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One goal of synthetic biology is to provide well-characterised biological parts
that behave predictably in genetic assemblies. To achieve this, each part must be
characterised in a time-resolved manner under relevant conditions. Robotic
platforms can be used to automate this task and provide sufficiently large and
reproducible data sets including provenance. Although robotics can significantly
speed up the data collection process, the collation and analysis of the resulting
data, needed to reprogram and refine workflows for future iterations, is often a
manual process. As a result, even in times of rapidly advancing artificial
intelligence, the common design-build-test-learn (DBTL) cycle is still not
circular without human intervention. To move towards fully automated DBTL
cycles, we developed a software framework to enable a robotic platform to
autonomously adjust test parameters. This interdisciplinary work between
computer science and biology thus transforms a static robotic platform into a
dynamic one. The software framework includes software components such as an
importer that retrieves measurement data from the platform’s devices and writes
it to a database. This is followed by an optimizer that selects the next
measurement points based on a balance between exploration and
exploitation. The platform is shown to be able to automatically and
autonomously optimize the inducer concentration for a Bacillus subtilis
system and the combination of inducer and feed release for a Escherichia coli
system. As a target product the readily measurable green fluorescent reporter
protein (GFP) is produced over multiple, consecutive iterations of testing. An
evaluation of chosen (learning) algorithms for single and dual factor optimization
was performed. In this article, we share the lessons learned from the
development, implementation and execution of this automated design-build-
test-learn cycles on a robotic platform.
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1 Introduction

The complexity of heterologous protein production necessitates
the careful selection of inducer concentrations and growth
conditions for each protein and organism, posing a
multidimensional optimization challenge, with the aim of an
efficient and high-yield expression (Ahmad et al., 2018). Bacterial
expression systems commonly consist of a specific microbial strain
and an often synthetic genetic circuit, which at the simplest level
consists of a gene encoding a (heterologous) protein of interest
under the control of a promoter. This promoter is often chosen to be
inducible, in order to control the starting point of protein synthesis,
for example, once a desired cell density is reached. A multitude of
factors influence the successful production of a target protein. Major
variables are the quantity of inducer, induction timepoint and media
composition in order to correctly balance out process time needed,
cost associated to the often expensive inducers and the amount of
protein produced to maximize profit.

Over the last years, the concept of machine learning has seen
rising interest and use in the fields of biology and biotechnology to
address such multidimensional problems. It is used to analyse large
amounts of generated data by fitting a model to the data, which will
then allow predictions on the systems behavior under different
conditions. By using this knowledge, future experiments can be
conducted in a more targeted manner. In the field of biotechnology,
machine learning can, for example, be used to find optimal growth
conditions or optimal conditions for protein expression. Generated
data can then be used to compliment the existing data and refine the
model, starting the cycle of experiment→ data measurement→
model generation→ prediction→ experimental design→
experiment again (Greener et al., 2022). One of the main
constraints when using machine learning in a biological setting is
the need for large enough datasets, contrasted by the fact that
biological experiments are often characterized by slow speed of
data generation.

To generate the amounts of reproducible data needed to
efficiently use machine learning approaches, automating
biological workflows is necessary. Carbonell et al. (2019) To
achieve higher number of cultivations and measurements in
parallel, small scale cultivation plates can be used. These can, for
example, take the form of microfluidics (Husser et al., 2018), or
cultivation in microtiter plates, which can be handled by robots in
automated workflows. This automation leads to a significantly
higher throughput and faster turnaround compared to a human
experimenter (Torres-Acosta et al., 2022). Traditionally, such
optimizations involve prolonged cycles of ‘Design-Build-Test-
Learn’ and large amounts of manual labor to generate, curate
and interpret the gathered data. Complicating matters further,
biological variability and batch-to-batch differences introduce
potential sources of noise, making data analysis challenging and
increasing the risk of false results (Bähner et al., 2021). In 2016,
Keasling et al. introduced the concept of seamlessly integrating
machine learning software with liquid handling robots, offering a
fully automated approach to optimization, eliminating the need for
human intervention (Nielsen and Keasling, 2016). By combining lab
automation and machine learning, shorter experiment (turnover)
and data analysis times are achieved (Carbonell et al., 2019). This
fast turnaround results in a fully automated continuous

optimization, determining new points of interest in a generated
model after a sequential cultivation has already started. The model
generated from gathered data factors in an equilibrium between
exploration and exploitation (Thompson et al., 2023), identifying
areas of interest to be screened for the next experiment. This is
contrasted by the long time necessary for data interpretation without
machine learning (HamediRad et al., 2019). In recent years, the use
of robotic platforms in a biological research context has gained
broader popularity, changing from pure liquid handling platforms to
integrated platforms capable of starting, cultivating and measuring
bacterial cultures without the need for human interference. Such
concepts found use, for example, in bioprocesses Nickel et al. (2017)
and a lycopene biosynthetic pathway optimization, another
microbiological problem that tries to optimize a microbiological
system not by using the best inducer concentrations but by
exchanging the microbiological switches HamediRad et al. (2019).
Wollerton et al. demonstrated a platform capable of autonomous
cultivation of bacteria, as well as lysis of the cultures and protein
purification (Wollerton et al., 2006). Multiple papers have also
pointed out the challenges associated with high throughput
biological experiments using robotic platforms, such as
interoperability of components and coordinating the different,
often simultaneously occurring tasks by using a form of
scheduler system to keep track of operations performed and
labware moved (Kaspersetz et al., 2024; Casas et al., 2024). While
the combined use of machine learning and automated robotic
platform has shown promising results for optimization, utilizing
multiple iterations of the DBTL cycle, for example, for the
production of dodecanol by E.coli, (Opgenorth et al., 2019)
commonly human intervention between iterations is still
required. In this study we present our findings gathered from
integrating different optimization algorithms on a robotics
platform to maximize protein production for two biological
systems. An active-learning approach, utilizing machine learning
and a random search algorithm are used to seek out the optimal
solution within a multi-dimensional matrix. The input variables
being the amount of inducer (lactose/IPTG) added, as well as the
amount of enzyme added, releasing glucose from a polysaccharide,
and thus allowing control of growth rates. The measured output
variables are fluorescence, caused by GFP production as well as cell
density (OD600 nm). The platform then analyses the gathered data
and directly uses it for the next round of inductions for a total of four
full iterations of a test-learn cycle. This study is thus a proof-of-
principle, implementing two possible solutions to complex
optimization problems. It tests a machine learning algorithm
against a baseline (random search), utilizing a robotic platform
for autonomous and automated data generation and interpretation.
It is meant as an orientation for researchers wanting to integrate
machine learning and lab automation into their workflows to
optimize complex biological problems.

2 Materials and methods

Details on the used lab ware and media compositions can be
found in the supplementary data. Unless otherwise stated, chemicals
and consumables were purchased from Analytik Jena AG (Jena,
Germany), Carl Roth GmbH and Co. KG (Karlsruhe, Germany),
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Greiner Bio-One GmbH (Frickenhausen, Germany), Eppendorf AG
(Hamburg, Germany), Merck KGaA (Darmstadt, Germany) and
Sarstedt AG and Co. KG (Nümbrecht, Germany).

2.1 Robotic platform

Cultivation of the bacteria took place in 96-well flat-bottom
microtiter plates (MTP) inside a specialized robotics platform
(Model Number: 30–4448–010–26) custom build by Analytik
Jena, which was hosted at the Technical University of
Darmstadt, Germany.

2.1.1 Hardware
The robotic platform incorporates different work stations for

incubation, liquid handling, measurement, storage and moving
plates. A rendering of the robotic platform is shown in Figure 1.
The following modules of the robotic platform were used during the
experiments:

• For incubations a Cytomat two tower shake incubator
(Thermo Fisher Scientific) capable of incubating 29 MTPs
at the same time. Plates were incubated at 37°C at 1,000 rpm.

• For measurements a PheraSTAR FSX plate reader (BMG), to
measure the OD600 nm and the fluorescence resulting from
production of GFP in the wells of a MTP.

• For liquid handling two CyBio FeliX (Analytik Jena) liquid
handling robots. Felix1 is an 8-channel liquid handler, which
pipetting volumes can be individually adjusted per well. Felix2

is a 96-channel liquid handler able to pipette a full 96-well
plate at the same time. It’s channels cannot be
individually addressed.

• A linear axis mounted robotic arm with a gripper (PreciseFlex;
RoboDK), transporting MTP between different work stations.
The gripper also delivers new pipetting tips to both liquid
handlers and retrieves used tip boxes for disposal.

• For storage multiple racks and carousels capable of storing
plates, tip boxes and tip racks for both liquid handling robots.
Two refrigerated positions (4°C) are also available for reagent
storage in MTPs.

• A de-lidder to remove lids from plates before transferring
them to measurement or liquid handling workstations.

2.1.2 Software
The experimental workflow is managed through a dedicated

software, including a specialized manager software module within
the platforms own CyBio Composer Software. The CyBio Composer
Softwaremodule retrieves the next set of measurement points from a
database, which are previously written by the optimizermodule. The
optimizer module, in turn, obtains measurement data from the
importer module. This configuration enables the system to select
measurement points that are of particular interest based on the
objective function. All these components communicate with each
other via a common database. For a more detailed understanding of
how these modules interact, please refer to the sequence chart
provided in Figure 2. The default file format used in the
programming of the platform is a binary file which can not be
easily tracked by a version management system. For this reason

FIGURE 1
Rendering of the utilized robotic platform constructed by Analytik Jena AG including description of its major components. Cultivations were carried
out in the Cytomat two incubator, pipetting operations using the CyBio FeliX liquid handlers andmeasurements with the PHERAstar FSX Plate reader. Not
labeled are further (cooled) storage positions and the de-lidding stations.
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another supported file format which is XML based was used. This
format is also more suitable than the binary format for storing in a
version control system. Version control was done using GitLab.

2.2 Cultivation

2.2.1 Precultures
For biological system 1, Bacillus subtilis strain PY79 was used

as a strain background to generate strain S11142, expressing GFP
under control of the lactose/IPTG inducible promoter hyper-
spank (see Table 1). Strain S11142, grown on LB agar plates
(NaCl 5 g/L) containing 20 μ g/mL Zeocin, was used to
inoculate a 200 mL shake-flask with 20 mL of MSM media
supplemented with 1% glucose and 0.25% Casein acid
hydrolysate. After 16 h of incubation in a shaking incubator
(New Brunswick Innova 44 - Eppendorf AG, Hamburg,
Germany) at 37°C and 200 rpm, the culture OD600 nm was
adjusted to 0.1 by diluting in appropriate amounts of fresh
media and antibiotic. The adjusted culture was distributed to a
MTP, filling up rows B to G with 200 μ L/well of culture. Four more
MTP were filled in this layout, containing 180 μ L of sterile media
in the aforementioned wells instead of bacterial culture. For all five
prepared MTP, row A and H were filled with sterile media to serve

as a blank, cross contamination control and to protect against
evaporation during cultivation. For the latter reason wells 1 +
2and11 + 12 in rows A + H were filled with sterile, double distilled
water (ddH2O).

Experiments for biological system two were carried out with
Escherichia coli strain BL21 (DE3), transformed with plasmid
pBS682 yielding strain S29013. Plasmid pBS682 consists of an
SC101 backbone, carrying a GFP which is controlled by a T5-
lacO promotor inducible by lactose and IPTG. For cultivation
during robot experiments, a modified M9 Media was used, which
was supplemented with MOPS buffer and EnPump polymer
(EnPresso, Berlin; see Media and Supplements) as a carbon
source. The polymer enables controlled glucose release by
adjusting the amount of added enzyme. Strain S29013 grown on
LB agar plates (NaCl 10 g/L) containing 100 μ g/mL ampicilin was
used to inoculate 20 mL of EnPumpmedia in shake flasks. After 16 h
of incubation at 37° C and 200 rpm, OD600 nm was adjusted to 0.1 by
diluting in appropriate amounts of fresh EnPump media containing
100 μ g/mL ampicilin. Culture and media plates were prepared as
described earlier, but with EnPump media instead of MSM-Glc
media. Pipetting operations to prepare 96-well plates for all
experiments in the robotic platform were carried out using an
epMotion 5,075 liquid handling robot (Eppendorf AG,
Hamburg, Germany).

FIGURE 2
Sequence chart showing the communication between the proprietary CyBio Composer Software, the Importer, the Manager and the Optimizer.
Communication between these parts is achieved via a database server which for the sake of clarity is not shown. The CyBio Composer Software
communicates with the different machines in the robotic platform via specific, proprietary drivers. The importer fetches the measurement data from the
plate reader and writes them to the database. The manager decides which of the following jobs should be done next: measuring, inducing and
cloning, or waiting. The optimizer decides which points should be evaluated next by adjusting the pipetting volumes of the liquid handling stations.

TABLE 1 Bacterial strains and plasmids used and generated in this study.

ID Organism Genotype or relevant characteristics Source

S11142 B. subtilis PY79
amyE:: (Phyperspank − GFPmut2, SpcR)

This work
ΔsigF::lox72,Δskf::SpcR

S29013 E. coli BL21 + pBS682 fhuA2 [lon] ompT gal [dcm] δ hsdS This work

pBS682 Plasmid PT5-lacO_GFP
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2.2.2 Cultivation in robotic platform and
experimental workflow

At the beginning of the workflow, the robot platform was loaded
with a microtiter plate containing cultures at OD600 nm 0.1 as well as
four additional MTP containing sterile media. Appropriate numbers
of tip boxes and racks for the liquid handling workstation were
added, along with the necessary reagents and empty MTP to mix
together the inducer mix when needed. These reagents were sterile
water and 20% (w/v) lactose in tubs placed directly at the working
positions of the 8-head pipetting robot Felix1, as well as diluted
enzyme (ENPump 2000 Reagent-A diluted 1:2 in sterile ddH2O).
The microtiter plate containing the initial cultures is referred to as
the master plate. Immediately after starting the experiment, it is
transferred to the incubator. Cultivation of MTP in the robotic
platform took part in a Cytoma t2 automated incubator
(ThermoFischer) at 37° C and 1,000 rpm. All plates are identified
with a unique barcode, which allows tracking plates throughout the
whole workflow. Every hour, the cultivated plates were transferred
from the incubator to a Pherastar FSX platereader (BMG Labtech),
where OD600 nm and fluorescence (excitation 485 nm, emission
520 nm) were measured. The measured GFP is converted to
absolute fluorescence according to the iGEM standardization
protocol provided at protocols.io (# 6zrhf56). The calibration
data is provided in the Zenodo repository referenced in the Data
Availability section. Once the average OD600 nm of a plate across all
cultivated wells reached 0.6 the induction process was started
(Figure 3). The process consists of three different stages, each
carried out by one of two CyBioFelix pipetting robots. In the first
stage, an induction mixture was prepared. For this,the enzyme
solution storage plate was transferred to the deck of Felix1 from
cooled storage, together with an empty 96-well V-bottom microtiter
plate. In the empty plate a mixture of inducer (20% lactose or
20 mMIPTG), ddH2O and enzyme solution (in biological system 2,

responsible for glucose release) was prepared to a total volume of
95 μ L. For the single parameter optimization (System 1), the
maximum inducer volume in the mixture was only limited by
the maximum total volume of the induction mix, resulting in a
maximum IPTG concentration in the cultivation well of 2 mM. For
the two-parameter optimization (System 2), a maximum of 75 μ L of
20% lactose solution and 20 μ L enzyme solution (1,500U/L) were
mixed, while the remaining volume was made up of sterile water.
This resulted in a final lactose concentration between 0 and 43.8 mM
in the cultivation wells and a maximum enzyme concentration
between 0 and 30U/L. Each components volume was determined
by one of the two algorithms explained under Section 2.3. For
biological system 2, the enzyme storage plate was transferred back to
the cooling position after preparing the induction mix and the
premixed induction plate was transferred to the Felix2 deck. The
cultivation plate which had reached OD600 nm 0.6 was transferred to
the 96-Well Felix2 deck from the incubator as well as a sterile
microtiter plate containing 180 μ L fresh media/well. The 96-
channel Felix2 was used to transfer 20 μ L of bacterial culture
from each well of the cultivation plate to the fresh plate, resulting in a
final volume of 200 μ L per well. In the third stage, a set of fresh tips
was used to pipette 20 μ L from the premixed induction plate into the
old culture plate, bringing back its volume to around 200 μ L. By
using the prepared induction plate to induce all wells at the same
time, in contrast to pipetting the inducer directly into the master
plate, three things were achieved: Firstly the amount of time the
master plate is not incubated and agitated at 37°C is reduced. This is
necessary since the physiology of the cultivated bacteria can react to
changing environments within a very short time and adjust its gene
expression patterns accordingly. Secondly a higher precision of the
induction volume is achieved, since the error of the Felix1 liquid
handling robot is larger for small volumes. Thirdly induction for all
plates happens at the exact same time, reducing intra-plate

FIGURE 3
Left: Iterative work flow performed by the robotic platform: Themaster plate is inoculatedmanually as described. All further steps are autonomously
performed by the robot based on measured values. Induction volumes are determined through models based on the previously measured plates. Right:
Overview of the plate handlingworkflow. In the clonemasterplate step a small amount (20 μ l) of liquid is pipetted from themaster plate into one of the
mediamicrotiter plate to inoculate a new plate. In the prepareinductionplate phase, the 8-channel pipetting robot fills thewells of a new empty
plate with water, glucose releasing enzyme and inducer in a ratio determined by the applied algorithm. In the inducemasterplate phase a plate-
operating liquid handling robot is used to transfer 20μ l from the induction plate into eachwell of the cultivation plate.Δtm describes the incubation period
between twomeasurements. tr describes the time after the induction happened, this variable is relevant for the evaluation of gfp(x).odi describes theOD
at which the biological system should get induced.
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variations. Both MTP, one being newly inoculated and the other
containing the induced culture were then transferred into the
incubator and measured for OD600 nm and fluorescence every
hour. Once average OD600 nm of the newly induced plate reached
0.6, the induction process starts anew until all iterations were
induced (Figure 3). For the last plate, the 20 μ L usually used to
inoculate a new plate were discarded. The data recorded 4 h after the
induction was then used by the optimization algorithm to assess the
biological systems response to different inducer (and enzyme)
concentrations. Depending on the algorithm running, new points
of interest along the response curve were then defined, determining
the amounts of inducer and enzyme added for induction of the next
plate. The experiments thus was ended 4 h after the induction of the
last plate once the last measurement was taken.

2.3 Algorithm and optimization

The aim is to find the optimal inducer concentration for a given
system. In the simplest form, this would be defined as the highest
fluorescence output (GFP production). Without attributing a cost
factor to the inducer, the platform would answer this question
simply with adding the maximum amount of inducer unless
effects like arising toxicity would lower protein expression at
higher concentrations. Since the amount of inducer is an actual
cost driver in industrial scale production, an arbitrary inducer cost is
attributed to the inducer, so the system has an optimum where a
high production of the target protein (in this study GFP) can be
produced with a low inducer input x.

f x( ) � αix + αggfp x( ) (1)

In Function 1, αi is a negative value describing the price for the
inducer and αg a positive value describing the price for the GFP
output. gfp(x) is a function describing the GFP output of B. subtilis
for an given inducer input x. This function gfp(x) can be evaluated
on the robotic platform, but is noisy and slow to evaluate, since in
contrast to simple mathematical functions, experiments with the
described biological system take hours to evaluate. Defining x � 0
for no inducer and x � 100 for the maximum inducer concentration
allows us to use bounded optimization algorithms.

Since we are dealing with a bacterial expression system, the
system has inherent noise both from extrinsic factors such as
imperfect uniformity of physical parameters across the plates as
well as from intrinsic, cellular factors (Pal and Dhar, 2024)
influencing gene expression, meaning that even if multiple wells
are induced with the same x, the resulting fluorescence and optical
density measurements will vary from experiment to experiment.
Effectively this results in an inter-plate variety, which is sometimes
larger than the intra-plate variety between different wells with
different inducer concentrations. The effect is more pronounced
between non consecutive plates, e.g., plate 1 and 4, rather than
plate three and 4. Intra-plate variability is handled by GPR as
conflicting evidence (stochastic process), this results in an
increased uncertainty and a shift of the expected cost in the
measured point. To deal with inter-plate variety, a second axis
was introduced describing the distance between plate
measurements. This allowed the algorithm to assign less weight

to older measurements, prioritizing more recent results when
evaluating future points of interest.

2.3.1 Gaussian process regressor (GPR)
Gaussian Process (GP) is a method to model hidden functions

from a given prior and from observed data (Rasmussen and
Williams, 2005). The output of the Gaussian Process is the
distribution function. The acquisition function describes which
point to sample next by weighing between exploration of areas of
high uncertainty and exploitation of areas with high values and low
uncertainty. The Upper Confidence Bound (UCB) acquisition
function (see Function 2.3.0.1) prioritizes points with high mean
prediction μ and a high uncertainty σ. The parameter κ trades of
exploitation vs. exploration.

UCB x( ) � μ x( ) + κ · σ x( )
The Expected Improvement (EI) acquisition function (see

Equation 1) points that could result in a new best value.

EI x( ) � E max 0, f x( ) − f x+( )( )[ ]

The standard GPR process would be to train a GP on the
previous samples and use the acquisition function to find the
next sampling point. Since a parallelized approach in microplates
is used, multiple points have to be sampled at the same time.

For this, the algorithm selects one sampling point, adds this
point to the set of points that are induced in the next plate, and adds
this point with the median as an observed point to our list of known
values. It then build a new GPR, selects a new point with the
acquisition point and repeats this process until enough distinct
sampling points have been gathered. For the UCB we increase set κ
to 20pκ to use higher values of exploration in later and uncertain
GPR. This process could fail and result in no new values, in this case
values surrounding the last value are added as a fallback. For the first
plate, where no points where yet sampled the points are selected
randomly. The above described algorithm does not yet incorporate
the previously described plate related noise. All other not systemic
types of noise can be corrected for by the GPR. The GPR does not
require an outlier detection preprocessing (Rasmussen and
Williams, 2005). To handle inter-plate noise we introduce the
plate count as a new axis to the GPR hidden function. Changing
it from f (inducer) - > x to f (inducer, plate) - > x. The GPR model
then can be used to predict the hidden function for a specific plate.

Alternatives to the chosen GPR exist. Neural Networks, for
example, can be used to solve the bounded optimization problem.
This could be especially useful if enough training data exists to
correct noise introduced by well position (i.e., corner or edge wells).
Yet this method would be significantly more complicated and it is
still an open question to create explainable Neural Network.
Furthermore are most Neural Network frameworks not
specifically designed for probabilistic regression tasks. The
utilization of decision trees as an alternative is suboptimal for
regression tasks and would require additional modeling for this
problem. Gaussian Process Regression (GPR) effectively handles
uncertainties in training data, producing a model that explains the
data and is inherently interpretable. GPR was also chosen because it
requires only weak assumptions, for example, that the hidden
function is continuous. That is a safe assumption for growth
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curves. Linear models can only be used with an appropriate kernel to
correct for the non linearity of the hidden function, which would
introduce new assumptions and complexity. Last but not least with
scikit-learn a robust GPR implementation exists.

2.3.2 Software for learning algorithms
For importing, analyzing and optimizing measurement data,

python 3.7 was used with the following packages: joblib version
0.13.2 for model export, matplotlib version 3.1.1 for plotting,
pymssql version 2.1.4 for communication with Microsoft SQL
Server Express version 12.0.2269.0. scikit-learn version 0.21.3 for
their Gaussian process regression implementation (Pedregosa et al.,
2011), scipy version 1.3.1 for statistical functions (Virtanen et al.,
2020), plotly multiple version for plotting.

3 Results and discussion

3.1 Biological system 1: cultivating Bacillus
subtilis for data generation, single parameter
optimization and algorithm selection

For the first system, two algorithms, namely, Gaussian process
regression with expected improvement and a double Gaussian
process regression with upper confidence bound were chosen to

be implemented to optimize the inducer (IPTG) concentration and
compared with random search (Rasmussen and Williams, 2005).
The software development aim of this first set of experiments was to
show a functioning integration of data analysis and experimental
planning of an ongoing experiment on the robotics platform.
Another aim was to evaluate two different optimization
algorithms on a basic, single parameter optimization to compare
the different algorithms for future multi-parameter optimizations.
Two experimental runs were conducted for each algorithm
(Figure 4), as well as two runs employing random search
(Supplementary Figure S1).

Inducer amounts (IPTG) differed for each well and were chosen
either by the optimization algorithm, or randomly generated
numbers, depending on the algorithm controlling the respective
experiment. Since only the inducer amounts were varied, this
approach presents a one dimensional optimization problem. A
range of 0 mM–2 mM of final inducer concentration in the wells
was investigated. The experiments confirmed even growth across the
plates and the possibility to repeatedly inoculate a new plate from the
previous one.

Figure 4 shows a comparison of both algorithms. A measurable
influence of IPTG induction onto measured fluorescence can be
seen. Due to the cost factor attributed to IPTG (Equation 1), the
optimum of the objective function f(x) is not located at the highest
measured fluorescence, but rather at the highest ratio between IPTG

FIGURE 4
Comparison of the two search algorithms selected for a single-parameter optimization on the robotics platform. The chosen algorithms were
Gaussian process regression with expected improvement (GPR-EI) and Gaussian process regression with upper confidence bound (GPR-UCB). For both
experiments, the four consecutive plates which were induced as determined by the algorithm are shown in order left to right. The green dots represent a
portion of the measured data for the respective plate. The blue line is the Gaussian process regression (GPR) of the search algorithm. The thickness
of the blue line describes the model variance. f(x) on the y-axis is the objective function. 20 mM IPTG were used as inducer and mixed with ddH2O to a
total volume of 100 μ L. 20 μ L of this mixture were then used to induce the corresponding cultivation well, resulting in final inducer concentrations
ranging from 0 to 2 mM.
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usage and fluorescence output. This optimum for the experiments
lies within a target range between 7 and 9% IPTG solution (20 mM)
in the induction mix, resulting in a final IPTG concentration
between 0.14 and 0.18 mM in the cultivation. In the single
parameter optimization, random search evaluated the target
range six times during the first run and eight times during the
second run. GPR-UCB evaluated the optimal target range [7,9]
16 times on the first run and 8 times in the second run. GPR-EI
evaluated the target range 16 times on the first run and 44 times in
the second run. The GPR-EI was chosen because it performed
marginally better, since it evaluated the target range more often.
It was then compared to random search in a two parameter
optimization experiment by growing E. coli in a glucose limited
fed-batch incubation using lactose to induce GFP production as
described below.

3.2 System 2: application of GPR-EI for 2-
parameter optimization

In the second system, the previously chosen optimization
algorithm GPR-EI was compared with a random search

algorithm. For this, E. coli was cultured in M9-ENpump media.
Variables for this system were the inducer (lactose) concentration as
well as the amount of added enzyme. The added enzyme degrades
the ENpump polysacharide, releasing glucose at an adjustable rate in
the process, thus allowing to control growth rates. (Krause et al.,
2016). While glucose can provide additional energy to the cells, its
presence also inhibits the lactose inducer as well as lactose uptake
into the cell (Inada et al., 1996). Furthermore excess glucose can
results in overflow metabolism, which is an unfavorable state in
E. coli protein production as it, for example, leads to acidification
and a waste of energy in order to regenerate NAD+. (Rosano and
Ceccarelli, 2014). A total of three experiments with E. coli were
conducted, one using random search and two using the optimization
algorithm GPR-EI.

Figures 5, 6 show the growth characteristics (OD600 nm and
measured fluorescence 4 h after induction) of different plates
over the course of the three experiments. In all cases, the master
plate shows lower average ODs (around 0.7–0.9) in comparison with
the iterations inoculated later (Plate 1–4; between 1.0 and 1.4). For
plates 1-4, OD600 nm values up to OD600 nm 1.6 can be observed.
Cultures in the master plate were cultivated for over 20 h before
reaching the induction OD600 nm of 0.6. Fluorescence and OD600 nm

FIGURE 5
The graph displays the response curves of all five plates from a single experiment conducted on the robotics platform. These curves represent the
effects of varying concentrations of lactose (inducing GFP expression) and enzyme addition onto fluorescence and OD. A surrogate-based optimization
using a Gaussian process model with an expected improvement acquisition function was employed to determine the next points of interest.
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show higher degrees of variance after the induction for plates 1-4,
likely due to the cultivated bacteria adopting to the cultivation
conditions. These differences highlight the importance of the
initial master-plate as a quasi pre-culture, ensuring adequate
adaptation and growth before subsequent measurements, while
diminishing in relevance in later iterations due to the inter-plate
noise mitigation described in Section 2.3.

3.2.1 Determination of inducer and glucose release
effects on GFP expression

Measurements for OD600 nm and fluorescence 4 hours after
induction were used for data analysis by the active learning
algorithm. The amount of added enzyme and thus available
glucose in the cultivation has a distinct effect on the measured
fluorescence (Figure 7) with an optimum between 7–9 μ L enzyme
solution added to the induction mix. This is equal to a final
concentration between 11 and 14U/L in the cultivation well.

Higher volumes of added enzyme have a negative effect onto
fluorescence, likely due to glucose repression of the lac-operon
controlling GFP expression. As illustrated in Figure 6, the
influence of varying lactose concentrations on GFP expression
becomes less pronounced at higher levels. While the absence of
lactose results in minimal fluorescence, a sharp increase in
fluorescence until the addition of approximately 20 μ L of lactose
to the induction mix can be seen, corresponding to a concentration
of 12 mM in the media. Beyond this point, baseline fluorescence
starts to plateau with further additions of lactose. The notable
variance in fluorescence measurements when plotted against the
volume of lactose added can most likely be attributed to the
concurrent effect of varying volumes of glucose releasing enzyme
in the induction mix. This becomes especially apparent when
looking at the interactive 3D plots provided as a supplemental
file, displaying the combined effect of inducer and enzyme
amount onto fluorescence and OD600 nm. As the experiment

FIGURE 6
Comparison of two E. coli cultivation over 5 consecutive 96-well plates carried out on the robotics platform to optimize GFP production by varying
the amount of inducer (lactose) and enzyme added resulting in glucose release. A random search approach is compared with a Gaussian process model
with an expected improvement (GPR-EI). Shown are the measured fluorescence and OD values 4 h after the induction of each plate in response to
different lactose concentrations. An interactive 3D plot is provided as a supplemental file.
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progresses, the algorithm seeks to sample areas with either a high
potential of containing a local optimum, or which harbor a high
amount of uncertainty (exploration vs exploitation). This in turn
also leads to areas not being sampled if the algorithm deems them to
be of little interest to these two objectives. One such areas is marked
grey in Figure 5.

4 Lessons learned

Custom build robotic platforms like the one used in this
workflow are not “off-the shelf” products which to a large degree
hinders direct reproduction by others. While research
communication exists to help decide whether establishing
automation in ones lab is a recommended approach (Rupp et al.,
2024) the potential for usage is wide, ranging from assisting
researchers in a single specific task (Level 1) all the way to full

automation (Level 5) where human interaction is not required under
any circumstances (Stephenson et al., 2023). Because of this, we aim
to show the potential of such workflows, inspire further research and
disseminate our lessons learned during implementation of the
workflow. Setting up a working, feed-back-loop process on a
robotic system has many pitfalls and in the following subsection
we share some we experienced.

4.1 Versioning of workflows to
track changes

Many iterations of workflow instructions have to be tested,
retaining the working ones while pruning those that cause
failures during the robot run. Over the course of developing and
advancing such workflow, errors or unused code will interfere with
previously working code, if no proper version control system, such

FIGURE 7
Comparison of two E. coli cultivations over 5 consecutive 96-well plates carried out on the robotics platform to optimize the amount of inducer
(lactose, inducing GFP expression) and enzyme (resulting in glucose release). A random search approach is comparedwith aGaussian processmodel with
an expected improvement (GPR-EI). Four hours after each induction, the measured data shown here was processed to determine optimal inducer and
enzyme concentrations for the following plates induction. An interactive 3D plot is provided as a supplemental file.
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as git, is used (SeeMaterials andMethods). This requires the vendors
operating software of the robot to be in a non-binary format,
optimally a popular programming language such as python or at
least a structured markup languages such as XML.

4.2 Chose a modular approach

Due to the expensive nature of consumables, reagents and
runtime, a modular approach to generating a complex process
should be chosen to limit failed runs. We found it helpful to first
show the function of individual operations, e.g., getting a plate from
the incubator to microplate reader and measured, then a single full
iteration (inoculation, measurements, induction, measurements)
and only then a full, complex workflow.

4.3 Test the workflow in a run using
colored dyes

Molecular biology frequently involves transferring small
amounts of clear solutions. While an experienced human
operator is able to check his operations visually, robotic
platforms have no eyes. Thus running the workflow with dyes
can help to visualize and measure error as well as contamination
sources. When pipetting the inducer, for example, the pipette tips
went too deep into the stock solution, transferring incorrect
amounts of inducer due to droplet buildup on the outer surface
of the pipette tips. This became apparent through appropriate
controls and could be troubleshooted using fluorescein solutions
as an readily quantifiable compound.

4.4 Randomize to tackle plate effects

While randomizing the positions of individual wells on each
plate, instead of sorting them, e.g., by inducer amounts is an efficient
way to tackle plate specific positioning effect (Roselle et al., 2016), we
found that position specific effects also exists in other places of the
workflow. Evaporation in the incubator, despite being a humidity
controlled environment, as well as in the plate reader during
measurements can effect plates and wells within differently.
Keeping track of the exact travel paths and parking positions of
each plate as well as the volumes within it can be done during test
runs to discover and combat such effects further.

4.5 Use cameras to enable debugging of
occurring problems

Experiments carried out by robotic platforms or liquid handlers
still involve a certain degree of randomness, which can interrupt the
experimental workflow, for example, discarded tips blocking the trash
chute, thus blocking the robotic arm, equipment malfunctioning or
plates being dropped seemingly random.While this usually brings the
workflow to a halt at some point due to built in safety features of the
platform, finding out what exactly caused this error is not possible
without video recordings. We thus used the open source software

ZoneMinder (https://zoneminder.com/) to record videos and allow
remote monitoring using firmware modified wifi cameras (https://
github.com/alienatedsec/yi-hack-v5) as well as a Raspberry pi with
night vision camera (Waveshare IR-Cut Camera) placed inside the
shaking incubator.

4.6 Use mobile alerts to inform operators

If errors occur which cannot be handled by the automation
platform, the running workflow will be stopped. This often results in
experiments failing, as the biological systems do not stop. It is
therefore beneficial to be notified of such stoppages as timely as
possible. This can, for example, be achieved by sending out email or
SMS alerts to qualified personnel, in case that the robot management
software has not responded for more than 10 min.

4.7 Try to minimize user input and
interaction

One consistent source of errors occurring in the workflow was
wrong initial user input. This could be in the form of physical
labware being misplaced or miscounted before starting the
workflow, leading to the robotarm trying to retrieve labware
from an empty slot, dropping labware onto an already occupied
slot or grabbing a stack instead of a single plate or pipette rack. We
found that having a four eye principle when starting up the robot,
with the second person potentially watching remotely with the help
of installed cameras reduced the risk of such errors. Another
solution, already employed by a number of small scale liquid
handling platforms is the automated detection of labware using
cameras. A third solution employed at this platform was the use of
small lasers on turrets able to pinpoint the location selected labware
had to be placed (Suleiman et al., 2024) which greatly reduced the
loading time and error rate of misplaced labware.

5 Conclusion

In this study we demonstrate a robotics platform which can
autonomously optimize multiple parameters over a continuous series
of cultivations. We developed a software framework enabling the
presented system to inoculate new plates from previous cultivations,
measure growth and expression characteristics and analyze the
gathered data without user input. Using a search algorithm, the
system is able to determine points of interest for induction of
subsequent cultivations. The system mixes the inducers for each
well independently, retrieving the necessary data from a database.
Usage of this database enables the workflow to be adapted to compute
measured data in different ways and serves as the central hub for data.
The digital documentation of all pipetting volumes and measured
datapoints provide a high reliability and traceability compared to a
human operator. This provenance, combined with the autonomous
optimization greatly enhances the walk-away time of human
operators since the robot can work unsupervised after being
loaded with supplies once. The chosen expression systems
exemplify two important industrial production systems. Especially
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the two parameter optimization represents a common combination of
host (E. coli), promoter system (lac) and feeding strategy (glucose
limited fed-batch). Consequently, the observed higher GFP expression
for lower concentrations of available glucose is supported by previous
observations (Neubauer et al., 1992).

While the use of a optimization algorithm allows finding optimal
solutionsmore efficiently in respect to utilization of resources, a random
search across the sample space also allows finding optima for a two
parameter optimization. This shows that even lab automation without
optimization algorithm based feedback loops can proof useful to reduce
human intervention. Such simpler implementations can furthermore
serve as a stepping stone towards higher degrees of complexity. While
the chosen two parameters (inducer and enzyme added) and their effect
on OD and GFP expression (fluorescence) can still be visualized and
comprehended by a human operator, the presented system could be
easily scaled tomulti-dimensional optimizations with higher number of
samples. The robotic platforms incubator used in this work, for
example, holds a maximum of 29 plates, of which only five were in
parallel use for this study. It has to be said though, that merely
increasing the numbers of iterations and plates in parallel use is not
a endlessly scalable solution. With too many plates having to be moved,
inoculated and induced, scheduling issues are expected to arise, since
moving plates between the different positions takes considerate
amounts of time. This problem is being actively addressed in the
community (Itoh et al., 2021). One alternative could be to use 384-
well plates, which would address the bottle neck of transporting times
per sample, yet would require more experience with the influence of
well geometries on important cultivation parameters such as oxygen
transfer rates. The appliedmethodology of Gaussian Process Regression
(GPR) would struggle to scale beyond ten parameters due to its
computational complexity, which is well beyond the likely limit
reachable with the automation setup. Additionally, as the number of
parameters increases, the kernel optimization process becomes more
challenging, often leading to over-fitting or poor generalization
(Rasmussen and Williams, 2005).
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