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Cancer is a major killer threatening modern human health and a leading cause of
death worldwide. Due to the heterogeneity and complexity of cancer, traditional
treatments have limited effectiveness. To address this problem, an increasing
number of researchers and medical professionals are working to develop new
ways to treat cancer. Bacteria have chemotaxis that can target and colonize
tumor tissue, as well as activate anti-tumor immune responses, which makes
them ideal for biomedical applications. With the rapid development of
nanomedicine and synthetic biology technologies, bacteria are extensively
used as carriers for drug delivery to treat tumors, which holds the promise of
overcoming the limitations of conventional cancer treatment regimens. This
paper summarizes examples of anti-cancer drugs delivered by bacterial carriers,
and their strengths and weaknesses. Further, we emphasize the promise of
bacterial carrier delivery systems in clinical translation.
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1 Introduction

Despite the tremendous advances in medical technology, cancer remains an
insurmountable challenge. According to the WHO, in 2022, there were nearly 20 million
new cases of cancer and 9.7 million deaths from cancer worldwide (Ferlay et al., 2024; Bray
et al., 2024). It is estimated that about one-fifth of people will develop cancer in their lifetime,
while about one in nine men and one in twelve women will die of cancer. Demographically
based projections indicate that by 2050, there will be 35million new cases of cancer (Bray et al.,
2024). Furthermore, cancer is not only a serious threat to people’s health but also carries
significant social and macro costs (Chen et al., 2023). At present, conventional treatments for
cancer include surgery, chemotherapy, and radiotherapy. In addition, there are new therapies
such as gene therapy, immunotherapy, and stem cell therapy (Mathis et al., 2019). Despite the
good progress made in all these cancer treatments, each has its limitations and side effects
(Maman and Witz, 2018), and therefore it has become necessary to develop a more
promising solution.

Drug Delivery Systems (DDS) are innovative and viable therapeutic modalities that
fully regulate the dissemination of drugs in the body concerning dosage, space, and time
(Park et al., 2022). The use of nanomaterials as drug carriers to release drugs into target
tissues or cells through specific pathways is a new type of drug delivery technology. This
technology can increase drug utilization, improve therapeutic effects, reduce costs, and
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minimize side effects, and has now become the forefront of
research in medicine. Currently, common drug nanocarriers can
be broadly categorized into lipid nanoparticles, polymer
nanoparticles, and inorganic nanoparticles, with lipid
nanoparticles and polymer nanoparticles being the most
commonly used drug delivery carriers. However, these delivery
systems suffer from poor stability and barrier penetration, low
cellular uptake, and difficulty assembling functional components,
making it difficult for therapeutic agents to reach the tumor site
(Cao and Liu, 2020). Therefore, developing new drug delivery
carriers to improve the effectiveness of antitumor therapy has
become crucial.

Bacteria are the oldest, most abundant, and most widely
distributed organisms in the world, colonizing various
physiological organs in the human body and regulating organ
function (Cubillos-Ruiz et al., 2021; Tamburini et al., 2016; Stewart
et al., 2018). As early as the 18th century (Starnes, 1993; Cann et al.,
2002), it was recorded that certain bacterial infections in cancer
patients with malignant disease could be relieved. In the early 19th
century, Vautier recorded that tumors receded in patients who
suffered from gangrene (Mowday et al., 2016). Subsequently,
during the late 1800s, William Coley used Streptococcus

pyogenes infections to regress patients’ sarcomas, which
inaugurated bacterial-mediated microbial therapy (Coley, 1893).
The results showed that various species of bacteria such as
Streptococcus, Salmonella, Escherichia coli, Clostridium,
Bifidobacterium, Listeria, and Lactococcus were effective in
anticancer therapy (Yin et al., 2022). Some bacterial-based
treatment regimens are also widely used for their excellent
efficacy: for example, Mycobacterium bovis bacillus Calmette-
Guérin (BCG) vaccine, which has been successfully used in the
therapy of non-muscle invasive bladder cancer (Pettenati and
Ingersoll, 2018). In the mid-1990s, recombinant DNA
technology produced more efficient, safer, and functionally
abundant engineered bacteria (Anderson et al., 2006). However,
their application has been limited due to lag, uncontrollability, and
inadequate targeting efficiency. Nowadays, with the rise and
advancement of nanomaterials science and synthetic biology
technology, the safety and efficacy of bacterial therapies have
continued to improve, rekindling the enthusiasm for bacterial
therapies (Lin et al., 2021; Redenti et al., 2024; Scott et al.,
2017; Solomon et al., 2015). DDS based on bacterial carriers is
an innovative and promising approach. Bacterial carriers include
bacteria and bacterial derivatives. Compared to synthetic materials

GRAPHICAL ABSTRACT
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such as liposomes and polymers, bacteria, and their derivatives
have many attractive properties. Firstly, bacteria have good tumor
colonization ability and can accumulate at the lesion site.
Moreover, bacteria are biocompatible and can pass through the
body’s physiological barriers. In addition, bacteria have the
advantage of being easy to manipulate for gene editing and
their derivatives can cause immune activation. The flagellum of
bacteria makes them chemotaxis, allowing for more efficient drug
delivery and a quantum leap in anticancer therapeutic efficacy
(Figure 1) (Wu et al., 2022).

In this article, we summarize the advantages of bacterial treatment
of tumors and show the classification of bacterial carriers and
examples of the delivery of anticancer drugs by various types of
carriers. In addition, we concentrate on the application of combining
nanotechnology with bacterial carriers in antitumor therapy. This
work also summarizes current strategies for combining nanoparticles
with bacteria and bacterial derivatives. Finally, we emphasize the
advantages and disadvantages of bacterial carriers when used to treat
cancer and their potential for clinical translation.

2 Advantages of bacteria in
cancer treatment

2.1 Targeting the tumor
microenvironment (TME)

The TME includes hypoxia, acidic pH, angiogenesis, and
immunosuppression. Due to the rapid growth of tumor tissues
with active metabolism, it increases its oxygen demand. At the
same time, the vascular system in and around the tumor is
disorganized and irregular, resulting in inadequate oxygen
diffusion (Jain, 2013). Therefore, the central area of the tumor
presents a necrotic, hypoxic environment with an oxygen partial
pressure as low as 7–28 mmHg, whereas the oxygen partial pressure
of normal tissue is 40–60 mmHg (West and Slevin, 2019). Bacteria,
as natural prokaryotic cells, can actively migrate into the hypoxic
TME by their autonomous propulsion and anaerobic properties
(Kasinskas and Forbes, 2006). Live facultative/obligate anaerobes
such as E. coli, Salmonella,Bifidobacterium bifidum, and S. pyogenes

FIGURE 1
Diagram illustrating the advantages of bacteria in anti-tumor therapy.
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can sense hypoxic environments by using their chemoreceptors,
which are naturally targeted to hypoxic and necrotic areas of tumors
(Kucerova and Cervinkova, 2016).

Due to insufficient oxygen supply, tumor cells are limited to
metabolizing energy through anaerobic fermentation, which leads to
lactic acid accumulation and the formation of an acidic tumor
microenvironment (Kumari et al., 2021). Tumor acidic
environment can also induce bacterial-specific gene activation.
Flentie et al. (2012) co-cultured Salmonella with melanoma cells
or colon cancer cells and identified 5 genes that can be activated
specifically by cancer cells. Further studies revealed that the
activation of these genes may be caused by the acidic
microenvironment of the tumor cells, suggesting that the bacteria
are capable of responding positively to the acidic TME. Tumor cells
release a substantial quantity of vascular endothelial growth factor
during growth, inducing the formation of chaotic and irregular
tumor-specific blood vessels. These blood vessels can enclose the
bacteria, not only promoting bacterial colonization but also
providing an adequate supply of nutrients to the bacteria, which
is conducive to bacterial proliferation (Khalaf et al., 2021). Hypoxia
also leads to suppression of local immune cell function resulting in
an immunosuppressive microenvironment (Chouaib et al., 2017). In
tumor tissues, the ability of immune cells to recognize and kill
bacteria is inhibited, which provides a favorable environment for
bacterial survival. It has been shown that bacteria are more likely to
survive in a tumor-immunosuppressive environment (Stritzker
et al., 2010; Tian et al., 2022).

In conclusion, the characteristics of the TME and the
interactions between bacteria and tumors are not only important
for the natural targeting of bacteria to tumors but also provide a basis
for modifying bacteria and improving their targeting ability.

2.2 Colonization ability

Most bacteria used for tumor therapy have flagella, which
mainly perform chemotaxis, motile, and invasive functions. These
functions performed by the flagellum can help the bacteria to better
penetrate the intratumor tissue, which is crucial for bacterial
colonization in tumors (Min et al., 2008; Zhao et al., 2005; St
Jean et al., 2008; Kasinskas and Forbes, 2007).

2.3 Immunomodulatory effects

Bacteria and their secreted metabolites such as peptidoglycan,
and lipopolysaccharide (LPS) augment the antigenicity of tumors
and provide potent immunostimulatory signals. They combine with
pattern recognition receptors (PRRs) expressed by immune cells
such as dendritic cells (DCs) and macrophages, initiating an
immune response that allows the immune system to recognize
and kill tumor cells. Bacteria and their metabolites also initiate
an adaptive immune response to kill tumor cells via natural killer
cells, CD4+, and CD8+ T cells (Zitvogel et al., 2016).

Furthermore, certain components in bacteria can also cause
phenotypic transformation of immune cells. Flagellin was found to
convert pro-tumor macrophages into anti-tumor macrophages
and to transform the immunosuppressive microenvironment

into an environment of normal immune function (Zheng
et al., 2017).

2.4 Can be genetically engineered to
enhance therapeutic functions

Genetic engineering of bacteria to develop safer and more
effective cancer treatments is a major focus of bacterial
anticancer therapies. Bacterial genetic modification can reduce
bacterial cytotoxic effects to improve safety (Hill et al., 2011)and
enhance bacterial targeting, invasiveness, and tumor cell killing
(Yoon et al., 2017).

In addition, synthetic biology methods to implant sensing and
responsive genetic circuits in bacteria enable bacteria to synthesize
or release drugs in response to specific sensing stimuli. Moreover,
combining multiple response circuits with bacteria through
synthetic biology approaches could enable engineered bacteria to
respond to the complex physiological environment of the organism.
This allows for better targeting and control of the bacterial carrier
delivery system, enabling precise drug delivery and reducing drug
side effects (Feng et al., 2023).

3 Types of bacteria in anticancer
therapy

3.1 Whole bacteria

Whole bacteria can be categorized into inactivated and live
bacteria, which can be improved through genetic engineering or
other technological methods to enhance their ability to deliver drugs
to treat cancer.

Inactivation of bacteria is a special inactivation technique that
prevents the bacteria from growing and reproducing while retaining
their original structure and characteristics. Records of inactivated
bacteria for the treatment of cancer date as far back as the advent of
“Coley’s toxin” in the 19th century, when William Coley injected
inactivated S. pyogenes and Serratia marcescens into sarcoma patients
(Hoption Cann et al., 2003). Following Coley’s work, Teoh’s
laboratory demonstrated that the inactivation of Clostridium
sporogene, a naturally tumorigenic bacterium, significantly reduced
the proliferation of CT26 andHCT116 colorectal cancer cells to 57.3%
and 26.2%, respectively (Figure 2) (Bhave et al., 2015). However,
inactivated bacteria often suffer from insufficient anti-tumor effects.
To address this problem, Yang and Xuan incorporated 125I/131I into
inactivated bacterial carriers, which can prolong the presence of
radioactive iodine at the site of the lesion, thus enabling internal
radioisotope therapy (IRT) of the tumor (Pei et al., 2022).

In contrast to inactivated bacteria, live bacteria can actively
target most tumors, including metastases (Forbes, 2010), and most
live bacteria can better penetrate and colonize intratumoral tissues
depending on the flagellum (Felgner et al., 2018). However, the
toxicity and uncontrolled immunogenicity of the bacteria greatly
limit the use of live bacterial therapies in practice. Besides, bacteria
can suppress macrophage migration and disrupt the integration of
the barrier established by epithelial cells, thereby allowing tumors to
diffuse and invade surrounding healthy tissues (Gagnaire et al.,
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2017). Therefore, improving the safety of bacterial therapy has
become a key issue in bacterial cancer therapy.

The attenuated modification of bacteria is a common method to
improve the safety of bacterial therapies. The BCG vaccine is a live
bacterial preparation made from attenuated suspensions of
Mycobacterium bovis by Charles Calmette and Camille Guérin in
1900 (Kamat et al., 2015). When they cultured M. bovis in bile-
containing media, they found that the bacterial virulence gradually
decreased and after more than 1,000 passages the attenuated strain
that we use today was obtained. Bladder instillation of BCG is a
standard treatment option for patients with high-risk non-muscle
invasive bladder cancer in the clinic. Compared with traditional
means of inactivation and attenuation, obtaining attenuated bacteria
by knocking out virulence factors through genetic engineering
techniques not only reduces the pathogenicity of the bacteria but
also preserves their tumor-targeting properties. For example, an
attenuated Salmonella typhimurium strain (named VNP20009)
obtained by deletion of the purI and msbB genes not only
dramatically improved safety, but also promoted their
accumulation in the tumor tissue (Toso et al., 2002).

Subsequently, a large number of researchers have concentrated
on attenuating the virulence of various bacteria, including
Salmonella, Clostridium, E. coli, and Listeria, through genetic and
chemical modifications (Felgner et al., 2018; Mercado-Lubo et al.,
2016; Fritz et al., 2016; Dang et al., 2001; Chowdhury et al., 2019;
Zhou et al., 2018). In addition, engineered bacteria are a promising
carrier for drug delivery, and today substantial studies are using
engineered bacteria for targeted delivery of interfering RNA (Jiang
et al., 2007), DNA vaccines (Kong et al., 2012), proteins (Binder
et al., 2013), and small molecule therapeutics (Xie et al., 2017) for the
treatment of malignant tumors. Protein therapeutic molecules,
including antibodies (Daassi et al., 2020), inflammatory factors
(Schmitt and Greten, 2021), metabolism-blocking proteins (Liu
et al., 2017), enzymes (Yu et al., 2024), and apoptosis-inducing
agents (Hu and Kavanagh, 2003) have also been successfully

combined with engineered bacteria for targeted therapy of
tumors (Table 1).

3.2 Bacterial skeleton

Bacterial skeleton includes bacterial ghosts (BGs), and cell wall
skeleton (CWs). BGs are cavities formed by lysing Gram-negative
bacteria using φX174 phage lysin gene E. BGs have large inner space
and intact outer walls, and can be applied as a drug delivery carrier to
load cargoes of drugs, antigens, and nucleic acids (Rabea et al., 2020;
Xie et al., 2020; Tabrizi et al., 2004). It has been shown that
encapsulation of doxorubicin (DOX) in BG derived from
Mannheimia haemolytica not only targets human colorectal
adenocarcinoma cells (Caco-2) releasing large quantities of DOX
within tumor cells but also enhances cytotoxicity against tumor cells
(Paukner et al., 2004). In addition, BG retains various antigenic
components of the bacteria, allowing them to also be used as a
biologic agent and immune adjuvant for immunotherapy (Kudela
et al., 2005). For example, when BG carries a plasmid, it is recognized
and phagocytosed by antigen-presenting cells and efficiently
activates CD4+ and CD8+ T cells to generate an anti-tumor
immune response (Warrier et al., 2019).

CWS is prepared from bacteria by hydrothermal treatment and
is an agonist of TLR2 and TLR4 and can be used as an immune
adjuvant. CWS from M. bovis BCG has Immune activation ability
(Ni et al., 2017). Researchers have found that the shape of CWS
affects DC internalization (Yoo et al., 2002). The results indicated
that the CWS of Lactobacillus rod-shaped exhibited the greatest
amount of DC internalization compared to other shapes. Also, rod-
shaped Lactobacillus CWS upregulated immunoreactive cytokines,
which can be used for TME regulation or loading stimulatory signals
in next-generation delivery systems (Seya et al., 2001).

3.3 Bacterial components

Bacterial components include magnetosomes, spore microcells,
and bacterial outer membrane vesicles. Magnetotactic bacteria
(MTB) were found by American scholars in 1975 (Makela et al.,
2022). This group of bacteria can be driven by flagella to move in the
direction of magnetic lines of force and are well targeted in cancer
therapy. Magnetosomes are intracellular organelles of MTB
containing magnetic minerals such as magnetite Fe3O4 or
greigite (Fe3S4) encapsulated by proteolipid membranes
(Gru€nberg et al., 2004; Schüler, 2008). Magnetosome membranes
are abundant in primary amine groups, which can bind certain
chemotherapeutic drugs to the amine groups on the surface of the
magnetosome for cancer therapy. Polymers wrapped with small
molecule drugs can be attached to the magnetic vesicles to improve
their drug-carrying efficiency and stability. Alternatively, chemical
drugs with amine groups can be directly coupled to magnetosomes
by crosslinking agents (Sun et al., 2011). Some researchers used
polyethyleneimine (PEI) as a cross-linking agent to enable the
magnetosomes to bind the antitumor drug DOX (loading rate of
57.7%) and small interfering RNAs (siRNAs) via a hydrazone bond
(Long et al., 2018). In addition, genipin and polyglutamic acid can be
selected as double cross-linking agents to load the anticancer drugs

FIGURE 2
Diagram illustrating that inactivation of Clostridium sporogene, a
naturally tumorigenic bacterium, significantly reduced the
proliferation of CT26 and HCT116. Adapted from reference (Bhave
et al., 2015). Nature, Copyright 2016.
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acitretin (Ara-c) and doxycycline (DNR) on the surface of the
magnetic vesicles (68.4% encapsulation and 32.4% drug loading
rate for Ara-c and 36.1% encapsulation and 17.9% drug loading rate
for DNR) (Long et al., 2016). It was found that this magnetic vesicle
drug-carrying system exhibited good stability and long-term
sustained drug release, and significantly reduced the nonspecific
toxicity of the drug. Meanwhile, as magnetic nanoparticles with
good magnetic responsiveness, magnetosomes are able to target
tumors under the action of the external magnetic field. The targeting
ability can be further enhanced by combining specific targeting
molecules with chemical groups on the membrane of the
magnetosome (Zhang et al., 2018a). Moreover, according to the
properties of magnetosomes, it is also possible to combine the
delivered drugs with various therapeutic regimens, including
chemodynamic therapy (CDT) (Ye et al., 2022), magnetically
induced thermotherapy (Liu et al., 2012), magnetically induced
photothermal therapy (PTT)and magnetically induced
immunotherapy (Zhang F. et al., 2019). For example, the
researchers extracted magnetosomes from the Magnetospirillum
magneticum AMB-1 and used them as a “magnetosome chassis”
(MSC) to generate gold nanoparticles in situ. The resulting hybrid
(MSC-Gold) is capable of targeting tumors in a tumor-centric
magnetic field and enables combined chemodynamic and
photothermal therapies (Figure 3) (Ye et al., 2022).

Spores are formed in extreme environments and have functional
components that can be used in cancer therapy. Clostridium spp. as a
spore-producing bacterium can survive in hypoxic environments,
and the spores it produces can germinate in hypoxic and necrotic
areas of tumors and release carrier substances to shrink tumors
(Mengesha et al., 2006; Mengesha et al., 2007). Genetically modified
C. novyi-NT spores lack lethal toxins and have anticancer activity
along with improved safety. Intratumor injection of Clostridium
histolyticum spores and intravenous injection of Clostridium
perfringens spores lead to lysis of tumor tissues without adverse
effects on normal tissue (Kubiak and Minton, 2015). In addition,
bacterial spores serve as carriers for anticancer drugs, therapeutic
proteins, and cytotoxic peptides.

Minicells are the products of abnormal bacterial cell division,
have a nanometer size, and are controlled by mutated minCDE
genes. The capability of minicells to package multiple drugs by
unidirectional diffusion, independent of their physicochemical
properties, makes them ideally suited for drug delivery
(MacDiarmid et al., 2009). In addition, minicells carry all the
ingredients of the parental cells except chromosomal DNA and
therefore cannot proliferate,which provides great safety for their use
as carriers of drug delivery for the treatment of tumors (Di Ventura
and Sourjik, 2011). For example, in animal studies, combining DOX
with tumor-targeting minicells resulted in significant regression of
in situ breast tumors, and no serious toxic side effects were observed.

In addition, minicells are easy to modify, and researchers can
enhance their targeting and killing of tumors by modifying minicells
with ligands or antibodies. For example, MacDiarmid et al. modified
minicells using antibodies that enabled the minicells to target
epidermal growth factor receptors (EGFR) or human epidermal
growth factor receptor 2 (HER2) receptors that are specifically
overexpressed on tumor cell membranes. These modified minicells
carry drugs directly into target tumor cells after packaging DOX and
paclitaxel (PTX) therapeutic drugs. In addition, the researchers
modified the DOX-loaded minicells so that they could target drug
delivery to solid tumors (Figure 4) (Zhang et al., 2018b). Minicell-
based forms of drug delivery are more effective than free drugs and
can effectively reduce the toxic side effects of drugs on normal tissues
(MacDiarmid et al., 2007). Currently, EGFR-modified paclitaxel-
loaded S. typhimurium minicells have been successfully tested in
phase I trials, and no patients have died during the observation period
due to adverse effects (Solomon et al., 2015).

To deliver drugs, minicells have an advantage in delivering
RNAi and can be efficiently loaded with siRNA and shRNA
(Jivrajani and Nivsarkar, 2019). Based on this feature,
MacDiarmid et al. utilized microcells to deliver siRNA/shRNA
for the treatment of cancer, and the loaded siRNA/shRNA
induced apoptosis in tumor cells (Jivrajani and Nivsarkar, 2016).
And because their cell walls contain varying levels of LPS, they are
not only expected to be a drug delivery system (Giacalone et al.,

TABLE 1 Application of bacterial delivery of anticancer drugs in cancer treatment.

Bacteria Therapeutic agent Type of tumor Treatment method Ref

Salmonella Typhimurium Doxorubicin Colorectal cancer Chemotherapy Ektate et al. (2018)

Escherichia coli Doxorubicin Breast cancer Chemotherapy Sun et al. (2021)

Escherichia coli Nissle1917 Doxorubicin Breast cancer Chemotherapy Xie et al. (2017)

Escherichia coli Nissle1917 DOX and TOS Breast cancer Chemotherapy Xie et al. (2018)

Magnetotactic bacteriaMC-1 SN-38 Colorectal cancer Chemotherapy Felfoul et al. (2016)

Listeria 32P Pancreatic cancer Radiotherapy Chandra et al. (2017)

Listeria TT856-1313 Pancreatic cancer Immunotherapy Selvanesan et al. (2022)

Escherichia coli CD47 nanobodies Lymphoma Immunotherapy Chowdhury et al. (2019)

Salmonella typhimurium FlaB Colorectal cancer Immunotherapy Zheng et al. (2017)

Salmonella typhimurium NY-ESO-1 Melanoma Immunotherapy Nishikawa et al. (2006)

Salmonella typhimurium Cytolysin A Colorectal cancer Protein-based biotherapy Jiang et al. (2013)

Salmonella typhimurium YB1 Indocyanine green bladder cancer Photothermal-therapy Chen et al. (2019b)
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2007) but also to act as immune adjuvants for antitumor effects
(Lundin and Checkoway, 2009).

Bacteria secrete membrane vesicles called bacterial extracellular
vesicles (bEVs), spherical structures with a lipid bilayer containing
various biomolecules from the parent bacterium. bEVs derived from
the outer membrane of Gram-negative bacteria are known as outer
membrane vesicles (OMVs) (Jagannadham and Chattopadhyay,
2015). The OMVs carry periplasmic and cytoplasmic
components, a large number of microbe-associated molecular
patterns (MAMPs) (Ellis and Kuehn, 2010), and functional
components. bEVs derived from the cytoplasmic membrane of
Gram-positive bacteria are known as cytoplasmic membrane
vesicles (CMVs), which contain material from the cytoplasm but
do not contain components that can cause an acute toxic response
(e.g., LPS and other cell wall components, etc.) (Silhavy et al., 2010).

bEVs have many characteristics such as good biocompatibility
and easy genetic modification, so they can be used as delivery carriers
for anticancer agents. The bEVs-mediated targeted delivery system of
chemotherapeutic agents is a perspective method in oncology therapy
to improve effects and reduce adverse effects caused by systemic
therapy. Currently, bEVs have been successfully loaded with different
kinds of chemotherapeutic drugs, such as PTX, DOX, gemcitabine,
and tegafur (Figure 5) (Chen Q. et al., 2019; MacDiarmid et al., 2016;
Sagnella et al., 2020; Sagnella et al., 2018; Alfaleh et al., 2017).

In addition, bEVs can carry antitumor substances such as
antigens, TLR agonists, and photosensitizers (Qing et al., 2020;
Chen Q. et al., 2020; Wang et al., 2020). Since bEVs inherit
various immunostimulatory molecules from parental bacteria, they
can generate immune responses against pathogens, which gives them
the potential for immunotherapy of cancer (Nagakubo et al., 2020).

Combining the capacity of bEVs to deliver drugs and immune
adjuvants could further enhance their anti-tumor therapeutic
potential. This holds promise for complete tumor eradication and
prevention of tumor recurrence and metastasis. Examples include
loading bEVs with chemotherapeutic agents (Kuerban et al., 2020)
or adding photothermal agents to bEVs. Chemotherapeutic agents
or PTT can lead to immune cell death in tumor cells, which, in
combination with the immune properties of bEVs, can enhance the
efficacy of anti-tumor therapy (Wang et al., 2020).

In conclusion, using bacterial components as delivery carriers
for anticancer therapy is an innovative and evolving study (Table 2).

4 Bacteria combined with
nanomaterials to treat cancer

Currently, drug delivery systems mediated by bacteria and their
derivatives are still in the preclinical stage in the field of cancer

FIGURE 3
Graph illustration of the MSCwas extracted from theMagnetospirillummagneticum AMB-1 bacterium. Subsequently, AuNPs could be grown in situ
on this MSC. The resulting hybrid (MSC-Au) was able to target tumors in the presence of a tumor-focused magnetic field, enabling multimodal
combination therapy. Reproduced with permission from (Ye et al., 2022) Reference, copyright Wiley, 2022.
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FIGURE 4
Decorative loading of pH (low) insertion peptide (pHLIP) on the surface of DOX-loadedminicells enables them to target acidic and hypoxic TME and
release DOX, thereby killing tumor cells. Adapted from reference (Zhang et al., 2018b) PMC,Copyright 2018.

FIGURE 5
Graph showing bEVs used as anticancer drug delivery carriers as well as genetically modified for cancer therapy.

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Yan et al. 10.3389/fbioe.2024.1526612

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1526612


therapy (Kavan et al., 2023; Tsujikawa et al., 2020; Nelson et al.,
2023; Gerstner et al., 2022; Brahmer et al., 2021; Ramalingam et al.,
2020). Research has shown that combining bacterial therapy with
other treatment options can improve the efficacy and specificity of
cancer treatments.

Nowadays, nanomaterials show great potential in cancer
treatment and make cancer treatments more diversified.
Nanomaterials have many advantages, first of all, the size of
nanomaterials can be controlled (Liu et al., 2019), and can be
passively or actively targeted to tumors (Zhu et al., 2022). Secondly,
the large surface area/volume ratio allows it to be utilized as a drug
carrier to deliver drugs (Lv et al., 2021), genes (Mei et al., 2019),
and other therapeutic molecules (Wang Y. et al., 2021), and protect
them from enzymatic degradation in complex physiological
microenvironments. Third, since nanomaterials have a variety
of functional groups on their surfaces, it is easy to modify them
to enhance their properties (Hu et al., 2021). Fourth,
functionalized nanomaterials can control drug release in vivo
through various internal and external stimuli and can
induce conductive photothermal or photodynamic processes
and act as immunomodulators (Shen et al., 2022). Although
nanoparticles have many strengths in anti-tumor therapy, they
also have some weaknesses. Bacteria, on the other hand, can
compensate for the shortcomings of nanotechnology and
generate multiple synergistic therapeutic modalities with it. The
combination of bacteriotherapy and nanomedicine technologies
can be classified as follows 1) Bacteria–nanoparticle biohybrid
systems, 2) Intracellular Bacteria Nanoengineering, and 3)
Nanoparticle-Based Bionic Bacteria.

4.1 Bacteria-nanoparticle biohybrid systems

Bacteria-nanoparticle biohybrid systems have good
biocompatibility degradability, and high drug loading. In this part,
we will conclude the use of bacterial-nanoparticle biohybrid systems
in combination with different therapeutic regimens (Table 3).

4.1.1 Chemotherapy
Chemotherapy has been widely used in the past decades to treat

various types and stages of tumors (Ouyang et al., 2020). However,
standard chemotherapeutic agents have limited therapeutic efficacy
owing to their lack of ability to target tumors. Besides, insufficient
targeting can produce serious side effects and may lead to long-term
respiratory, urinary, circulatory, neurological, and reproductive
adverse effects (Zhang et al., 2022; Bhoyrul et al., 2021; Su et al.,
2023). Bacteria-nanoparticle biohybrid systems with good targeting
can greatly minimize systemic toxicity and improve the efficacy of
chemotherapy. Salmonella typhimurium is one of the most
researched anticancer bacterial populations, and some researchers
have used biotin-streptavidin chemistry to combine S. typhimurium
with liposomes containing paclitaxel. The study demonstrated that
binding bacteria can exhibit better anti-tumor capabilities compared
to the liposome-encapsulated drug alone (Han et al., 2016). Another
of the most researched anticancer strains is E. coliNissle 1917 (EcN),
a probiotic with a high safety profile. For example, Xie et al. bound
adriamycin to EcN via an acid-unstable cis-conjugated anhydride
linker for tumor targeting and drug-responsive release (Xie
et al., 2017).

However, the synergy between biological therapy and
chemotherapy goes far beyond this. Thermobots synthesized by
attaching adriamycin-containing cryo-sensitive liposomes to the
surface of attenuated Salmonella can be used for immunotherapy
of colon cancer (Ektate et al., 2018). After reaching the tumor site,
the thermal robot uses high-intensity focused ultrasound at 40–42°

to release adriamycin from the liposomes and stimulate polarized
macrophages to change to the M1 phenotype. Additionally, the
delivery of CaO2 NPs and doxorubicin (DOX) to tumor tissue using
Bifidobacterium infantis (Bif) for synergistic chemotherapy and
CDT (Figure 6) (Li et al., 2023). Bacteria can be modified not
only by binding to drug-carrying nanomaterials but also by
combining with natural materials to enhance their intrinsic
properties. For instance, For example, Alapan et al. attached soft
erythrocytes loaded with DOX and superparamagnetic iron oxide
nanoparticles (SPION) to the surface of engineered E. coli to form

TABLE 2 Selected examples of bacterial components as delivery carriers for anticancer therapy.

Bacterial
component

Therapeutic
mediator

Tumor type Therapy
outcome

Ref

MTB Dox and siRNA Cervical cancer Chemo-immunotherapy Long et al. (2018)

MTB daunorubicin Leukemia Chemotherapy Long et al. (2016)

Minicell DOX Breast cancer Chemotherapy Zhang et al. (2018b)

Minicell shRNA Lung cancer Immunotherapy Jivrajani and Nivsarkar
(2016)

Minicell Paclitaxel Breast, bladder pancreatic, prostate and lung
tumors

Chemotherapy Solomon et al. (2015)

bEV Tegafur Melanoma Chemo-immunotherapy Kuerban et al. (2020)

bEV DOX Neuroblastoma Chemotherapy Sagnella et al. (2018)

bEv DOX non-small-cell lung cance Chemotherapy Kuerban et al. (2020)

bEV ICG Melanoma Photothermal therapy Gu et al. (2020)

bEV Melanin Breast cancer Photothermal therapy Gujrati et al. (2019)
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microswimmers that could enable on-demand delivery and release
of chemotherapeutic drugs (Alapan et al., 2018).

4.1.2 Radiotherapy
Radiotherapy is a therapeutic method that uses high-energy rays to

locally irradiate tumor cells, which has a history of more than a
hundred years and is an important and effective means of antitumor
therapy (Kasat et al., 2010). Radiotherapy using ionizing radiation can
induce the production of reactive oxygen species (ROS) causing DNA
double-strand breaks in tumor cells, thereby killing the tumor (Ding
et al., 2022). The oxygen content of tissues in this process plays a
decisive role in the treatment (Alapan et al., 2018). Many experimental
studies have shown that hypoxic cells are more resistant to ionizing
radiation than normoxic cells, and therefore hypoxic and necrotic areas
of tumors often lead to poor therapeutic outcomes or even treatment
failure (Barker et al., 2015). Bacteria can deliver radiotherapeutic
agents. For example, loading the radioisotope 188-rhenium
(Figure 7) and the radiotherapeutic drug 32-phosphorus with
attenuated live Listeria monocytogenes induces ROS production and
kills tumor cells (Quispe-Tintaya et al., 2013; Chandra et al., 2017).

Cytolysin A (ClyA) overexpressed E. coli MG1655 was
combined with bismuth trisulfide nanoparticles (BNPs). It has
excellent tumor-targeting and penetration properties, which can
rapidly accumulate in the lesion and achieve a deep penetration
effect. It can suppress tumor proliferation through the secretion of
ClyA, while the BNPs act as nano-radiological sensitizers capable of
triggering a local ROS burst and DNA damage in tumor cells (Pan
et al., 2022).

4.1.3 Photothermal therapy
PTT is a novel tumor treatment strategy that converts light energy

into heat to kill cancer cells (Xiong et al., 2023; Li et al., 2022). A

variety of nanomaterials with photothermal conversion capabilities
have been developed, including metallic nanomaterials, carbon-based
nanomaterials, and polymer-based nanomaterials (Liu S. et al., 2020).

However, existing PTT monotherapies are not effective (Wang
L. et al., 2021). To improve the effectiveness of conventional PTT
Luo et al. utilized the anaerobic bacteria Bifidobacterium shortum
and Clostridium difficile in combination with gold nanorods
(AuNRs) to enhance the effect of PTT through the synergistic
effect between the high photothermal conversion efficiency of the
gold nanorods and the anaerobic bacteria’s tumor hypoxia-targeting
ability (Luo et al., 2016). Additionally, PTT can cause immunogenic
death of tumor cells and enhance anti-tumor immunotherapy
(Shang et al., 2020). In this way, Ag2S QDs were coupled to the
surface of B. bifidum (Zhao et al., 2022). Engineered bacteria can
promote the secretion of immune factors and activate T-cells for
immunotherapy. Ag2S QDs have a high efficiency of photothermal
conversion, which can induce the production of tumor-specific
antigens by ICDs, and further enhance the effect of immunotherapy.

4.1.4 Immunotherapy
Tumor immunotherapy is an innovative treatment method that

uses the body’s own immune system to fight cancer. With the
continuous advancement of medicine, it has become the fourth
most popular cancer treatment after surgery, chemotherapy, and
radiotherapy. The discovery by researchers in the 19th century that
coli toxins can trigger the activity of the immune system against
tumors set the precedent for bacterial immunotherapy (Karbach
et al., 2012).

In recent years, significant progress has been made in bacterial
immunotherapy, and some of these therapies have successfully
entered clinical development. For example, attenuated bacteria
are programmed to express and deliver various tumor suppressor

TABLE 3 Application of Bacteria-nanoparticle biohybrid systems of anticancer drugs in cancer treatment.

Bacteria Nanomaterial Adaptation strategy Treatment
modal

Ref

Salmonella Typhimurium
VNP20009

Polydopamine Coating Photothermal-therapy Chen et al. (2018)

Salmonella Typhimurium Ty21a Gold NPs Encapsulation Photothermal-therapy Kefayat et al.
(2019)

EcN PD-L1 and CTLA-4 Nanobodies Genetic modification Immunotherapy Gurbatri et al.
(2020)

Salmonella Typhimurium Paclitaxel-loaded Liposomes Biotin-streptavidin Chemotherapy Han et al. (2016)

Salmonella Typhimurium
YS1646

Doxorubicin loaded-low-temperature sensitive
liposome

Biotin-streptavidin Chemo-immunotherap Ektate et al. (2018)

E.coli MG1655 Doxorubicin and SPIONs loaded soft red blood
Cells

Biotin-avidin-biotin Chemotherapy Alapan et al.
(2018)

E.coli MG1655 Doxorubicin and Fe3O4 nanoparticles Surface charge and noncovalent
interactions

Chemotherapy Park et al. (2017)

E.coli MG1655 Bi2S3 NPs chemically modified Radiotherapy Pan et al. (2022)

E.coli AIEgen Electrostatic adsorption PDT Zhu et al. (2021)

E. coli BL21 nanoscale acoustic-sensitized particles PCN electrostatic interaction SDT Wang et al. (2024)

E. coli Au@Pt nanozyme Redox reaction Chemodynamic therapy Zhang et al.
(2021)
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cytokines to enhance anti-tumor immunity and induce apoptosis in
tumor cells (Duong et al., 2019). Other immunotherapeutic agents,
such as cytotoxic proteins (He et al., 2019), antigens, and antibodies
(Nishikawa et al., 2006), have also been overexpressed in attenuated
engineered bacteria and used for tumor therapy.

Bacteria have immunomodulatory effects and have great potential
in cancer immunotherapy. Wang et al. further enhanced the
immunotherapeutic effect of Salmonella by combining cationic
polymer nanoparticles coated on its surface. The complexes could
adsorb tumor antigens and transfer them to the periphery of the
tumor. The crosstalk between antigens and dendritic cells increased
significantly when the antigens were transferred to the periphery of
the tumor. Chemotherapy, radiotherapy, and photothermal effects
can enhance cancer immunotherapy by inducing immunogenic death
and releasing cancer antigens (Huang et al., 2021; Fu et al., 2022; Liu
et al., 2023), and the combination of bacterial immunotherapy and the
aforementioned therapeutic regimens has become a hot topic of
current research.

4.1.5 Other
Although tumor cells can tolerate higher concentrations of ROS,

it can also be devastating to cancer cells when the amount of ROS
exceeds the cellular tolerance threshold (Yang B. et al., 2020). Based

on these mechanisms, a range of ROS-based therapies have been
developed, such as radiation therapy, Photodynamic therapy (PDT),
sonodynamic therapy (SDT), and CDT. Combining the above
treatment options with bacterial therapies may also produce even
better cancer outcomes (Figure 8).

PDT is a treatment that utilizes photosensitizers and specific light
sources to selectively kill cancer cells (Karges et al., 2019; Karges,
2022). The photosensitizer or material absorbs light energy and
converts it into chemical energy, generating reactive oxygen species
capable of killing tumor cells without affecting normal cells (Liu et al.,
2015). The use of bacteria to construct an oxygen self-supply system
can strengthen the therapeutic efficacy of PDT. For example, by
coupling Chlorella with chlorine-6 nanoparticles (Wang H. et al.,
2022), Chlorella can produce O2 under 660 nm light irradiation to
enhance PDT, and then the enhanced PDT can lyse Chlorella to
release adjuvants on the bacterial surface and activate biotherapeutic
combined immunotherapy. Type I photosensitizers can produce ROS
in the absence of O2, which solves the problem of photosensitization
that occurs with conventional type II photosensitizers in oxygen-
depleted tumors. This solves the problem of decreased efficiency of
photosensitization in oxygen-depleted tumors with conventional type
II photosensitizers. Combining type I PDTs with bacteria is of great
therapeutic importance for the treatment of tumors (Zhu et al., 2021).

FIGURE 6
The graph depicts the CaO2 NPs and DOX were loaded onto iron-based MOFs (named as MIL), and the resulting MIL + CaO2 + DOX +
polydopamine (PDA) (MCDP) NPswere attached to the surface ofBifidobacterium infantis (Bif) through PDA coating. AchievedCaO2 and iron ion induced
chemodynamic therapy combined with DOX chemotherapeutic therapy. Adapted from reference (Li et al., 2023). Wiley, Copyright 2023.
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FIGURE 7
Decoration of the attenuated live Listeria monocytogenes conjugated with antibodies and then combined with the radioisotope 188Rhenium to
produce radioactive Listeria monocytogenes (RL), which is effective in killing tumor cells. Adapted from reference (Quispe-Tintaya et al., 2013).

FIGURE 8
Diagrammatic depiction of combining bacteria with nanomaterials to make ROS-based cancer therapies (PDT CDT SDT) more effective using
bacterial targeting properties.
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Zhu et al. developed a novel bacterial-based AIEgen (TBP-2)
nanohybrid system (AE), and the AIEgen nano bio-hybrids
significantly inhibited the growth of in situ colon tumors by
facilitating the generation of ROS in the hypoxic tumor region
under light irradiation.

SDT is an up-and-coming non-invasive tumor treatment that
effectively kills tumor cells by activating acoustic sensitizers through
ultrasound to produce ROS at the tumor site (Li et al., 2021; Gong and
Dai, 2021; Son et al., 2020). It is an effective cancer treatment because
of its good tissue penetration, non-invasiveness, and low toxicity (Li
et al., 2020). The therapeutic efficacy of SDT is closely dependent on
the concentration of oxygen in the tumor, as most acoustic sensitizers
require oxygen as a feedstock to generate ROS such as single-linear
oxygen under ultrasonic excitation. Plasmid transfection of E. coli
BL21 was performed to overexpress catalase, followed by nanoscale
acoustic-sensitized particles PCN synthesized from acoustic-
sensitizing molecules tetrakis (4-carboxyphenyl) porphyrin (TCPP)
and zirconium clusters (Zr6) NPs was adsorbed onto the bacterial
surface by electrostatic interaction to obtain the multifunctional
biohybrid E.coli-pE@PCN. After intravenous injection, E.coli-pE@
PCN showed good tumor targeting and penetration ability, which not
only could continuously express catalase to alleviate the tumor
hypoxia but also promoted the enrichment and expanded
distribution of carried acoustic sensitizers in the tumor site, thus
triggering an effective SDT (Wang et al., 2024).

CDT is a promising therapeutic modality that utilizes
endogenous overexpression of H2O2 in tumors to generate
toxic hydroxyl radicals (·OH) via the Fenton/Fenton-like reaction
(Wang Z. et al., 2022; Zhu et al., 2023). Due to the high
H2O2 properties of TME, CDT therapy can autonomously
generate ROS in TME. Nevertheless, the efficacy of CDT is often
restricted by tumor antioxidant capacity (Zhou et al., 2021).
By modifying Au@Pt nanozymes (Bac-Au@Pt) on the bacterial
surface, the nano-system can effectively release ROS into tumor
cells due to the targeting ability of the bacteria and the catalytic
properties of Au@Pt nanozymes under the acidic environment.
In addition, the complex reduces the antioxidative capacity of
the tumor thus further increasing the CDT effect (Zhang
et al., 2021).

4.2 Intracellular bacteria nanoengineering

Nanoparticles can be obtained by synthesizing them by various
chemical methods, but chemical synthesis methods have
disadvantages such as high toxicity, low purity, and poor
biocompatibility. Synthesizing various nanoparticles by using
bacteria as factories or base materials can solve the above
problems, and thus has attracted attention. For example, metal
nanoparticles can be synthesized naturally in bacteria or through
genetic engineering, and most of the bacteria-mediated synthesis of
metal nanoparticles has been shown to have antitumor activity
in vitro (Kang et al., 2008; Park et al., 2010).

Almalki and Khalifa, (2020) synthesized silver nanoparticles
(AgNPs) with diameters between 15 and 40 nm from Bacillus
sphaericus KFU36. They found that the synthesized AgNPs could
enter the TME and aggregate to induce significant tumor cell
apoptosis. AgNPs synthesized by Yang et al. promoted

intracellular ROS production in tumor cells, which increased
lipid peroxidation and led to significant tumor shrinkage (Yang
et al., 2020b). Vairavel uses Enterococcus faecalis to synthesize gold
nanoparticles intracellularly, which inhibits tumor cell proliferation
by generating ROS in tumor cells (Vairavel et al., 2020). Rajkumar
et al. synthesized selenium nanoparticles (SeNPs) using
Pseudomonas Schizosaccharomyces, which significantly inhibited
tumor angiogenesis and killed tumor cells at low concentrations
(Rajkumar et al., 2020).

4.3 Nanoparticle-based bionic bacteria

Biomimetic nanoparticles (NPs) formed using cell membranes
encapsulating NPs are a promising biomedical material. Among
various types of cell membranes, OMV shows great potential in the
biomedical field (Qing et al., 2019). Coating NPs with bacterial
OMVs retains the intrinsic properties of synthetic NPs and also
enhances the properties possessed by the OMVs (Figure 9). For
example, fusion of drug-carrying liposomes with OMVs can further
enhance the drug-carrying capacity (Piffoux et al., 2018). Chen Q.
et al. (2019) used bacterial OMVs to encapsulate drug-loaded
polymeric micelles. The OMVs activated the host immune
response and combined with the chemotherapeutic drugs
contained in the polymeric micelles, effectively inhibiting tumor
growth. In a report by Wang et al. (2020), OMVs and B16-F10
cancer cell membranes were successfully coated on hollow
polydopamine (HPDA) NPs. This material could combine
immunotherapy and PTT to treat melanoma. Researchers
genetically modified a bacterial strain by expressing a tyrosinase
transgene and generated bacterial microvesicles loaded with the
biopolymer melanin. These bioengineered bacterial microvesicles
were used as bio-nano-heaters for not only in vitro and in vivo tumor
imaging but also tumor growth inhibition under near-infrared light
irradiation (Gujrati et al., 2019).

Chen et al. formed a hybrid cell membrane by fusing a tumor cell
membrane with a bacterial cytoplasmic membrane. By
encapsulating polylactic acid-glycolic acid copolymer (PLGA)
nanoparticles within the hybridized membrane, antigens and
adjuvants from both cell membrane sources could be delivered
simultaneously, thereby enhancing the innate immune response.
Improved anti-tumor effect while avoiding side effects (Chen et al.,
2021). In addition, biofilm components extracted from bacteria can
also be used as nanoparticles for drug delivery. Yi et al. assembled
rhamnolipids extracted from Pseudomonas aeruginosa with the
photosensitizer magnesium chlorophyllate (Pba), and the
assembled nanomaterials showed a significant increase in
accumulation in tumor tissues and demonstrated significant
tumor inhibition (Yi et al., 2019). These encouraging studies
suggest that nanoparticle-based bionic bacteria hold promise for
cancer therapy.

5 Strategies for combining
nanomaterials and bacterial carriers

The binding of nanomaterials to bacteria is a prerequisite for
synergistic therapy. Here, we summarize the different ways in which
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bacteria and their components can be combined with nanomaterials
and the resulting biological functions.

5.1 Bioconjugation

Biological strategies allow for the fabrication of nanohybrids via
biorecognition processes (e.g., antigen/antibody and biotin/
streptavidin) and metabolic pathways (Mostaghaci et al., 2017).
Among them, streptavidin and biotin are the most popular binding
pairs used in biotechnology applications, which are highly selective and
have strong interactions to withstand extreme temperatures (Tm of
112°C), pH, denaturants, and enzymes (Dundas et al., 2013). Suh et al.
used this method to attach streptavidin-labeled drug-carrying poly
(lactic-ethanolic acid) nanoparticles to Salmonella typhimurium
VNP20009, which formed a biotin surface. They demonstrated a
100-fold increase in the ability to target tumors without any
external driver (Suh et al., 2019).

To attach nanoparticles to bacteria through streptavidin-biotin
interactions, the utilization of genetically engineered bacteria is an
alternative method of bioconjugation. For example, by increasing
the binding affinity and introducing new binding sites, bacteria can
be preferentially adsorbed to specific nanoparticles (Vizsnyiczai
et al., 2020). By designing genetic circuits, it is possible to control
the binding of bacteria to nanomaterials and maintain bacterial
viability and proliferation. Bioconjugate gene modification with high
loading capacity can solve the problem of mutual repulsion between
negatively charged nanoparticles and negatively charged bacteria,
making it a potential platform for a wide range of applications (Yang
et al., 2020c).

5.2 Physical

Physical strategies involve the use of bacteria as carriers to load
or anchor materials or drugs to the outer surface of the bacteria,
including electroporation (Ding et al., 2021), electrostatic
interactions (Xie et al., 2021), impregnation (Kuang et al., 2023),
or membrane coating (Wu et al., 2019).

Electroporation techniques can facilitate the entry of
therapeutic drugs into bacteria by applying an enhanced electric
field to increase the permeability of the cell membrane.
Electrostatic interactions, dip-coating processes, and cell
membrane coating techniques can also be used to construct
nano-biological mixtures. by anchoring nanomaterials to the
outer surface of bacteria. Of these, electrostatic interactions are
relatively flexible in the construction of nanohybrid materials, and
using this method bacteria can be used with virtually any charged
nanoparticle, polyelectrolyte, protein, or polysaccharide.

Although physical strategies have the advantages of simplicity
and rapidity in constructing nanohybrid materials, they also have
some drawbacks. For example, electroporation affects bacterial
activity, while electrostatic interactions are less stable in vivo
applications due to the prevailing competitive reactions (Zoaby
et al., 2017).

5.3 Chemistry

Chemical groups on the surface of bacteria make it possible to
bind bacteria and nanoparticles, which can provide a more stable
bond between bacteria and nanomaterials through chemical

FIGURE 9
Schematic representation of OMVs coatings of different nanomaterials.
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bonding. To date, many chemical reactions have been employed to
bind nanomaterials to bacterial surfaces, including carbodiimide
chemistry (Taherkhani et al., 2014), Michael addition reactions
(Xing et al., 2021), intermolecular disulfide bond cross-linking
(Liu L. et al., 2020), host-guest chemistry (Chen QW. et al.,
2020), Schiff base reactions (Chen QW. et al., 2020), and click
chemistry (Xie et al., 2018). Of these, carbodiimide chemistry has
received much attention due to the enrichment of bacterial surfaces
with amino or carboxyl groups.

5.4 Biomineralization

Biomineralization, the process by which organisms utilize mineral
elements, is a promising approach to materials engineering. Unlike
the method of combining nanoparticles with bacterial surfaces, this
approach can assist bacteria form nanoparticles directly. For example,
Chen et al. developed a self-mineralizing photothermal bacterium by
biomineralizing palladium nanoparticles (PdNPs) on the surface of
the parthenogenetic anaerobic bacterium Shewanella oneidensisMR-1
(188). Biomineralization consists of two main methods: biologically
induced and biologically controlled. Mineralization during
biologically induced processes usually occurs on the bacterial
surface and is not directly regulated by genes. In turn, biologically
controlled mineralization processes, such as nucleation, growth, and
localization, can be regulated by genes and occur both intracellularly
and extracellularly. Magnetic nanoparticles (magnetosomes)
produced by MTB are a prime example of biologically controlled
mineralization (Liu et al., 2024).

5.5 Bionic nanoparticles encapsulated by
bacterial outer membrane vesicles

Currently, there are three main approaches to preparing
bacterial OMV-coated nanomaterials. The first method, physical
co-extrusion involves the repeated extrusion of a mixture of bacterial
outer vesicles and nanoparticles through a thin porous membrane
of nanoscale porous polycarbonate using an Avanti micro-
extruder (Wu et al., 2020). Although this process is very efficient
for the production of OMV-NPs, the deposition of raw materials
on filters causes losses and makes it impractical for wide-scale
production.

The second method, the ultrasonic fusion method, in which
ultrasonic energy is used to promote the encapsulation of
nanomaterials by extracellular membrane vesicles, seems to have
solved the production scale problem (Zhang Y. et al., 2019).
However, encapsulation inhomogeneity and dimensional
variations are the shortcomings of this technique.

The third method is microfluidic electroporation (Rao et al.,
2017). technique that involves mixing cell membranes with
nanoparticles and then facilitating the entry of the nanoparticles
into the cell membranes through microfluidic electroporation. It has
the advantages of high accuracy and scalability, uniform product
size, reproducibility, and stability.

6 Challenges and future directions

Novel therapeutic agents for the treatment of cancer are
emerging, and therefore, drug delivery platforms need to
evolve to further improve therapeutic efficacy and address the
new challenges. Current findings suggest that bacteria and their
derivative-mediated drug delivery systems may become a major
asset in the fight against cancer. With the natural properties of
bacterial carriers, such as tumor targeting, ease of genetic
modification, and activation of immune responses, researchers
can develop new strategies to further optimize bacterial carriers
and enhance their anti-cancer efficacy. One innovative and
effective strategy is to combine nanomaterials with bacterial
carriers to form a hybrid system. The nanomaterials can
enhance the therapeutic effect of the bacterial carriers, while
the bacterial carriers can enhance the therapeutic effect of the
nanomaterials, thus maximizing the synergistic therapeutic effect.
The hybrid system has been shown to perform multimodal
synergistic therapies and has shown encouraging results in
improving cancer treatment outcomes.

However, research on bacterial carriers is still in the preclinical
stage, and much effort is still needed to address some scientific issues
before the translation to the clinic can be truly accomplished. Some
of the shortcomings that need to be overcome and future research
directions mainly include,

(i) The mechanism of interaction between bacteria and their
hosts is complex and may lead to unforeseen consequences.
Research on relevant mechanisms of action should be
improved, and bacterial toxicity reduction programs
should be continuously improved without affecting the
anti-cancer properties of bacteria.

(ii) It is difficult to quantify the dosage of bacterial therapy.
If certain strains of bacteria are out of the normal range,
it may disrupt the balance of the bacterial flora, leading
to dysbiosis and diseases. Improvement of in vivomonitoring
strategies to monitor the distribution of bacteria in the body
as a means of assessing their safety in the phase.

(iii) Currently, a single bacterium is mostly used for cancer
treatment, and synergistic treatment by forming hybrids
of multiple bacteria could be considered.

(iv) Using patient-specific bacterial derivatives, personalized
medical protocols can be adapted to provide more
targeted and effective treatments for cancer patients.

(v) The route of administration is also a major limitation of
bacterial therapies. Systemic injection of bacteria can lead to
serious complications, and the acidic environment of the
stomach during oral administration limits the accumulation
of bacteria in the target area. Enhanced research on routes of
administration could improve efficacy and reduce the
likelihood of adverse effects

(vi) Establishing reliable methods for the mass production of
bacteria-nanomaterials hybrids is of great importance and
key to reducing the cost and improving the accessibility
of therapies.
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Although the main focus of this review is on the use of
bacteria for cancer treatment, the use of bacteria as in vivo
diagnostics is another promising approach with the rapid
advances in nanomedicine and synthetic biology. Overall,
bacteria-based therapies could provide a more powerful and
targeted treatment for cancer. It is believed that with the
concerted efforts of a multidisciplinary team of clinicians and
scientific researchers, bacterial carrier drug delivery systems are
expected to become another powerful weapon in the clinic in the
near future.
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