The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Bioeng. Biotechnol.
Sec. Biomechanics
Volume 12 - 2024 |
doi: 10.3389/fbioe.2024.1524751
Effects of aging-related muscle degeneration on dynamic stability during walking: a musculoskeletal computer simulation study
Provisionally accepted- 1 National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- 2 College of Sport and Health Science, Ritsumeikan University, Shiga, Shiga, Japan
Aging-related deficits in the physiological properties of skeletal muscles limit the control of dynamic stability during walking. However, the specific causal relationships between these factors remain unclear. This study evaluated the effects of aging-related deficits in muscle properties on dynamic stability during walking. Walking movements were simulated using two-dimensional musculoskeletal models consisting of 18 Hill-type muscles. To assess the effects of aging-related deficits in muscle function on dynamic stability during walking, five models with different muscle properties were created, namely young adult (YA) and older adult (OA) models, models with reduced maximum isometric muscle force, reduced maximum muscle contraction velocity, and prolonged muscle deactivation time (∆F, ∆V, and ∆T models, respectively). The margin of stability (MoS) was used as a measure of dynamic stability during walking. The MoS value of the OA model was greater than that of the YA model, and the ∆F model yielded a larger MoS value than those of the ∆V and ∆T models. Therefore, the OA model achieved a more dynamically stable state than the YA model and the ∆F model required a more stable state to sustain continuous walking compared to the ∆V and ∆T models. These findings indicate that aging-related deficits in muscle function limit the control of dynamic stability during walking with the degeneration of maximum isometric muscle force being the most influential factor. These findings could aid in the development of an intervention program to reduce the risk of falls in older adults effectively.
Keywords: Gait analysis ·, Balance control, Physiological changes, Margin of Stability (MOS), Fall prevention, Aging
Received: 08 Nov 2024; Accepted: 31 Dec 2024.
Copyright: © 2024 Kudo, Fujimoto and Nagano. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Shoma Kudo, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.