 0.2

Leptolinea 0.2 47.3 18.2 34.4

Saccharicrinis 90.3** 4.3 0.5 4.9

Petrimonas 5.8 8.4 80.8** 5.1

Rheinheimera 0.1 80.6** 0.0 19.3

Thermomonas 0.4 25.3 69.5* 4.7

Hydrogenophaga 0.0 76.8* 23.1 0.0

Caloramator 68.4** 8.4 0.2 22.9

Sterolibacterium 0.0 99.2** 0.8 0.0

Mariniphaga 0.3 40.4 7.6 51.8

Elizabethkingia 0.0 0.0 100* 0.0

TABLE 2 SIMPER analysis performed to compare the genus bacterial
composition of electro-assisted reactors.

Genus 1V and 2V (%) (1V+2V) and control (%)

Dissimilarity
Contriba,b

Total Dissimilarity
Contriba,b

Totalc

Desulfosporosinus 24.9 24.9 19.0 19.0

Acidovorax 0.1 24.9 13.5 32.5

Leptolinea 9.2 34.1 3.7 36.2

Rheinheimera 7.9 42.0 2.8 39.0

Stenotrophomonas 0.2 42.2 7.7 46.7

Saccharicrinis 7.4 49.6 3.6 50.3

Petrimonas 0.3 49.9 6.7 57.1

Pseudoxanthomonas 0.1 50.0 5.8 62.9

Pseudomonas 4.0 54.0 5.7 68.6

Caloramator 3.2 57.2 1.9 70.4

Thermomonas 1.5 58.7 3.0 73.4

Mariniphaga 2.6 61.4 1.0 74.4

Elizabethkingia 0.0 61.4 2.5 76.9

Sterolibacterium 2.5 63.8 0.9 77.8

Hydrogenophaga 2.3 66.2 1.0 78.9

Anaerobaculum 2.1 68.2 1.0 79.8

Moorella 1.8 70.0 0.8 80.7

Simplicispira 1.6 71.7 0.6 81.2

Thermoanaerobacter 1.3 72.9 0.8 82.1

Spongiimonas 1.2 74.2 0.6 82.7

Comamonas 1.2 75.3 0.4 83.1

Imtechium 1.1 76.5 0.4 83.5

Fluviicola 1.1 77.6 0.4 83.9

Thiobacillus 1.1 78.7 0.6 84.5

aDissimilarity contrib.: correspond to percentage that each genus is contributing to

dissimilarity between the groups compared.
bOnly genera that contribute ≥1.0%, in at least one sample, to the dissimilarity are included

in the table.
cTotal: correspond to accumulative contribution of each genus to dissimilarity percentage.
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autotrophic denitrification rate associated with changes in the
bacterial diversity. Specifically, BERs operated at 1V had a
denitrification rate 40% higher than the maximum reported
(8.19 ± 0.97 g NO3

−-N/m2·d) (Feng et al., 2024), while the BER
operated at 2V is comparable with typical removal rates ranging
from 0.23–3.67 g NO3

−-N/m2·d, including single and double
chamber BERs (Pous et al., 2016; Liu et al., 2019; Vijay et al.,
2019; Lin et al., 2021; Zhao et al., 2023). Denitrification is fully
associated with bacterial activity as no electrochemical reduction of
nitrate was observed in the abiotic controls at 1V and 2V.

Sulfate and nitrate were added to synthetic groundwater to
mimic the composition of a real one. Both molecules are known
to function as final electrons acceptors during anoxic growth of
some bacteria. However, as shown in Equation 1 and Equation 2,
nitrate is expected to be consumed preferentially over sulfate, as the
nitrate reduction pathway provides more free energy per electron to
the bacteria (Campos et al., 2019). Nitrate reduction was conducted
via denitrification, as the TAN concentrations measured during the
experimental time were zero, showing that dissimilarity reduction of
nitrate to ammonia did not occur. The dissimilatory reduction of
nitrate to ammonia tends to occur at high C/N ratios and with
organic carbon sources (Utting et al., 2011; Chutivisut et al., 2018),
conditions that were not present in our experiments.

4.2 Direct electron consumption in the
selected denitrifying bacterial community
at 1V

Selected bacterial community in the BERs operated at 1V was
largely dominated by the genus Desulfosporosinus, a group of strict
anaerobic andwell-known sulfate-reducing bacteria (Pester et al., 2012).
However, species such as Desulfosporosinus acididurans have been
reported to be nitrate-reducing (Sánchez-Andrea et al., 2015). As for
the electron source, electroactive growth by consuming electrons from a
cathode has been reported in Desulfosporosinus orientis. Although the
mechanism of interaction with the electrode remains unknown, both
biological and abiotic H2 production as an electron mediator have been
hypothesised (deCamposRodrigues and Rosenbaum, 2014; Agostino
andRosenbaum, 2018; Agostino et al., 2020). Besides, enrichment of the
genus Desulfosporosinus from a mixed community has been reported
during the simultaneous reduction of sulfate and nitrite in electro-
assisted reactors (Chai et al., 2020).

The genus Caloramatorwas also enriched, which is composed of
strict anaerobic and fermentative species that have been reported in
reactors producing H2 under thermophilic conditions (Seyfried
et al., 2002; Rubiano-Labrador et al., 2013). Interestingly, this
genus has recently been proposed as electroactive, as it has been
reported to play a key role in the electrons transport using
conductive materials and in the production of electricity in
microbial fuel cells. (Fu et al., 2013; Yan et al., 2017). However,
its mechanism of EET is so far unknown.

Another characteristic genus selected in BER at 1V was
Saccharicrinis, which is composed of facultative anaerobic species
that have been reported in reactors associated with heterotrophic
denitrification (Sposob et al., 2020; Han et al., 2021) but there is no
evidence of species that can perform autotrophic denitrification (Liu
et al., 2014; Yang et al., 2014). There is evidence that the application of

a voltage could generate important changes on the surface of the
bacterialmembrane, causing even cellular decay (Krishnamurthi et al.,
2020). This decay could make organic molecules available to the
bacteria to use them as substrates during heterotrophic denitrification.

Considering the significant differences in the rate of nitrate
consumption between Control and 1V, together with the metabolic
characteristics of the selected bacterial community, we hypothesize
that denitrification occurred primarily through direct consumption
of electrons from the cathode.

4.3 Water electrolysis at 2V and its effect on
denitrifying bacterial community selection

Unlike the experiments performed at 1V, the experiments at 2V
were mainly driven by water electrolysis products. This is expected
to occur from 1.23 V under standard conditions (Lamy and Millet,
2020).Water electrolysis leads to O2 andH2 formation, which can be
used as electron acceptors and donors, respectively. Despite the low
current observed in our present work (<1 µA), H2 and O2 formation
could drive changes in the bacterial community, even though H2 and
O2 were not detected in the headspace nor in the reactor. This is
probably because the consumption rate of these gases was faster than
the production rate and saturation was not reached in the liquid. The
presence of dissolved gases in the bulk without reaching saturation
to be desorbed to the headspace is a common phenomenon in
microbial systems; in these cases, the measurement of oxidation-
reduction potential is a more useful strategy to monitor the
processes (Krayzelova et al., 2015; Illi et al., 2021; Fu et al., 2023).

Consequently, the electrons used during denitrification at 2V
were supplied from H2 oxidation. However, electroactive
denitrification using electrons transferred directly from the
cathode (in the same way as at 1V) could also occur due to the
abundance of the Desulfosporosinus genus, especially early in the
BER operation. Electrolysis-based H2 occurrence was supported by
the enrichment of the genus Hydrogenophaga. Members of the
genus Hydrogenophaga are aerobic or facultative anaerobes
(Banerjee et al., 2021) which can oxidize H2 as an energy source
reducing CO2 as carbon source (Blohm et al., 2022; Thorat et al.,
2022). In addition, there is evidence that members of this genus can
completely reduce nitrate to dinitrogen (Banerjee et al., 2021). To
the authors’ knowledge, Hydrogenophaga has not been described as
an electroactive bacterium although its enrichment has already been
reported in denitrifying BER (Zhao et al., 2017; Peng et al., 2018; Yao
et al., 2022). Consequently, in our assays we attribute the increase in
their relative abundance to nitrate reduction using H2 as an energy
source, as previously described by (Pous et al., 2022).

BesidesHydrogenophaga, the genera Rheinheimera, Leptolinea, and
Sterolibacterium predominated the experiments at 2V. Leptolinea
tardivitalis is the only known species of genus Leptolinea, which is a
strictly anaerobic, heterotrophic bacterium that cannot utilize nitrate as
electron acceptor (Yamada et al., 2006). Rheinheimera genus is a
chemoheterotrophic bacterium that can grow in aerobic and
facultative-anaerobic conditions. This genus can also reduce nitrate
to nitrite in some aerobic species such as R. aestuarii H29T, R. pacifica
CCUG 46544T, R. baltica DSM 14885T (Baek and Jeon, 2015) and some
facultative anaerobic (e.g., Rheinheimera texasensis A62-14BT, and R.
perlucida BA131T) (Merchant et al., 2007). Rheinmera genus has been

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Toledo-Alarcón et al. 10.3389/fbioe.2025.1475589

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1475589


associated with nitrogen removal on the cathode in anoxic
environments (Xie et al., 2016) and has been reported growing in
the planktonic biomass near the cathode, which means that it relies on
mediators such asH2, flavins, quinones and phenazines (Lin et al., 2020).

Within the Sterolibacterium genus only one species is known,
Sterolibacterium denitrificans, which is a facultative anaerobic
bacterium (Chiang et al., 2008), capable of reducing nitrate using
cholesterol as an electron donor (Tarlera and Denner, 2003). Since
cholesterol and other sterols persist in an anaerobic digestate
(Weckerle et al., 2023), they can be utilized by a specific microbial
community as electron donors. In addition, Sterolibacterium have been
reported to increase their relative abundance in O2-limited and nitrate-
rich environments (Chen et al., 2024). Although the Sterolibacterium
genus is not confirmed to be electroactive, it has been reported growing
in the anode of an electrochemical biofilter for the treatment of
municipal wastewater (Yang et al., 2018) and in the anode of a
microbial fuel cell treating cattle manure slurry (Xie et al., 2017).

In addition to the denitrification reactions that occurred at 2V,
oxidation reactions may have also occurred because of O2 presence due
to electrolysis. Consequently, O2 may have competed with nitrate and
nitrite as final electron acceptors. The lower nitrate consumption rate at
2V compared with the experiment performed at 1V could result from
the competition of O2 and nitrate (Ortega-Martínez et al., 2024).

4.4 Endogenous respiration in the control
bacterial community

Bacterial community selected in the Control experiments included
mainly the genus Acidovorax during the first days of operation. This
genus has been widely reported to be dominant in heterotrophic,
autotrophic and mixotrophic denitrifying systems (Jiang et al., 2020;
Tian and Wang, 2021; Ren et al., 2022; Bai et al., 2023; Zhang et al.,
2024). Some species known to perform complete heterotrophic
denitrification include A. delafieldii and A. temperans. A. avenae has
been reported to be associated with autotrophic denitrification
(Fernandez et al., 2009), while other species such as A. facilis and A.
konjaci can reduce nitrate only to nitrite (Willems andGillis, 2015). The
genus Petrimonas, to which bacterial species capable of using nitrate as
an electron acceptor belong, was also relevant. This genus has been
reported to be dominant in denitrifying systems (Whitman et al., 2015;
Li et al., 2016; Hu et al., 2023), while Stenotrophomonas and
Pseudoxanthomonas are genera of Gram-negative bacteria of the
family Xanthomonadaceae that have been reported in denitrifying
reactors, but commonly as minority species (Mahto and Das, 2022;
Bai et al., 2023; Luan et al., 2023; Zhang et al., 2023).

Endogenous respiration is a common phenomenon that occurs
when, in the absence of external substrates, the hydrolytic enzymes
present in the anaerobic biomass cause lysis of the microorganisms
(Van Loosdrecht and Henze, 1999). Furthermore, it is expected that
the endogenous respiration rate increased when the biomass was
exposed to anoxic conditions since the nitrate-using bacteria tend to
have a higher endogenous respiration rate compared to anaerobes
(Rieger et al., 2001). Moreover, there is evidence that the addition of
external electron acceptors, such as nitrate, during anaerobic digestion
can increase the relative abundance of fermentative bacteria, which
are responsible for the production and excretion of hydrolytic
enzymes (Nguyen and Khanal, 2018; Nguyen et al., 2019).

Consequently, endogenous respiration could explain the decrease
in nitrate concentration observed in the Control reactors, when
using organic autolysis as an organic matter source for
denitrification. The results show that this requires about 15–45 mg
COD/L, which obtained from endogenous respiration is at most 3.0%
of the COD contained in the inoculated biomass.

5 Conclusion

Our results demonstrate that the cathode can effectively serve as an
electron donor for nitrate reduction in BER, with the applied voltage
being a key factor influencing efficiency and microbial community
dynamics. The highest nitrate removal rate was obtained at 1V,
associated with the enrichment of the electroactive genus
Desulfosporosinus, highlighting the potential of low-voltage operation
to enhance denitrification without biofilm formation. In contrast, at 2V,
O2 produced via water electrolysis competed with nitrate as electron
acceptor, reducing the denitrification rate. The enrichment of
Hydrogenophaga at 2V suggests that H2 generated by electrolysis
contributed to nitrate reduction at this condition. These finding
underscore the importance of optimizing the voltage applied for each
reactor design to enhance nitrate removal efficiency. Ourwork represents
a significant contribution to the scaling up of BER and their application
in groundwater remediation, utilizing a single-chamber, membrane-free
configuration, and a conventional power source instead of a potentiostat.
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