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Solid-state fermentation (SSF) can increase the nutritional quality of low value
substrates for insects. In this study, SSF using different fungal species was applied
on a hemp waste substrate, and the fermentation was followed by a black soldier
fly larvae (BSFL) feeding experiment during which 300 larvae were grown on
200 g (20.1% DM) substrate for 7–9 days depending on the treatment. Besides
assessing the BSFL performance parameters, the presence of hemp cannabinoids,
flavonoids, and terpenes was assessed through the process and compared among
the treatments. The results show that BSFL growth parameters varied dependingon
the fungal species used. Fermenting the substrate with Ganoderma lucidum can
lead to an increase in the BSFL dry yield (4.54 g) compared to the untreated
substrate (2.86 g), likely due to enhancing carbon accessibility in the substrate. SSF
using Trichoderma reesei increased the cannabidiol and Δ9-tetrahydrocannabinol
mass fractions in the substrate, and consequently in the produced BSFL biomass,
while decreasing the amounts of acidic cannabinoids. Both Hypsizygus ulmarius
and Pleurotus ostreatus effectively removed cannabinoids from the substrate. This
study confirms that pre-treating hempwastes via SSF can enhance their nutritional
value and/or reduce bioactive secondary metabolites, with different fungal species
offering different and complementary performances in achieving different
biotechnological goals.
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1 Introduction

Hemp (Cannabis sativa L.) cultivation has been gaining momentum globally due to its
multiple uses, such as the production of fibers (Sankari, 2000), seeds (Xu et al., 2022) and
flowers (Carus and Sarmento, 2016). The recent reforms in cannabis regulations in several
counties have sparked rapid expansion within the hemp industry, leading to the
introduction of numerous innovative products in the market (Crini et al., 2020). The
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plant is well known for the production of bioactive secondary
metabolites, such as Δ9-tetrahydrocannabinol (Δ9-THC) and
cannabidiol (CBD). In the European Union (EU), the cultivation
of industrial hemp with a maximum Δ9-THC content of 0.3% is
permitted since 2021 (Union, 2021). Certified cultivars have low Δ9-
THC content and predominantly contain CBD, which is now widely
used in the treatment of various psychiatric and neurological
disorders (Rock et al., 2018; Fiani et al., 2020). In many cases,
industrial hemp is cultivated on a large scale for a specific purpose
(e.g., seeds or flower production), resulting in the production of
plant biomass that is often regarded as waste or a low-value by-
product from the non-targeted parts of the plant in these cases. Such
waste can have a high nutritional value for animals (Kleinhenz et al.,
2020; Ely and Fike, 2022; Addo et al., 2023), but it also raises safety
concerns as bioactive substances such as Δ9-THC can be found in the
end animal products (Kleinhenz et al., 2020; Wagner et al., 2022).
Using hemp-derived material as animal feed is prohibited in the
United States (Gottlieb et al., 2018) while in the EU the use is
restricted to seeds and seed press-cake (European Commission,
2009). This excludes the widely abundant vegetative plant parts
and leads to hemp wastes ending up in landfill or compost. The
efficient and safe utilisation of such residues holds great potential in
supporting bio-economy visions and the transformation from linear
to circular production systems (Ubando et al., 2020).

The use of insects in waste management is emerging as an
innovative approach to convert a wide variety of organic waste
streams to a high-value insect biomass (Kee et al., 2023; Yakti et al.,
2023c). The saprophagous larvae of the black soldier fly (BSFL),
Hermetia illucens, for instance, have been shown to thrive on
different organic wastes (Kee et al., 2023). These larvae present a
valuable biomass rich in protein and fats, making them a high-
quality feed source (Raksasat et al., 2020; Siddiqui et al., 2022). A
recent study has assessed the growth of BSFL on diets containing
hemp wastes, revealing a potential utilisation of this waste stream
without detecting Δ9-THC in the produced larvae (Yakti et al.,
2023a), thus ensuring a safe employment in feed applications.

Hemp wastes are known to be rich in fibers (Carus and
Sarmento, 2016), which, despite improving the physical
properties of the feeding substrates (Grossule and Lavagnolo,
2020; Yakti et al., 2023b), are mostly indigestible and reduce the
bioprocess efficiency (Peguero et al., 2021). The nutritional value of
lignocellulosic substrates can be improved through solid-state
fermentation (SSF) (Peguero et al., 2021). The process employs
microbial strains that can produce a variety of enzymes such as
cellulases, pectinases, and xylanases (Marzo et al., 2019;
Vandenberghe et al., 2021). This has been shown in the case of
hemp wastes, as the fermentation with Pleurotus ostreatus reduced
the lignin in the substrate and enhanced the protein content
(Eliopoulos et al., 2022). In the case of BSFL feeding substrates,
Trichoderma reesei has been used to ferment banana peels prior to
larvae feeding and this has led to improved larval biomass and
bioconversion rate (Isibika et al., 2019). The use of SSF to enhance
nutrient accessibility for BSFL across different substrates has the
potential to elevate BSFL production, while harnessing the full
capacity of agricultural waste resources. In the presented study,
we hypothesise that SSF of hemp wastes using different fungal
species will enhance the nutritional value of the substrate,
thereby improving the performance and nutritional composition

of BSFL. We also hypothesise that the SSF process will alter the
secondary plant metabolites (cannabinoids, terpenes, and
flavonoids) in hemp wastes and, subsequently, the produced
BSFL. To test the hypothesis, hemp wastes underwent SSF with
the fungi P. ostreatus, Hypsizygus ulmarius, Ganoderma lucidum,
and T. reesei, and the resulting products were fed to BSFL. The
effect of the SSF process on hemp secondary metabolites was
also assessed and analysed in the fermented substrates and
produced larvae.

2 Materials and methods

2.1 Hemp waste material

The hemp waste was provided by the company Die Hanflinge
(Gumtow, Brandenburg, Germany) and comprises air-dried low-
quality buds that were excluded from tea production. The waste
stream also includes secondary stems along with leaves. The material
was dried again at 60°C and ground to achieve <2 mm particle size.

2.2 Fungal strain selection and screening

Nineteen fungal strains were screened for their ability to grow on
the hemp waste substrate in a Petri dish assay in order to identify
candidate for the SSF. The strains screened were P. ostreatus
MG1005, P. ostreatus var. Florida MG1015, P. ostreatus var.
Columbinus MG1010, Pleurotus eryngii MG1105, Pleurotus
citrinopileatus MG1205, Pleurotus pulmonarius MG1305,
Pleurotus djamor MG1405, H. ulmarius MG1505, Pleurotus
eunosmus MG1107, Flammulina velutipes MG4100, Ganoderma
applanatum MG11600, G. lucidum MG11500, Hericium
coralloides MG5510, Hericium erinaceus MG5500, Hypholoma
capnoides MG1589, Lentinula edodes MG2500, Stropharia
rugosoannulata MG2351, T. reesei DSM 768, and Agaricus
bisporus ABW93. All strains except T. reesei and A. bisporus were
obtained from MycoGenetics Pilz-Shop (Everswinkel, North Rhine-
Westphalia, Germany), and are known to produce edible fruit
bodies. The T. reesei strain was obtained from the Leibniz
Institute DSMZ - German Collection of Microorganisms and Cell
Cultures (Braunschweig, Lower Saxony, Germany). The A. bisporus
strain was obtained from Pilzmännchen GbR (Malschwitz, Saxony
Germany) All strains were maintained on PDA medium (Carl Roth,
Karlsruhe, Baden-Wuerttemberg, Germany) until used in the assay.

A hemp-waste medium was prepared using 40 g/L pulverised
hemp wastes and 15 g/L agar (Carl Roth, Karlsruhe, Baden-
Wuerttemberg, Germany). The mixture was autoclaved and
15 mL were poured onto 9 cm Ø Petri dishes after
homogenisation. 5 mm diameter plugs of growing mycelia on
PDA were placed on the side of the Petri dishes and were
allowed to grow for 12 days at 26°C. The fungal growth towards
the other side of the mediumwasmeasured at days 3, 5, 7, 10, and 12,
and the radial growth rate (mm.day−1) was calculated by dividing the
total growth distance by the number of days needed to reach a
distance of 6 mm. For species with low growth rate, the maximum
growth distance (under 6 mm) was divided by 12 as the last day of
measurements.
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2.3 Solid-state fermentation of hemp waste

The dried hemp waste was mixed with distilled water to achieve
a dry matter content of 26.8% (w/w). The mixture was stirred with a
kitchen spatula and subsequently left to sit at room temperature for
1 hour. This enabled the formation of a wet porous substrate without
the presence of excess free water. The substrate was then distributed
to autoclavable containers (6 cm × 6 cm × 10 cm) each of which was
filled with 150 g (volume of 280 mL). The containers were
autoclaved at 121°C for 20 min and inoculated with P. ostreatus
var. Florida MG1015 (PO), H. ulmarius MG1505 (HU), G. lucidum
MG11500 (GL), and T. reesei DSM 768 (TR) by placing 5 plugs
(5 mm diameter) of growing mycelia on the top of the hemp
substrate. Plugs of PDA medium were used as a control and each
treatment comprised 8 replicates (n = 8). The inoculated containers
were incubated at 26°C until fungal mycelia had covered the bottom
of the containers. Given the different growth rates of the fungal
species, the treatments fully colonised by fungal mycelia were stored
at 2°C until the rest of the treatments were also fully colonised.
Hence, TR containers were transferred to 2°C on day 12, PO at day
14, GL at day 19, while HU needed 21 days to fully cover the
substrate. On the 21st day, the substrates were taken out of the
containers and samples were collected from 3 replicates per
treatment (n = 3). The samples were stored at −80°C for later
analyses of secondary plant metabolites.

2.4 BSFL feeding experiment

Newly hatched black soldier fly neonates obtained from
FreezeM and Hermetia Deutschland GmbH and Co. KG (Baruth/
Mark, Brandenburg, Germany) were used in the BSFL feeding
experiment. The neonates received GoldDott grains-based
chicken feed (Agravis Raiffeisen AG, Velten, Brandenburg,
Germany) and were incubated at 30°C to reach an average
weight of 19 mg on day 7 (on which the experiment started).
The BSFL received PO-, HU-, GL-, TR-fermented substrates, or
the substrate inoculated with sterile PDA plugs as control (K2). An
additional control treatment with the initial untreated hemp waste
was also added (K1).

For the preparation of the feeding substrates for the BSFL, the
replicates of each SSF treatment were pooled, homogenised, and the
dry matter content (DMC) was determined by drying samples of
100 g at 80°C until no further weight reduction was observed. The
DMC of all substrates was adjusted to that of the TR treatment,
which had the lowest DMC (20.1%) by adding distilled water. The
untreated control substrate was prepared by mixing distilled water
with the initial dry hemp waste substrate to achieve 20.1% DMC.
200 g of DMC-adjusted substrates were put in plastic rearing boxes
(10.5 cm Ø and 7 cm high) and 300 BSFL were added on the top of
each of the substrates. The experiment had 6 treatments and
5 replicates (n = 5). The rearing boxes had top openings (7.5 cm
Ø) sealed with 1 mm mesh. The BSFL were grown at 28°C and the
growth was assessed by collecting and weighing at least
30 individuals on days 2, 4, 7, 8, and 9. The BSFL were harvested
earlier than day 9, when at least 3 out of the 5 replicates exhibited
weight loss. The BSFL were separated from the remaining substrates,
counted, and weighted before and after freeze-drying. The feed

conversion ratio (FCR) was determined on a dry matter basis by
dividing the reduction in dry substrate by the dry weight gain
of the BSFL.

2.5 Elemental analyses and crude protein
quantification

The start hemp waste, the fermented and the autoclaved
substrates, as well as the produced larvae were lyophilised and
stored at −80°C until further processing. The BSFL were
manually blended with a mortar and pestle in liquid nitrogen
and the substrates were processed into powders using a Retsch
MM 400 swing mill (Retsch GmbH, Haan, North Rhine-Westphalia
Germany). The nitrogen (N) and carbon (C) contents were
determined in the produced larvae (n = 3–5) and in the initial
hemp waste according to LUFA Bd. III, 4.1.2., and the crude protein
was calculated based on the conversion factor of 4.43 (Smets et al.,
2021). Phosphorus (P), Calcium (Ca), Magnesium (Mg), Copper
(Cu), Potassium (K), Iron (Fe), Magnesium (Mg), Manganese (Mn),
Sulfur (S) and Zinc (Zn) were analysed in the initial hemp substrate
and the produced larvae using ICP-OES (DIN EN ISO 11885) as
previously described in Yakti et al. (2022). Due to the insufficient
amount of BSFL biomass produced in the scale of the experiment,
the larvae of all replicates were pooled into one sample and analysed
accordingly for all mentioned elements other than N and C.

2.6 Hemp secondary metabolites

Hemp cannabinoids, flavonoids, and terpenes were analysed in
the initial hemp waste, the fermented substrates (n = 3), and in the
produced larvae (n = 5). The mass fractions of cannabinoids and
flavonoids were determined via high pressure liquid
chromatography (HPLC). HPLC components (Autosampler,
Pump, thermally-regulated column department, Photodiode
Array Detector) including the software (Chromeleon 7.2) were
supplied by ThermoFisher (ThermoScientific, Dreieich,
Germany). The samples were analysed for cannabinoid contents
according to the modified method of Mandrioli et al. (2019),
described in Yakti et al. (2023a) and for flavonoids according to
a method described by Förster et al. (2023).

For cannabinoid determination, 20 mg of lyophilised, pulverised
substrate material (100 mg for BSFL material) were extracted with
750 µL of extraction solution (methanol/chloroform 9/1, v/v) for
10 min at room temperature and 500 rpm on a shaker (Eppendorf
SE, Hamburg, Germany). The samples were centrifuged (6,800 × g,
5 min, room temperature) and the supernatant was collected in a
glass vial. Thereafter, the pellet was re-extracted with 500 µL
extraction solution twice. The combined supernatants were
concentrated under a nitrogen stream to dryness and refilled
with 500 µL 100% acetonitrile. The extract was filtered using
0.22 µm SpinX tubes (Costar, Corning, New York, NY,
United States), filled in HPLC vials, and stored at −20°C until
HPLC analysis. The extracts (10 µL) were analysed on an
AcclaimTM RP18 column (3 μm, 120 Å, 2.1 × 250 mm,
ThermoScientific) with a flow rate of 0.4 mL/min at a column
temperature of 35°C at 265 nm using the eluents (A) 0.85% formic
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acid in ultrapure water and (B) 0.85% formic acid in 100%
acetonitrile. The following gradient program was used: 70% B
(0–3 min), 70%–85% B (3–10 min), 85%–95% B (10–17 min),
95%–100% B (17–18 min), and 100%–70% B (18–28 min).
Commercially available standards of single compounds were used
as references: cannabidiolic acid (CBDA), cannabigerolic acid
(CBGA), cannabigerol (CBG), cannabidiol (CBD), Δ9-
tetrahydrocannabinol (Δ9-THC), cannabichromene (CBC), Δ9-
tetrahydrocannabinolic acid (Δ9-THC-A), and cannabichromenic
acid (CBGA).

For flavonoid determination, 20 mg of lyophilised, pulverised
substrate material (100 mg for insect material) were extracted with
300 µL 70% methanol (pH 4, acetic acid) for 15 min in ice water
using sonification (Bandelin Sonorex, BANDELIN electronic GmbH
and Co. KG, Germany). The pellet was re-extracted twice with
300 μL of the extraction solvent for 10 min. After each extraction
step the samples were centrifuged for 5 min at 6,800 × g at 4°C and
the supernatants were combined. Supernatants were concentrated
(vacuum concentrator, ThermoScientific Savent SPD111V
Concentrator, vacuum pump: Vacuumbrand PC 3001 series,
CVC3000, Germany) to near dryness, dissolved in 50%
methanol, and reconstituted to 1 mL. The extract was filtered
using 0.22 µm SpinX tubes (Costar, Corning, New York, NY,
United States), transferred to HPLC vials, and stored at −20°C
until HPLC analysis. The extracts (10 µL) were analysed on an
AcclaimPA (3 μm, 120 Å, 2.1 × 150 mm, ThermoScientific)
protected by a pre-column (5 μm, 120 Å, 2 × 10 mm,
ThermoScientific) with a flow rate of 0.4 mL/min at a column
temperature of 35°C at 290 nm using the eluents (A) H2O (0.5%
formic acid) and (B) 40% acetonitrile. The following gradient
program was used: 0–1 min: 0.5% B, 1–10 min: 0.5%–40% B,
10–12 min: 40% B, 12–18 min: 40%–80% B, 18–20 min: 80% B,
20–24 min: 80%–100% B, 24–30 min: 100% B, 30–34 min: 100%–

0.5% B, and 34–39 min 0.5% B). Quantification of single flavonoids
was carried out against the internal standard 4-methoxycinnamic
acid (1 mM, Sigma Aldrich, Germany). Commercially available
standards of single compounds were used as reference (apigenin-
7-glucoside, luteolin-7-glucoside, luteolin-7-glucoronide). Relative
response factors of compounds with a similar chemical structure
were used to correct for absorbance difference.

The identification of cannabinoids and flavonoids was based on
their retention times and specific UV-spectra (if specific standards
are commercially available), as well as mass spectrometry. MS/MS
was performed by electrospray ionisation (ESI) on a
ThermoScientific LXQ ESI-Ion Trap mass spectrometer
(cannabinoids: negative and positive ion mode; flavonoids:
negative mode). Mass spectra were recorded in the range from
m/z 50 to 1,000. Instrument control and data processing were
performed with Thermo Xcalibur Version 2.2 SP1.48.

Terpenes were extracted by adding 500 µL isooctane to 100 mg
lyophilised and pulverised material. After sonification for 10 min in
ice water (Bandelin Sonorex, BANDELIN electronic GmbH and Co.
KG, Germany) and centrifugation (5 min at 6,800 × g at 4°C), the
supernatant was collected in a glass vial. The pellet was re-extracted
twice with 250 μL isooctane. The combined supernatants were
concentrated under nitrogen stream to dryness and reconstituted
with 300 µL isooctane, transferred to glass vials, and stored at −20°C
until analysis. Terpenes were assessed via gas chromatography-mass

spectrometry (GC-MS) as previously described in Beck (2022). In
detail, terpenes were identified GC-MS on an Agilent 7890 GC
system equipped with an Agilent HP5-MS ultra-inert column (30 m
length, 0.25 mm i. d., 0.25 μm film thickness). A volume of 2 μL of
sample was injected splitless, and separation was achieved using a
helium flow of 2 mL ·min−1 and the following temperature gradient:
45°C for 5 min, 8°C·min−1 to 200°C, 200°C for 10 min. Eluting signals
were detected via an Agilent 7076 MSD using an electron impact
(EI) ionisation source and 70 eV ionization voltage, while the EI
source was maintained at 230°C. Signals were acquired from m/z
50 to 500 at a scan speed of 1,562 u·s−1 and subjected to National
Institute of Standards and Technology (NIST) database searches
(NIST-2017) using NIST MS Search 2.3. The identity of identified
terpenes was subsequently validated by using standard solutions
(100 ng·mL−1) of respective terpenes in isooctane. Neophytadiene
was purchased as analytical standard from Supelco (Bellefonte, PA,
United States), caryophyllene from Toronto Research Chemicals
(North York, Ontario, Canada) and isooctane (GC-MS grade) from
Carl Roth (Karlsruhe, Germany).

2.7 Statistical analyses

Kruskal–Wallis test followed by Dunn-Bonferroni test was
carried out on the data obtained from the screening of fungi
“radial growth rate” and the data obtained from the analysis of
cannabinoids as these parameters did not meet the assumptions of
parametric tests. The BSFL growth parameters underwent one-way
ANOVA followed by subsequent Bonferroni’s post hoc comparisons
after verifying data normality and variance homogeneity. All data
were analysed using SPSS version 28.0.0.0 (IBM Corp, Armonk,
United States).

3 Results

3.1 Fungal strain selection and screening

All fungal strains grew on the hemp-based medium except H.
coralloides and H. capnoides and thus these were excluded from the
analysis. Besides the general ability of all other fungal species to grow
on the hemp media, significant differences in the growth rates of the
fungi were observed (p < 0.001, H = 68.72) (Figure 1 and
Supplementary Figure S1). Trichoderma reesei (TR), showed the
highest growth rate and reached 70 mm of growth during 6 days.
Pleurotus ostreatus varieties in addition to G. lucidum (GL) and H.
ulmarius (HU) had a lower growth rate, but were significantly
better than other tested species. Hence, TR, P. ostreatus var.
Florida (PO), HU, and GL were chosen for the SSF of the hemp
waste as they represent diverse genera and sufficient growth on the
hemp material.

3.2 BSFL feeding experiment

The larvae grew on all the tested substrates and differences in the
growth rate (Figure 2), as well as in the final yield (Figure 3) were
observed. The highest growth was observed in the larvae that
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received GL-fermented substrate, leading to significantly higher
fresh yield (F = 83.2, p < 0.001 and dry yield (F = 67.7, p <
0.001) compared to the rest the treatments (Figure 3).
Additionally, the larvae that consumed the autoclaved non-
inoculated substrate (K2) had significantly higher growth than
the untreated substrate (K1) (Figure 3B). Fermenting the
substrate with TR did not influence the final yield compared to
the untreated substrate (K1) (Figure 3B), but took more days to
reach the growth peak (Figure 2). Fermenting the substrate with PO
and HU led to significantly lower dry yields (Figure 3B) compared
the control treatments (K1 and K2).

In addition to differences in the growth of BSFL on the different
substrates, the survival of BSFL varied among the treatments (F =
10.6, p < 0.001) and was decreased in the larvae that received the PO-
fermented substrate in comparison to the controls (Figure 4A).
Additionally, fermenting the substrate influenced the FCR of the
BSFL (F = 8.9, p < 0.001), which was the lowest for the autoclaved
substrate (K2), and the substrates fermented with GL and TR
(Figure 4B). Fermenting the substrate with HU and PO led to an
increase in the FCR compared to the autoclaved substrate (K2)
without significantly differing from the control untreated
hemp waste (K1).

FIGURE 1
The radial growth rate (mm.day−1) of different fungi on the hemp waste agar medium. Kruskal–Wallis test followed by Dunn-Bonferroni test (n = 5,
p < 0.05) revealed significant differences among the treatments and are represented with different letters above the columns.

FIGURE 2
The growth of BSFL on untreated (K1), autoclaved (K2), or fermented hemp waste with different fungal species (PO, HU, GL, and TR). Shown are the
mean larval weights and standard deviations over the days of experiments (n = 5).
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FIGURE 3
The total fresh yield (A) and dry yield (B) of black soldier fly larvae (BSFL) provided with untreated hemp-waste (K1), autoclaved hemp-wastes (K2), or
hemp wasted fermented with Pleurotus ostreatus (PO), Hypsizygus ulmarius (HU), Ganoderma lucidum (GL), or Trichoderma reesei (TR). Shown are the
means and standard deviations (n = 5). ANOVA followed by Bonferroni post hoc test revealed significant differences among the treatments (p < 0.05)
which are represented by different letters above the columns.

FIGURE 4
The survival rate (A) and the feed conversion ratio (FCR) (B) of black soldier fly larvae (BSFL) provided with untreated hemp-waste (K1), autoclaved
hemp-wastes (K2), or hempwasted fermentedwith Pleurotus ostreatus (PO),Hypsizygus ulmarius (HU),Ganoderma lucidum (GL), or Trichoderma reesei
(TR). Shown are the means and standard deviations (n = 5). ANOVA followed by Bonferroni post hoc test revealed significant differences among the
treatments (p < 0.05) which are represented by different letters above the columns.

FIGURE 5
The crude protein values (A) and the C/N ratio (B) of black soldier fly larvae (BSFL) provided with untreated hemp-waste (K1), autoclaved hemp-
wastes (K2), or hemp wasted fermented with Pleurotus ostreatus (PO), Hypsizygus ulmarius (HU), Ganoderma lucidum (GL), or Trichoderma reesei (TR).
Shown are themeans and standard deviations (n = 5). ANOVA followed by Bonferroni post hoc test revealed significant differences among the treatments
(p < 0.05) which are represented by different letters above the columns.
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3.3 Elemental analysis and crude protein
quantification

The fermentation of hemp waste significantly influenced the
crude protein content of the produced BSFL (F = 21.59, p < 0.001).

The highest crude protein content was observed in BSFL grown on
the PO-fermented and HU-fermented substrates (Figure 5A), both
of which differed significantly from the autoclaved control substrate
(K2). The crude protein content was significantly lower in the BSFL
that received the GL-fermented substrate compared to all other

TABLE 1 The partial elemental composition of the initial hemp waste substrate and the final larvae produced on the substrate without pre-treatment (K1),
after autoclaving (K2), or after fermentation with Pleurotus ostreatus (PO),Hypsizygus ulmarius (HU),Ganoderma lucidum (GL), or Trichoderma reesei (TR).

Material Ca (g/kg) Cu (mg/kg) Fe (mg/kg) K (g/kg) Mg (g/kg) Mn (mg/kg) P (g/kg) S (g/kg) Zn (mg/kg)

Hemp Waste 30.36 10.14 312.38 27.73 5.51 299.45 5.09 3.24 53.6

K1 89.83 10.85 376.42 19.48 5.73 821.10 12.15 4.56 136.34

K2 73.96 14.66 267.84 22.49 5.34 714.37 11.03 5.00 165.69

PO 77.51 13.12 251.91 22.17 4.81 769.51 10.67 4.82 159.15

HU 46.63 9.67 237.24 18.18 4.59 845.90 10.07 3.46 125.67

GL 88.55 11.41 204.19 24.01 4.91 849.47 10.27 4.89 104.34

TR 33.15 9.72 368.75 32.36 5.62 316.98 5.49 3.59 58.73

The values based on dry weight. All values are expressed on a dry weight basis.

TABLE 2 The mass fractions of cannabinoids in the initial hemp-waste substrate (K1), the substrate after autoclaving (K2), and in the substrate after solid-
state fermentation with Pleurotus ostreatus (PO), Hypsizygus ulmarius (HU), Ganoderma lucidum (GL), or Trichoderma reesei (TR), in addition to the
concentration of cannabinoids in the black soldier fly larvae (BSFL) biomass produced on the different substrates.

Cannabinoids Initial waste
substrate (K1)

Autoclaved and incubated
substrate (K2)

Fermented substrates

PO HU GL TR

Cannabidiolic acid (CBDA) 2,796.2 30.7b ±5.4 1.9c ±0.7 0.8c ±0.3 35.2b ±3.8 273.7a ±135.9

Cannabigerolic acid (CBGA) 118.4 - - - - -

Cannabigerol (CBG) 44.5 26b ±8.7 - - - 142.8a ±40.3

Cannabidiol (CBD) 3,413.0 610.2ab ±404.7 9.3c ±3.8 2.8c ±2.5 361.6b ±382.6 5,537.8a ±513.5

Δ9-tetrahydrocannabinol
(Δ9-THC)

60.8 - - - - 107.5 ±186.2

Cannabichromene (CBC) 266.4 105.4b ±7.7 2.0c ±3.5 - 78.8b ±43.6 392.2a ±27.9

Δ9-tetrahydrocannabinolic acid
(Δ9-THC-A)

48.0 - - - - -

Cannabichromenic acid (CBCA) 259.2 6.5ab ±1.2 - - 3.6b ±6.3 121.3a ±40.6

Black soldier fly larvae produced with fermented substrates

Cannabinoid K1 K2 PO HU GL TR

Cannabidiolic acid (CBDA) 25.9a ±41.9 2.9b ±1.2 - - - 12.7a ±4.5

Cannabigerolic acid (CBGA) - - - - - -

Cannabigerol (CBG) 3.3b ±6.0 10.0b ±5.7 - - - 36.7a ±5.6

Cannabidiol (CBD) 407.6b ±298.1 485.4ab ±146.5 - - 96.6b ±19.1 1,586.3a ±206.9

Δ9-tetrahydrocannabinol
(Δ9-THC)

6.6b ±14.7 - - - - 58.9a ±7.5

Cannabichromene (CBC) 29.5b ±18.8 37.1ab ±10.9 - - 15.6b ±3.0 124.1a ±14.1

Δ9-tetrahydrocannabinolic acid
(Δ9-THC-A)

- - - - - -

Cannabichromenic acid (CBCA) 6.9b ±13.5 0.2b ±0.5 - - - 31.6a ±3.3

The mass fractions of cannabinoids were compared between the five different substrate pre-treatments (n = 3) and between the produced BSFL treatments (n = 5). Kruskal–Wallis test followed

by Dunn-Bonferroni test (p < 0.05) revealed significant differences represented by the different letters. Shown are the mean values in µg.g−1/DW± standard deviations. The significant groups are

indicated by different letters.
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treatments. A reversed trend was observed in the carbon-to-nitrogen
(C/N) ratio which was the highest in the BSFL grown on the GL-
fermented substrate, and the lowest in the larvae grown on PO- and
HU-fermented substrates (Figure 5B). Generally, the produced BSFL
had a trend of higher Ca mass fraction compared to the initial hemp
waste, and the BSFL produced on untreated hemp wastes (K1) and
GL-fermented substrate exhibited a trend of the highest
accumulation of Ca (Table 1). A trend of accumulation was also
observed in Mn, Zn, P, and S. The values of Cu, Fe, Mg, and K were
comparable to those of the initial hemp waste and exhibited a higher
or lower trend based on the treatment.

3.4 The fate of hemp secondary metabolites

The initial hemp-waste substrate contained a total of
7,006.5 μg .g−1/DW of the analysed cannabinoids, most of which
were cannabidiolic acid (CBDA) and cannabidiol (CBD)
(2,796.2 μg .g−1/DW and 3,413 μg .g−1/DW, respectively). The
substrate contained 118.4 μg .g−1/DW cannabigerolic acid
(CBGA), 44.5 μg .g−1/DW cannabigerol (CBG), 60.81 μg .g−1/DW
Δ9-tetrahydrocannabinol (Δ9-THC), 47.96 μg .g−1/DW Δ9-
tetrahydrocannabinolic acid (Δ9-THC-A), 266.36 μg .g−1/DW
cannabichromene (CBC), and 259.2 μg .g−1/DW
cannabichromenic acid (CBCA). When the substrate was
analysed after autoclaving or SSF with each of the four fungi, the
cannabinoid mass fraction was reduced and also differed among the
treatments (Table 2). Fermenting the substrate with TR increased
the CBD and Δ9-THC mass fraction, while reducing the mass
fraction of CBDA and Δ9-THC-A compared to the initial
substrate. In comparison to other fungi, fermenting the substrate
with TR lead to a significantly higher mass fraction of CBDA (H =
13.5, p = 0.009), CBG (H = 3.8, p = 0.05), CBD (H = 11.8, p = 0.018),
CBC (H = 10.4, p = 0.015), and CBCA (H = 7.26, p = 0.027). Δ9-THC
was only present in the TR-fermented substrate (107.2 μg .g−1/DW)
and was absent from all other substrate treatments. CBGA and
Δ9-THC-A were not detected in any of the pre-treated substrates.

When the BSFL were fed with the initial hemp waste, compared
to the pre-treated variants, the produced insect biomass contained
mainly CBD and smaller fractions of other cannabinoids (Table 2).
The mass fraction of CBD significantly differed among the
treatments (H = 16.14, p < 0.001) and was the highest in the
BSFL that received the TR-fermented hemp waste. Δ9-THC was
detected only in the BSFL fed with the untreated hemp waste (K1)
(6.5 μg .g−1/DW) and the TR-fermented hemp waste (58.9 μg .g−1/
DW), and the mass fraction significantly differed (H = 13.5, p <
0.05). No cannabinoids were detected in the BSFL that grew on the
PO- and HU- fermented hemp waste. BSFL that fed on the GL-
fermented substrates contained only 96.58 μg .g−1/DW and
15.6 μg .g−1/DW of CBD and CBC, respectively. The BSFL that
received the autoclaved control substrate (K2) had lower CBDA
mass fraction compared to the BSFL which received untreated hemp
waste substrate (K1) or the TR-fermented substrate (H = 18.3, p <
0.001). Additionally, CBG and CBCA values were higher in the BSFL
fed with the TR-fermented substrate in comparison to the controls
(K1 and K2) (H = 14.8, p < 0.05 and H = 15, p < 0.05, respectively).

In the untreated hemp waste (K1) different flavonoids from
the apigenin and luteolin group could be detected (apigenin,

apigenin-glucoronide, apigenin-hexoside-pentoside, three
unknown apigenin derivates, luteolin, luteolin-glucoronide). The
quantification revealed a total mass fraction of 17.56 μmol .g−1,
composed of 1.74 μmol .g−1 luteolin derivates and 13.82 μmol g−1

apigenin derivates (Supplementary Table S2). After substrate pre-
treatment, apigenin-glucoronide (3.50 μmol .g−1) and luteolin-
glucoronide (0.40 μmol .g−1) were still detectable in the autoclaved
control (K2). In the TR- and PO-fermented substrates
only apigenin-glucoronide could be detected (1.75 μmol .g−1

DW and PO: 0.10 μmol .g−1, respectively). When the produced
BSFL were analysed, no hemp-derived flavonoids could
be detected.

For terpenes analysis, caryophyllene and neophytadiene could
only be detected in trace levels (and thus, not quantifiable) in the
untreated hemp waste (K1) and in the substrate fermented with TR.
In the autoclaved control substrate (K2) and the GL-fermented
substrate, only traces of caryophyllene were detected. All other
substrate pre-treatments did not contain any detectable terpenes.
Consequently, no terpenes were found in the produced
BSFL biomass.

4 Discussion

Despite being a multipurpose crop, hemp is still commonly
grown for specific purposes resulting in the generation of plant
residues with different applications in the bio-economy (Pecoraro
et al., 2022; Altman et al., 2023; Yakti et al., 2023a). The hydrolysis of
hemp biomass through solid state fermentation can be an approach
for the efficient production of sugars and enzymes, enabling the
conversion of this waste into valuable products like biofuel (Dessie
et al., 2022). Also, fermenting hemp-wastes with fungi such as P.
ostreatus has been described as an approach to produce enzymes and
functional ingredients with various applications in the food and
pharmaceutical industry (Setti et al., 2020). The ability of fungi to
grow well on this fibre-rich waste can be implemented to enhance its
nutritional value for potential use as animal feed.

Recent regulatory changes in several countries have allowed the
cultivation of industrial hemp with a THC mass fraction lower than
0.3%, but the use of hemp derived by-product as food or feed is
subject to strict regulations (European Commission, 2009).
Furthermore, the use of hemp by-products as feed is still a
matter of controversy due to possible accumulation of hemp
bioactive secondary metabolites in animal products (Wagner
et al., 2022). However, to establish recommendations and
regulations related to the corresponding use of hemp wastes, it is
crucial to generate data on the accumulation of the bioactive
phytochemicals in different animal products (Altman et al., 2023)
including black soldier fly larvae (BSFL) which have been shown to
grow on this waste stream (Yakti et al., 2023a; Leni et al., 2024)
Additionally, pre-treatment processes (e.g., fermentation) can
potentially enhance the nutritional value of agricultural wastes
improving the performance of cultivated BSFL (Peguero et al.,
2021). Consistent with this approach, this study aimed to test
whether solid-state-fermentation (SSF) pre-treatments of a hemp
waste substrate would enhance its nutritional value for the BSFL,
and how SSF with different fungi would influence the secondary
metabolites composition of the substrate.
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In an initial in vitro screening, the tested fungal strains varied in
their growth on the hemp waste medium (Figure 1, Supplementary
Figure S1) and the highest growth rate was observed in T. reesei
(TR). Trichoderma spp. are known for their ability to colonise hemp
based materials (Vasiliauskienė et al., 2018), and TR is specifically
recognised for its superior metabolic activity and its diverse
enzymatic arsenal that enables its growth on lignocellulosic
substrates, making it a fungus commonly used in various
biotechnological application (Chenthamara et al., 2021), in
addition to improving the nutritional value of agricultural wastes
(Bulgari et al., 2023). A second well-growing species is P. ostreatus
(PO), which has been shown to efficiently colonise a hemp spent
wastes generated from a cannabinoids extraction processes
(Eliopoulos et al., 2022) and degrading hemp stalks lignin via its
extracellular enzymatic activity (Xie et al., 2019). In addition to
Pleurotus spp. and TR, H. ulmarius (HU) and G. lucidum (GL)
exhibited a better growth compared to other tested species. The two
fungal species can be cultivated on agricultural and forestry wastes
(de Carvalho et al., 2015; Jarial and Bhatia, 2023).

Despite the observed growth of fungi on the hemp waste media,
hemp secondary metabolites exhibit antifungal and antibacterial
activities (Berardo et al., 2024), which might have persisted in the
autoclaved medium hindering or reducing fungal growth. On the
other hand, certain microorganisms have been shown to metabolise
and degrade hemp secondary metabolites (Rashidi et al., 2009;
Ozdemir et al., 2019; Ahmed et al., 2022). A study by Ahmed
et al. (2022) demonstrated that fungi, such as Mucor ramannianus,
Beauveria bassiana, and Absidia glauca, possess the ability to break
down CBD, resulting in diverse metabolites with potential
antimicrobial and antiprotozoal activities. In the presented study,
fermenting the hemp waste substrate with PO and HU resulted in
decreased cannabinoids content compared to the substrate that was
only autoclaved and sterile-incubated (K2) (Table 2). On the other
hand, a notable decrease in the acidic cannabinoids Δ9-THCA and
CBDA, and an increase in the more-stable Δ9-THC and CBD were
observed in the TR-fermented substrate, clearly indicating that
decarboxylation took place, which also occurs in heat treatments
(Ramirez et al., 2019). This reaction might have conserved the total
cannabinoids mass fraction in the substrate and prevented the
degradation observed in the sterile-incubated control (K2). The
molecular mechanisms of cannabinoids decarboxylation by TR is,
however, a subject for future research.

A BSFL feeding trial was carried out to test the influence of SSF
treatments on the growth of larvae. SSF can elevate the nutritional
value of agricultural residues as lignocellulosic biomass can be
transformed into a substrate with improved digestibility (Peguero
et al., 2021). In a study by Fitriana et al. (2022) that tested different
fungus-waste combinations, SSF improved the waste reduction and
nutritional value of cacao pod husk and oil palm fronds for BSFL,
leading to higher fatty acid contents in the larvae. Another study by
Wong et al. (2021) has shown that the fermentation of coconut
endosperm waste with Rhizopus oligosporus could also enhance
BSFL growth and lead to improved waste reduction. TR has been
used to ferment banana peels (Isibika et al., 2019) and trimmings of
brassica plants (Lindberg et al., 2022) to improve nutrients
availability and consequently improving the BSFL bioconversion
process. This, however, was not observed in this study as the TR-
fermented hemp waste led to a lower growth rate (Figure 2) and a

lower total yield in comparison to the autoclaved control (K2)
(Figure 3). Despite the enzymatic activity that could enhance
nutrients availability, TR produces antifeedants such as
trichocellin A-I and B-II with potential insecticidal activity
(Ratnaweera et al., 2021), which might have led to the reduced
growth of BSFL feeding on the fermented substrate in our study.
This could also explain the reduced growth, and high FCR, of BSFL
grown on the HU- and PO-fermented substrates as species of
Basidiomycota are capable of producing insecticidal compounds
(Sivanandhan et al., 2017). The insecticidal activity of Pleurotus
extracts have been demonstrated by Rahman et al. (2011) leading to
a high mortality rate in the dipteran species Lucilia cuprina, which
aligns with the findings of the study as higher mortality rates were
observed in the BSFL feeding on the PO-fermented
substrate (Figure 4).

On the other hand, a superior BSFL growth and yield were
observed in BSFL fed with the GL-fermented substrate. A GL isolate
has been investigated for its ability to improve the nutritional value
of fibre-rich substrates in an SSF setup (Rothmann et al., 2023), and
exhibited a remarkable ligninolytic activity while preserving the
desired cellulose fraction of the substrate and keeping an excess of
available energy in the substrate. This explains the superior growth
rate and yield of BSFL on the GL-fermented substrate (Figures 2, 3).
The lower crude protein value and the high C/N ratio in the BSFL
fed with the GL-fermented substrate suggests that GL boosted BSFL
growth by increasing carbon availability in the substrate. This
translated to an increase in larval carbon (most likely fat)
without a corresponding increase in crude protein (Figure 5).

Numerous factors can influence the elemental composition of
BSFL such as the composition of feeding substrate (Newton et al.,
2005; Daş et al., 2023), substrate physical structure (Yakti et al.,
2023b), and rearing parameters such as the density which could
influence nutrient availability and, thus, the composition of BSFL
(Yakti et al., 2022). Additionally, the accumulation of elements such
as Ca, K, Mg, Na, Cr, Cu, Fe, Mn, Ni, and Zn could vary based on
BSF life cycle stage (Rubio et al., 2022). In the presented study, a
trend of differences in the partial elemental composition was
observed between the different SSF treatments and the controls
(Table.1). SSF can increase the biological availability of elements in
plant materials and boost the nutritional value (Chawla et al., 2020;
Dhull et al., 2021). Furthermore, microorganisms can degrade and
utilise antinutrients such as phytic acid (Ayuk et al., 2014; Yakti
et al., 2018), consequently enhancing the bioavailability of vital
minerals like Fe and Zn, as observed in fermented foods (Mohite
et al., 2013). However, an increase trend was only noted in the K
values of the BSFL provided with the TR-fermented substrate in
comparison to the control, while a trend of lower values was
generally observed for other elements. It is known that
Trichoderma spp. and wood-decaying fungi can alter the
accessibility of elements through the release of siderophores and
other chelators to form chelate-element complexes (Goodell et al.,
1997; Adams et al., 2007). These complexes might have limited the
availability of certain elements for the BSFL. However, due to the low
BSFL biomass produced in this study, the samples were
pooled hindering statistical evaluation of these results. The
potential modulation of BSFL composition through substrate
fermentation and the mechanisms behind it are a topic for future
investigations.
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Cannabinoids were found in the produced BSFL and their values
differed among the treatments (Table 2). CBD was the most
abundant cannabinoid throughout the processes and its
occurrence in the produced BSFL appears to correlate with its
values in the BSFL substrate. This is in accordance to a previous
study that has shown an increase in the cannabinoid content in BSFL
with the higher inclusion rate of hemp waste into rearing substrates
(Yakti et al., 2023a). Research has explored the impact of
cannabinoids such as CBD and THC on the model organism D.
melanogaster. Cannabinoids exhibited a minimal influence on insect
behaviours, yet provided notable neural protective effects following
the exposure to traumatic injury (Candib et al., 2024). Despite the
absence of the canonical cannabinoid receptor (CB1) in flies
(McPartland et al., 2001), cannabinoids could still alter feeding
behaviour and metabolism, and alcohol sensitivity of Drosophila
melanogaster (He et al., 2021a; He et al., 2021b) suggesting
alternative pathways and mechanisms for their effects. On the
other hand, CBD can exhibit a pesticidal activity against pest
insects such as Manduca sexta (Park et al., 2019). In the present
study no pesticidal activities of cannabinoids could be observed as
BSFL survival was not compromised in substrates with higher
cannabinoids content (Figure 4), and CBD, as well as other
cannabinoids, seemed to be passively absorbed in the BSFL gut
as shown in other animals (Cohen and Neuman, 2020).

In terms of BSFL application for feed purposes, enriching the
larvae with CBD could potentially elevate the value of the end
product. Due to the non-psychoactive properties of CBD and its
potential advantages for animal health and welfare, laws concerning
its use in animal feed have progressed and numerous countries
legalised its use (Fallahi et al., 2022). In cats and dogs, CBD at
specific doses could effectively manage stress and range of disorders
including osteoarthritis, pruritus, epilepsy, anxiety, and aggression
(Corsato Alvarenga et al., 2023; Hunt et al., 2023). CBD also has
beneficial effects on the wellbeing of fish by reducing aggressiveness,
stress, and cortisol levels (Camargo-dos-Santos et al., 2022).
Additionally, chicken could also benefit from CBD, which
enhances gut barrier functions and thus preventing potential
infections (Konieczka et al., 2020).

Flavonoids and terpenes were almost completely removed by
the employed autoclaving process. Metabolite levels in the larvae
fell below the detection limits and could no longer be quantified.
Chaaban et al. (2017) analysed the thermal stability of different
flavonoids, among others luteolin-7-O-glucoside and luteolin.
Here, the glycosylated form was found to be more resistant to
heat than the aglycon. Nevertheless, a heat treatment of 110°C for
30 min resulted in a significant percentage of loss of around 75%
and 93%, respectively. For terpenes, an air-drying temperature of
90°C resulted in a terpene retention in hemp material of 35%–

39% (Chen et al., 2021). The results of the authors go hand in
hand with the extreme loss of flavonoid contents in our findings.
Possible effects of a microbial conversion of flavonoids via for
example, (de)glycosylation, methylation or glucuronidation, as
reviewed in Huynh Nguyen Thai et al. (2014), could
unfortunately not be mapped after the autoclaving process due
to insufficient mass fraction of target compounds. Corresponding
degradation products could not be detected using the
applied method.

5 Summary and future remark

In this study, solid state fermentation (SSF) using different
fungal species was tested on a hemp waste substrate followed by a
black soldier fly (BSFL) feeding trial. The fate of cannabinoids and
BSFL performance varied based on the fungus employed in the
SSF. Autoclaving the substrate without fungus inoculation
marginally improved BSFL growth with limited changes in the
cannabinoid profile of the produced BSFL. SSF with T. reesei (TR)
increased CBD and Δ9-THC mass fraction in the substrate while
decreasing the acidic cannabinoids. Δ9-THC was only present in
the BSFL that received the untreated and TR-fermented substrate.
In terms of BSFL growth, SSF with G. lucidum reduced the
cannabinoid content and resulted in superior BSFL
performance, likely due to enhancing carbon availability in the
substrate. H. ulmarius and P. ostreatus removed the cannabinoids
from the substrate and subsequently in the produced larvae. This
study confirms that the pre-treatment of hemp waste can be an
approach to enhance its nutritional value and remove bioactive
secondary metabolites that might otherwise limit its legal
utilisation. This research presents preliminary results, and SSF
processes parameters (e.g., fermentation time, pH, aeration,
nutritional supplements, temperature, etc.) can be further
optimised leading to potential enhancements of the pre-
treatment process. Different fungal species and strains can be
utilised in the SSF of hemp waste for the achievement of different
biotechnological goals. Future research can focus on exploring the
effects of combining different species or strains (consortia)
without antagonism but with complementary functions, aiming
to harness synergistic benefits. For example, species like GL could
enhance larval growth, while PO or HU could contribute to THC
degradation.
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