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A one-step hydrothermal method was applied to prepare carbon dots (CDs) with
superior fluorescence properties using chitosan as a carbon source. The as-
prepared carbon dots were then grafted onto a sodium alginate-gelatin hydrogel
film to form a fluorescent hydrogel film (FHGF), emitting at 450 nm under
excitation of 350 nm light. In comparison to the CDs, the fluorescence
intensity of this film was maintained over 90.0% and the luminescence
position remained basically unchanged, caused by the unchanged surface
light-emitting structure of the CDs, due to the existence of electrostatic
repulsion between the CDs and the hydrogel. Moreover, the tensile-stress of
the fluorescent film with 1.0 wt.% of the CDs was increased by 200% to 10.3 Mpa,
and the strain was increased from 117% to 153%. The above experimental results
are attributed to the hydrogen bonding between the CDs and the sodium
alginate-gelatin hydrogel from analyses of the FT-IR spectra. Interestingly,
Fe3+ exerted a great quenching effect on this fluorescent film in the
concentration range of 0–1.8 μM. The film can be basically used recyclically
to detect Fe3+ in solution with a detection limit as low as 0.043 μM. In a word, this
work demonstrated an enormous potential of carbon dots in fabricating
mechanical and fluorescent properties of the hydrogel and proposed a new
detection platform for Fe3+. In view of the promising Fe3+ detection capacity, this
hydrogel film can also be applied in oral bacteria surveillance and semi-
quantification of ferroptosis in oral cancer.
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Introduction

Hydrogel is a polymer system with a three-dimensional network
structure, which has received extensive attention due to its good
biocompatibility (Chang et al., 2019) and biodegradability (Hao
et al., 2019). Nowadays, hydrogel has been applied in the fields of
tissue-engineering (Liu et al., 2020), drug-delivery (Plappert et al.,
2019), a portable probe (Li et al., 2024a) and the like. Meanwhile,
research on the fluorescent hydrogel is attracting more attention due
to its special usages in bioimaging (Mehwish et al., 2019) and
environment arraying (Dai and Fidalgo de Cortalezzi, 2019).
Scientists have attempted to combine fluorescent materials such
as rare-earth compounds (Liu et al., 2019), organic fluorescent dyes
(Nishiyabu et al., 2014), and semiconductor quantum dots (Sahiner
et al., 2011) with hydrogels to obtain fluorescent hydrogels with
some specific properties. However, the above materials usually limit
the application range of fluorescent hydrogels due to their toxicity
and high cost. Then, with the advent of carbon dots (CDs), scientists
have seen ways to solve this problem. They have tried to combine
CDs with hydrogels based on the biocompatibility (Ni et al., 2019),
low toxicity (Gate et al., 2019) and excellent optical properties
(Wang et al., 2010). Besides, the combination of CDs and
hydrogels can be widely used in fields such as bioimaging (Zhu
et al., 2013) and metal ion probes (Zhang and Chen, 2014).
Surprisingly, the addition of CDs can also replace the traditional
crosslinkers to enhance the mechanical properties of the hydrogel
(Hu et al., 2015). For example, in 2018, Hu et al. (2016) found that
adding carbon dots as physical crosslinkers into the polyacrylamide
(PAM) hydrogel can greatly improve its mechanical properties.
Recently, Wang J. et al. (2018) also found the same phenomenon
in synthesizing new p (HEMA-co-AA) fluorescent hydrogels.

Owing to the sensitivity and selectivity of carbon dots to metal
ions (Wei et al., 2012), efforts are being made to develop CDs as a
completely new metal ion probe. Fortunately, the carbon dots also
give the similar performance while being grafted to fluorescent
hydrogels (Konwar et al., 2015). Therefore, the use of fluorescent
hydrogel as a new ion detection platform has become a new field of
exploration (Guo et al., 2017). For instance, in 2018, the PVAm-g-
N-CDs/PAM synthesized by Yu et al. (2017) was highly sensitive to
Hg2+ with a detection limit of 0.089 μM. Moreover, Geng et al.
(2015) synthesized fluorescent chitosan hydrogel (3D-FCH), which
had a detection function for Hg2+ with a very low detection limit.
The above all indicated the possibility of fluorescent hydrogels to be
a metal ion detection platform.

Generally, iron is an indispensable element for human body and
its content in drinking water should be controlled within a certain
range. At present, the content of Fe3+ in solution is generally
determined based on inductively coupled plasma-atomic emission
spectroscopy (ICP-AES) and chemical titration. However, the above
method is strenuous and cumbersome. Therefore, it becomes very
important to explore a new simple method for monitoring iron
content. Fortunately, scientists have discovered that Fe3+ can cause
fluorescence quenching of carbon dots (Qu et al., 2013), implying
the possibility of establishing a superior Fe3+ detection platform by
the use of the CDs-grafted hydrogel. More importantly, from aspect
of the promising Fe3+ detection capacity, this kind of hydrogel film
can also be applied in oral bacteria surveillance and ferroptosis
bioimaging (Li X. et al., 2024). Herein, CDs were firstly prepared

with excellent fluorescence intensity and then grafted into the
hydrogel film. Then, the properties of the composite film were
checked including the fluorescence properties and mechanical
properties, to investigate effects of the CDs on the film.
Importantly, the relationship between the Fe3+ concentration and
the fluorescence intensity and effects of various metal ions on its
fluorescence intensity were also carried out, for exploring the
feasibility of fluorescent hydrogels film as a Fe3+ detection
platform and accelerating the application of CDs, especially in
application of oral bacteria surveillance and ferroptosis bioimaging.

Materials and methods

Chitosan (deacetylation degree ≥95%, viscosity 100 ~
200 mpa٠s), gelatin (glue strength ~240 g Bloom), and sodium
alginate (viscosity 200 ± 20 mpa٠s) were purchased from Aladdin.
Glycerol (Purity ≥99.0%) was purchased from Greagent and quinine
sulfate (purity ≥99%) was purchased from Acros. Salts of
FeCl3·6H20, Ni (NO3)2·H2O, MgSO4·7H20, Ca (NO3)2·4H2O,
KCl, Pb (NO3)2, ZnSO4·7H2O, AgNO3, NH4Cl, CuSO4·5H20, and
EDTAwere purchased from Sinopharm Chemical Reagent Co., Ltd.,
China. None of the above chemicals were further purified. The
deionized water used was supplied by the lab.

Synthesis of carbon dots (CDs)

Chitosan of 1.0 g was dissolved in deionizedwater of 50mL, and the
resultant was transferred to a high-pressure hydrothermal reaction
vessel in an oven, followed by aging at 200°C for 6 h. After the
treatments of filtration, centrifugation, dialysis and freeze-drying,
brown yellow powder of carbon dots was obtained as received.

Preparation of fluorescent hydrogel
film (FHGF)

Sodium alginate of 2.0 g and gelatin of 0.5 g were dissolved in
deionized water of 50 mL and then stirred at 50°C for 4 h. After that,
glycerol of 3.0 mL and a certain amount of carbon dots were added
to the above solution and then the mixture was agitated at room
temperature for 4 h. Hereafter, the resulting suspension was poured
into a mold and placed in an oven at 60°C, maintained for 24 h to
obtain a dried gel film. Finally, a calcium chloride solution (5.0 wt.%)
prepared in advance was sprayed on the surface of the film. After
crosslinking for 10 min, the composite film was peeled off to be as a
fluorescent hydrogel film (FHGF).

Cycling experiment of FHGF

The FHGF was soaked in 10–5 M Fe3+ solution for 5 min, and
then rinsed for 3 times with deionized water to remove the Fe3+

remained on the surface. After that, it was further immersed in
10–5 M EDTA solution for 5 min, and then rinsed for 3 times with
deionized water. The fluorescence intensity of the FHGF was then
measured. The above steps were repeated for 5 times.
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Characterizations

X-ray diffraction (XRD) of CDs was measured using a D/max-
2550 PC X-ray powder diffractometer. Optical properties of CDs
and FHGF were analyzed using a V-530 UV-visible
spectrophotometer and an F-4500 fluorescence
spectrophotometer. To obtain material composition information,
Fourier transform infrared (FT-IR) spectra of samples were obtained
on an Aavatar-380 FT-IR spectrometer. The zeta potential of the
samples was analyzed by using the Zestasizer Nano ZS ZEN3600
(Japan). In addition, the surface morphology and structure of the
FHGF were analyzed on a Hitachi S-4800 scanning electron
microscope (SEM) at an accelerating voltage of 10 kV, and on a
JEM-2100 microscope transmission electron microscope (TEM).

Malondialdehyde (MDA) assay

Ferroptosis was induced by erastin (Absin, China) in the oral
squamous cell carcinoma cell line HN4. MDA concentration was

measured using MDA Assay Kit (Beyotime, China) following the
manufacture’s instruction.

Results and discussion

Preparation and characterization of carbon
dots (CDs)

As shown in Figure 1A, based on the luminescing ability, the
optimized reaction temperature for synthesizing carbon dots was 20°C
with the chitosan concentration of 2.0 wt.% and the reaction time of 6 h.
From the inset of Figure 1A, the CDs suspension appeared dark brown
when exposed to sunlight, and appeared bright blue when illuminated
with 365 nmUV light. Figure 1B shows the fluorescence spectra of CDs
under different excitation wavelengths. It can be easily seen that, when
the excitation wavelength moved from 310 nm to 440 nm, a red shift
(Qu et al., 2015) occurred in the emission peak. While the ultraviolet
light excitation wavelength was 350 nm, the strongest emission peak
appeared at 450 nm. The fluorescence of the CDs was also checked in

FIGURE 1
(A) Fluorescence intensities of CDs at different reaction temperatures when excited by ultraviolet light of 350 nm. Inset: From left to right are photos
of the CDs suspension in natural light and 365 nmUV light. (B) Fluorescence emission spectra of the CDs under excitation with different wavelengths. (C)
Effect of solution pH on fluorescence intensity of the CDs. (D) XRD patterns of chitosan (Curve A) and the CDs (Curve B). Inset: TEM image of the CDs.
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suspension with different pH and the results were shown in Figure 1C.
Obviously, in the pH range of 2.0 and 10.0, the fluorescence intensity
was basically kept constant. However, the strong acidic or alkaline
environment exerted a significant effect on the fluorescence intensity of
the CDs, probably resulted from by the broken exiting group on the
surface of the CDs under strong acidic and alkaline conditions (Jia et al.,
2012). On the other hand, XRD pattern of the CDs was displayed in
Figure 1D, together with that of chitosan. The chitosan possessed
crystallization characteristics and the CDs were mainly in the form
of amorphous carbon, displaying their relatively high purity. Besides,
according to the TEM imagine inserted in Figure 1D, the particle with
an average diameter of 8.3 nm was spherical with a narrow size-
distribution. In a word, the synthesized CDs have good optical
properties with good acid and alkali resistances.

Composition and characterization of FHGF

The optical properties of the fluorescent hydrogel are shown in
Figures 2A–C. From Figure 1A, a strong UV absorption peak
appeared at 345 nm, probably being attributed to the n–π*

FIGURE 2
(A) UV-vis absorption spectra of the FHGF. (B) Excitation and emission spectra of FHF (λEX = 365 nm, λEM = 450 nm). (C) Fluorescence emission
spectra of FHF under excitation with different wavelengths. (D) Effect of solution pH on the fluorescence intensity of FHGF. All of the samples were
excited at 350 nm.

FIGURE 3
FT-IR spectra of CDs (A), hydrogel films without grafted CDs (B),
FHGF with 1.0 wt.% CDs (C), FHGF with 5.0 wt.% CDs (D),and FHGF
with 15 wt.% CDs (E).
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transition of a C=O bond (Baker and Baker, 2010). In Figure 2B,
when the excitation wavelength was altered from 300 nm to 410 nm,
the emission peak position of the film moved from 410 nm to
510 nm. Meanwhile, a red shift phenomenon of the fluorescent
hydrogel occurred due to the “Stoke shift,” proving the down-
converting luminescence (Ren et al., 2017) property of the film.
The dependence of the fluorescent properties on the excitation
wavelength is attributed to the naturality of these carbon dots.
The fluorescence excitation and emission spectra of the
fluorescent film are displayed in Figure 2C. From this figure,
when the excitation wavelength is 345 nm, a strong emission
peak can be observed at about 450 nm. In addition, the effect of
solution pH on the fluorescence intensity of fluorescent films was
also explored and the results are revealed in Figure 2D. It is found
that when the pH is between 5.0 and 13.0, the fluorescence intensity

of the film is relatively strong, but in the strong acid environment,
the fluorescence intensity of the film is reduced. This is due to the
fact that sodium alginate can react with proton in an acidic
environment to form water-insoluble alginic acid, adhering to the
surface of the fluorescent film to reduce its fluorescence intensity.
The reaction equation is as follows:

NaAlg +HCI → Halg ↓ +NaCI

Figure 3 shows FT-IR spectra of the CDs and the hydrogel films
with and without CDs to characterize the structure and composition.
The characteristic absorption bands of -OH at 3,308 cm−1 and -NH
at 3,177 cm−1 of the CDs are obtained in Curve A, indicating the
presence of an amide group on the surface of the CDs (Fan et al.,
2019). The peaks at 2,883 cm−1, 1,649 cm−1, 1,424 cm−1, and
1,112 cm−1 are attributed to the stretching vibration of -CH,

FIGURE 4
Effect of soaking time on the fluorescence intensity: (A) That of FHGF immersed in deionized water for a short time (0min~60min); (B) That of FHGF
immersed in deionized water for a long time (5h~30 h); (C) Relationship between FHF fluorescence and the response time in Fe3+ solution with a
concentration of 10–5 M. All of the samples were excited at 350 nm.
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C=O, -CH2
−, and -C-O-C- (Zhang et al., 2015; Wang et al., 2014),

respectively. Besides, Curve B shown in Figure 3 presents FT-IR
spectrum of the hydrogel film (HGF) without CDs. HGF has strong
and broad peaks at 3,363 cm−1, probably caused from the
characteristic absorption bands of -OH and -NH-. The peaks at
2,967 cm−1, 1,678 cm−1, 1,478 cm−1, 1,357 cm−1 and 1,115 cm-1 are
attributed to the stretching vibration of -CH-, -C=O, -CH2-, -C-
(CH3)3, and -C-O-C- (Sachdev et al., 2016), respectively.
Unexpectedly, the peak at 3,363 cm−1 in Curve B is significantly
red-shifted to the peak at 3,338 cm−1 according to Curve C, which
shows the FT-IR spectra of FHGF with 1.0 wt.% content of CDs.
This indicates the presence of hydrogen bonds between CDs and
HGF (Jemmis and Jemmis, 2007). To further confirm the above
speculation, the FT-IR spectra of the other two FHGFs containing
5.0 wt.% and 15.0 wt.% CDs were respectively tested and the results
were shown on Curves D and E. Obviously, from Curves D and E, as
the CDs concentration increased, the red-shifted characteristic
absorption band of -NH and -OH became more pronounced,

from the peak at 3,256 cm−1 to that at 3,211 cm-1. In summary,
hydrogen bonds were formed between the CDs and the hydrogel
film and became stronger along with the increase in CDs content.

Most working environment of the FHGF is aqueous system, so it
is quite important to explore the soaking effect in aqueous
environment. Figure 4A indicates the effect of water to the FHGF
fluorescence intensity after a short-term immersion. It can be seen
from the figure that the aqueous solution does not have a significant
effect on the fluorescence intensity of the film in a short time such as
less than 1 h, which makes it possible to use the film as a metal ion
detection platform. Besides, it can be seen from Figure 4B that when
the FHGF is immersed in an aqueous solution for a long time, the
fluorescence intensity of the film will be significantly reduced in
several 10 h. As the immersion time was 30 h, the fluorescence
intensity was decreased by 20%. In a long time, the water molecules
can enter the interior of the hydrogel film through the film pores and
bind to the CDs in the film by hydrogen bond (Li et al., 2018), and
then carry the CDs out of the FHGF, causing the decrease of

FIGURE 5
(A) Fluorescence patterns of the FHGF soaked in solutions with different metal ions. (B) Histogram of the effect of metal ions on the fluorescence
intensity of the FHGF. (C) Selectivity of the FHGF in the presence of interference cations. All of the samples were excited at 350 nm.
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fluorescence intensity of the film. Figure 4C shows the film soaked in
a 10–5 M Fe3+ solution to investigate the effect of soaking time and
determine the optimal reaction time. It can be seen from the figure
that the fluorescence intensity of the film markedly decreased in
5 min and remained substantially unchanged while the immersion
time exceeded 5 min, indicating that the optimal reaction time
was 5 min.

Metal ion selectivity is also a very important factor for detecting
metal ions. For checking the selectivity, the fluorescent film was
immersed in solutions with different metal ion (Fe3+, Ag+, Pb2+, Ca2+,
Cu2+, K+, Zn2+, Ni2+, NH4+, and Mg2+) at a fixed concentration of
10–4 M. Then, the film was irradiated with a 350 nm UV light for
measuring the emission intensities of different samples. It was found

from Figures 5A, B that the quenching effect of Fe3+ on the
fluorescence of the film was mostly obvious, along with a much
weaker effect of Cu2+, while other metal ions had no obvious effect
on the fluorescence. Figure 5C shows the fluorescence intensities of
10–4 M Fe3+ solution in the presence of different metal ions with the
same concentration for checking the anti-interference ability. It has
been shown from Figure 5B that the effect of each kind of metal ion
on the fluorescence intensity of FHGF before mixing with Fe3+ was
weak. However, from Figure 5C, with the addition of Fe3+, the
fluorescence intensity of the film decreased sharply, indicating that
the FHGF has unique selectivity to Fe3+ and good anti-interference
to other metal ions. This is probably due to that Fe3+ and CDs in the
FHGF can easily form a stable chelate in comparison to the other
metal ions with low charges and reduce the fluorescence intensity (Ju
and Chen, 2014). In conclusion, the fluorescent film has unique
selectivity to Fe3+ and good anti-interference to the other metal ions,
which is very indispensable for establishing a novel metal ion
detection platform.

For the sensitivity study of fluorescent films, Fe3+ concentration
in the range from 0 to 1.8 μM was selected for investigation. As
shown in Figure 6A, the intensity of the FHGF at 450 nm decreased
with increasing Fe3+ concentration, displaying that there is a
negative relativity and this detection system has a good
sensitivity to Fe3+. Then, the fluorescence quenching were
quantifically further analyzed using the Stern-Volmer equation
(Friedl et al., 2015).

F0/F−1 � ksvC

where F0 and F−1 are the fluorescence intensities of the fluorescent
film at 450 nm without and with the addition of Fe3+ respectively,
ksv is the Stern-Volmer quenching coefficient, and C is the
concentration of the analyte (Fe3+). As shown in Figure 6B, the
Stern-Volmer equation exhibited an excellent linear relationship in
the concentration range of 0–1.8 μM. The correlation coefficient
(R2) = 0.9923, and the detection limit (3σ/s) was 0.043 μM, where σ

FIGURE 6
(A) Fluorescence spectra of the FHGF at different concentrations of Fe3+ (0~1.8 μM); (B) Fluorescence linear equation of FHGF in response to Fe3+

concentration. All of the samples were excited at 350 nm.

FIGURE 7
Fluorescence intensity changes of the FHGF after cyclically
soaking in Fe3+ (10–5 M) and EDTA (10–5 M) in solution.
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represents the standard deviation of 10 blank measurements and s is
the slope of the calibration curve.

The above results have described a potential arraying detection
route to Fe3+. Then, for the practical usage, repeated application tests
are also quite important. To get it, EDTA was used to complex
completely with Fe3+ ions and then the CDs were released (Wang N.
et al., 2018). As shown in Figure 7, when the FHGF was soaked in a
10–5 M Fe3+ solution, the fluorescence intensity of the FHGF was
found to drop sharply. After the addition of EDTA (10–5 M), the
fluorescence increased significantly, although it could not be
restored completely to the original level. Besides, the fluorescence
intensity of the FHGF was reduced gently from the previous one

after each time EDTA was used. In a word, after four cycles, the
FHGF still maintained 76% of the original fluorescence intensity,
indicating that this novel platform for detecting Fe3+ concentration
can be basically used recyclically.

For the practical application of the FHGF, the mechanical
properties are also important. To investigate the effect of CDs on
the mechanical properties of the fluorescent films, stress and strain
tests at different carbon dots content were conducted. As shown in
Figure 8A, the stress and strain of the FHGF increased firstly and
then decreased with the addition of CDs, exhibiting an obvious
influence from the CDs on the mechanical properties of the FHGF.
When the carbon dots content was increased from 0% to 1.0%, the
tensile-stress is increased by 200% to 10.3 Mpa and the tensile-strain
strength was increased by 36%–152%, as displayed in Figure 8B.
However, when the CDs content increased from 1.0 wt.% to
2.5 wt.%, the mechanical properties of the film declined, proving
that the mechanical properties of the film were optimal at 1.0 wt.% of
the CDs. Additionally, from Figure 8C, when the content of CDs was
increased from 0 to 1.0 wt.%, the Young’s modulus of the film was

FIGURE 8
(A) Tensile strain-stress curve of the FHGF with different CDs content. (B) Stresses and strains of the FHGF as a function of the CDs content. (C)
Relationship between Young’s Modulus of the FHGF and CDs content.

TABLE 1 Zeta potentials of CDs and Chitosan- algin.

Sample Zeta potential value (mV)

CDs −8.18

Chitosan- algin solution −4.57
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increased by 150% to 4.8 MPa, and then decreased with the increase
of CDs content. In order to explain this phenomenon, the Zeta
electrical potentials of the CDs and the film in the mixed solution

were determined, and the data were listed in Table 1. According to
this table, the Zeta potential value of the CDs was −8.18 mV, and
that of the film in the mixed solution was −4.57 mV. This indicates
that they all have negative charges and they will be repulsive each
other. Combined with the previous FT-IR data, it is suggested that
due to the hydrogen bond action between the CDs and FHGF, the
mechanical properties of the film are enhanced as the content of CDs
increases. However, when the content of the CDs is more than
1.0 wt.%, the repulsive effect between them is greater than the
connection effect from the hydrogen bond action, resulting in the
weakened mechanical properties of the film in this case.

Ferroptosis is a novel form of programmed cell death
resulting from iron-dependent accumulation of lipid
peroxides. The mechanism of ferroptosis includes disorder of
iron metabolism, imbalance of amino acid antioxidant system,
and accumulation of lipid peroxides. Ferroptosis was proved to
be related to several diseases, such as stroke, tumor, degenerative
diseases and cerebral hemorrhage. It was reported that CDs was
utilized to induce ferroptosis of tumor cells and enhance
antitumor immunity (Li et al., 2024c; Liu et al., 2024). CDs
were also applied to observe and inhibit oral bacterial biofilm
formation due to its good biocompatibility and bioimaging
capacity (Yao et al., 2022). Fe3+ usually binds to transferrin
and enters into the cells through the transferrin channel, and
then participates in a variety of subsequent biochemical processes
(Wang et al., 2021). Therefore, Fe3+ is an important indicator to
determine the occurrence of ferroptosis. Ferroptosis was induced
in oral squamous cell carcinoma cell line HN4 by erastin (Guang
et al., 2024). Malondialdehyde (MDA) was reported to be a
biomarker for ferroptosis (Jiang et al., 2023; Kong et al.,
2023). In Figure 9A, MDA concentration exhibited a dose-
dependent increase in HN4 cells. Accordingly, because the
concentration of Fe3+ increased during ferroptosis, the
fluorescence intensity of the film decreased also following a
dose-dependent way in Figure 9B. In this study, the hydrogel
synthesized was of a promising property for Fe3+ detection,
leading to an ideal tool for ferroptosis tracing and ferroptosis-
based therapy.

From the above discussion, it is revealed that the surface charges
of CDs and the relative materials are a key factor to affect the
properties of the composite materials doped with the CDs. Although
there have been a lot of reports on the research of CDs composites,
the fluorescence or some other properties of the composite materials
are not satisfied. In this work, the fluorescent properties of the FHGF
were well maintained, which was probably attributed to the negative
charge of both the carbon dots and the hydrogel. To further confirm
the above idea, the effect of various anions on the fluorescence
intensity of the FHGF was tested. As shown in Figure 10, when the
FHGF was immersed in an anion solution with the same
concentration (10–4 M) of SO4

2−, CO3
2−, PO4

3−, CrO4
2−, and

P2O7
4-, respectively, the fluorescence intensity of the FHGF was

substantially unchanged. The above phenomenon indicates that
these anions do not have much influence on the fluorescence
performance of the film. This further proves the fact that the
CDs in the film and ions with the same charge will repel each
other, leading to that the light-emitting structure on the surface of
the carbon dots is not destroyed and then the fluorescence
performance of the CDs is well maintained.

FIGURE 9
(A) MDA concentration of HN4 cells after erastin induction. (B)
Fluorescence intensity of the FHGF incubated with HN4 cells after
erastin induction.

FIGURE 10
Histogram showing the effect of anions on the fluorescence
intensity of the FHGF.
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Conclusion

In this paper, carbon dots (CDs) with good optical properties
were synthesized by a one-step hydrothermal method and then
grafted into the hydrogel successfully, maintaining their basic
optical properties. This is due to the presence of electrostatic
repulsion between the CDs and hydrogel, which does not alter the
surface morphology of the carbon dots after recombination. Besides,
FHGFs obtained by using CDs as crosslinker, not only served as a
kind of fluorescent probe for detecting Fe3+ content in solution but
also had excellent mechanical properties. The synthesized FHGFs are
of good sensitivity and selectivity to Fe3+ in aqueous solution,
achieving that the detection limit of the obtained fluorescent
probe is as low as 0.043 μM. The reason for the selectivity is
mainly attributed to the positive charge of Fe3+ ions, altering the
surface charge of negatively charged CDs and thus quenching CDs.
Further, the mechanical properties of the film are obviously
promoted, due to the comprehensive action of hydrogen bonding
and electrostatic interaction between the CDs and hydrogels. The
above testing indicates that the addition of CDs greatly enhances the
mechanical properties of FHGF and will broaden their application
range. Previous studies also demonstrated that CDs could be utilized
for oral bacterial biofilm observing and ferroptosis inducing. Most
importantly, the results have made it possible to detect Fe3+ in
solution more conveniently and demonstrate the feasibility of
carbon dots as crosslinker. In addition, this hydrogel film could
provide a promising strategy for identification of ferroptosis in oral
cancer and ferroptosis-based therapy.
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