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For over a century, scientists have been harnessing the therapeutic potential of
bacteria in treating diseases. The advent of synthetic biology in recent years has
propelled the development of genetically engineered bacteria with enhanced
intelligence. These bacteria can autonomously detect environmental cues and
relay them to pivotal promoters, leading to the expression of functional proteins.
By utilizing modular components, they are capable of executing a range of
functions, including sensing, transmitting, and outputting signals. Based on
these principles, a series of intelligent diagnostic and therapeutic engineered
bacteria have emerged. These bacteria are capable of targeting diseased sites,
sensing disease-specific signals, and producing reporter and therapeutic drugs.
Furthermore, the integration of intelligent diagnostic and therapeutic engineered
bacteria with advanced technologies such as artificial intelligence, nanomaterials,
and optics has paved the way for diverse clinical applications. Three critical stages
are explored in this article, which include the selection of strains, the design of
biosensing systems, and the planning of release strategies. The application of
intelligent diagnosis and treatment engineering bacteria in metabolic diseases,
inflammatory diseases, tumors and infectious diseases is reviewed.
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1 Introduction

The use of bacteria for treating diseases by humans dates back to the 19th century, when
Dr. William Coley discovered that injecting patients with Streptococcus pyogenes and
Serratia marcescens could lead to a reduction in tumor size. At the end of the 20th century,
with the development of molecular biology and genetic engineering technology, scientists
began to try to transform bacteria through genetic engineering to diagnose and treat
diseases. Living engineered bacterial therapy emerged as the times require (Srivastava and
Lesser, 2024). This therapy has the advantages of low cost, sensitivity and robustness, and
can detect and treat diseases noninvasively and in situ, which is in line with the sustainable
development goals of the World Health Organization (Tanniche and Behkam, 2023). In
recent years, with the advancement of synthetic biology, genetically engineered bacteria
have become increasingly intelligent, capable of sensing environmental signals and
transmitting them to key promoters, ultimately leading to the expression of functional
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proteins (Zhang X. E. et al., 2023). The cell factors involved in the
aforementioned processes are categorized into three modules based
on their functions: the reception module (proteins that can sense
specific chemical or physical signals inside or outside the cell and
convert the signals to downstream modules); the transmission
control module (one or a series of transcription factors and their
target promoters); and the output module (proteins that can serve as
markers or change the bacteria themselves and the surrounding
environment) (Chen and Elowitz, 2021). These three modules
constitute the core component of the intelligent engineered
bacteria’s biosensing system (Brophy and Voigt, 2014; Gordley
et al., 2016). Intelligent engineered bacteria have been applied in
agriculture, energy, manufacturing, biology, and basic medical
research (Smanski et al., 2016; Dobrin et al., 2016; Clarke and
Kitney, 2020; Gao et al., 2019). This article reviews intelligent
engineered bacteria used for disease diagnosis and treatment,
introducing their general construction and application in
disease research.

2 Construction of intelligent diagnosis
and treatment engineering bacteria

Engineered bacteria for disease diagnosis and treatment are
introduced into the host’s body through various routes such as
oral administration (Steidler et al., 2003), intravenous injection
(Ryan et al., 2009), enema (Ricci et al., 2003), vaginal
administration (Liu et al., 2006), and intratumoral injection
(Din et al., 2016). The environmental compatibility of the
bacterial strains with the lesion site allows them to effectively
reach the target location, moderately colonize at the lesion site,
and sense specific physical and chemical signals in the
environment. These signals are then transmitted into the
engineered bacteria, where they are conducted through
transcription factors and their corresponding promoters to
controllably express diagnostic reporting factors or therapeutic
factors. These factors can be effectively released from the
engineered bacteria into the lesion site, thereby playing roles in
real-time diagnosis, metabolic regulation, inflammation
suppression, tumor cell killing, and anti-infection, and can be
cleared from the host’s body after fulfilling their functions (Riglar
and Silver, 2018). From the entire process, the selection of
bacterial strains, the construction of the biosensing system, and
the design of the release mechanism are three key aspects in
constructing intelligent engineered bacteria for disease diagnosis
and treatment.

2.1 Selection of bacterial strains

When selecting chassis strains for disease diagnosis and
treatment, its biosafety and non pathogenicity should be
considered first. In addition, genetic manipulation difficulties of
chassis strains, that is, the adaptability to DNA transformation and
the availability of genome manipulation tools, must also be
considered. Finally, the survival and colonization ability of strains
in the disease environment are also the key factors to achieve the
purpose of diagnosis and treatment.

2.1.1 Nonpathogenicity and biosafety
Nonpathogenicity are prerequisites for the selection of

engineering bacteria chassis for diagnosis and treatment.
Therefore, safe non pathogenic probiotics should be selected as
chassis strains as far as possible. For example, Escherichia coli Nissle
1917 (EcN) is a gram negative probiotic that is sensitive to serum
and does not produce enterotoxins or cytotoxins associated with
pathogenic Escherichia coli (Escherichia coli) strains (Yu et al., 2023).
However, the virulence of some chassis strains is inevitable, and the
virulence of bacteria can be reduced by modifying the relevant genes
of bacteria, so as to enhance its safety. For example, attenuated
Salmonella strain ΔppGpp was engineered by regulating endotoxin
gene expression. This strain is a double mutant (rela-, spot-), which
has defects in ppGpp synthesis, resulting in downregulation of
endotoxin gene expression (Na et al., 2006). Biosafety is a key
factor in the approval of clinical trials and the use of engineered
bacterial therapies. Preventing engineered bacteria from surviving
after leaving the experimental and clinical environment is an
important method to improve biosafety. Scientists have designed
a killing switch in response to temperature changes. When the
engineered bacteria leave the host, the cold induced promoter will
express the toxin, thus reducing the survival rate of the strain
(Stirling et al., 2017).

2.1.2 Genetic manipulation difficulties
Gene modification technology plays a pivotal role in the in-

depth exploration of biotechnology. The precise genemodification is
essential for accurately regulating the functions of organisms and
serves as an indispensable cornerstone in the construction of
“intelligent” diagnostic engineering bacteria. Successful gene
modification relies on reliable DNA transformation tools,
effective control of gene expression, and post-translational
control of protein processes, such as secretion (Arnold et al.,
2023). In addition to these fundamental elements, the design of
engineering bacteria also necessitates the integration of various
advanced functional components, including sensors, circuit
components, and actuators. E. coli, due to its clear genetic
background, rapid propagation, low cost, and robust ability to
express foreign proteins, has been employed as the primary
strain for engineering development (Rosano et al., 2019).
Lactobacillus, being easy to cultivate and cost-effective, possesses
a variety of mature gene tools and vector systems, and can effectively
target single membrane proteins of eukaryotic cells, making it a
promising candidate chassis (Frelet-Barrand, 2022). Furthermore,
thanks to the successful development of supportive genetic tools,
including promoters, ribosome binding sites (RBS), vector
backbones, and genome integration systems, the intestinal
commensal bacterium Bacteroides polymorphus has also been
gradually utilized as a new probiotic chassis (Lai et al., 2022).

2.1.3 Survival and colonization ability
The survival and colonization capabilities of chassis strains at

the lesion site are crucial for disease diagnosis and treatment. Taking
ulcerative colitis, a challenging condition in gastroenterology, as an
example, if the chassis strain can effectively colonize the ileocolonic
region, it may provide significant assistance in the treatment of such
diseases. Given that Bacteroides and other intestinal bacteria have a
higher distribution in the colon, they can be considered as potential
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strains for the treatment of ulcerative colitis (Aitken et al., 2024). In
contrast, since the pathological changes in Crohn’s disease can
extend from the mouth to the anus, implying that the
corresponding treatment strategies need to cover a broader
intestinal area, the use of Lactobacillus, which can colonize both
the small intestine and the colon, is likely to enhance the therapeutic
effect on Crohn’s disease (Li et al., 2023). Furthermore, the
nanoscale outer membrane vesicles (OMVs) produced by
symbiotic gut bacteria Bacteroides thetaiotaomicron can penetrate
the intestinal mucosa and directly interact with the innate layer
immune cells, making it highly suitable as an engineered bacterial
chassis for the diagnosis and treatment of intestinal diseases (Durant
et al., 2020; Taketani et al., 2020).

2.2 Design of biosensing system

With the advancement of synthetic biology, biosensing systems
are often integrated into the functional components of engineered
bacteria (Gui et al., 2017; Ali et al., 2020). Therapeutic engineered
bacteria have evolved from simply expressing therapeutic factors to
becoming more intelligent, capable of first receiving disease signals
(physical signals: temperature, pH; chemical signals: oxygen, ions,

small molecule metabolites, peptides, sugars, etc.) and then
transferring these signals to the transmission control module for
the controllable output of therapeutic factors (Tabor et al., 2009).
The entire biosensing system can be functionally divided into three
modules: reception, transmission control, and output (Figure 1).

2.2.1 Receiving module
Currently, the reception modules used in therapeutic engineered

bacteria are divided into two types: intracellular reception modules
and transmembrane reception modules (Figure 1). Intracellular
reception modules typically refer to transcription factors that can
sense signals within the cytoplasm of engineered bacteria. The
physicochemical signals in the disease environment directly enter
the cytoplasm, causing the transcription factors to undergo
conformational changes. The conformationally changed
transcription factors activate or inhibit the inducible promoters
on the transmission control module or the output module,
thereby controlling the expression of diagnostic reporting factors
or therapeutic factors. For example, the zinc-responsive
transcription factors Zur and ZntR can serve as reception
modules that react with zinc ions entering the cell, and their
integration into E. coli allows for the sensing of serum zinc levels
and the production of visible pigments to identify zinc deficiency

FIGURE 1
Biosensing System of Intelligent Diagnosis and Treatment Engineering Bacteria. Receiving module: intracellular reception: Physical and chemical
signals from the disease environment enter the cell, interact with transcription factors, and cause conformational changes in transcription factors.
Subsequently, transcription factors activate or inhibit inducible promoters on the transport control module or output module. Transmembrane
reception: including a transmembrane protein and a transcriptional regulatory protein. Transmembrane proteins receive extracellular signals and
phosphorylate transcription regulatory proteins. Then, transcriptional regulatory proteins bind to the promoters of transport or output modules,
activating or inhibiting the transcription of coding genes. Transmission control module: located between the receiving module and the output module, it
is composed of one or more transcription units connected in series or parallel. Output module: It can express reporter genes or therapeutic genes to
achieve diagnostic and therapeutic purposes.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Zhao et al. 10.3389/fbioe.2024.1524376

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1524376


(McNerney et al., 2019). A protein, lasR, which reacts with acyl-
homoserine lactone (AHL), has been used as an intracellular
reception module in engineered E. coli to monitor the presence
of pathogenic Pseudomonas aeruginosa (P.aeruginosa) in solid agar
(Gupta et al., 2013), biofilms (Saeidi et al., 2011), and animal models
(Hwang et al., 2017). Another transcriptional regulator, NorR,
which is activated by nitric oxide (NO), has also become an
intracellular reception module for engineered bacteria to detect
inflammatory signals (Archer et al., 2012; Chen et al., 2021).
Finally, various orally administered gut-adapted bacteria have
been implanted with intracellular reception modules to sense
lactose (Drouault et al., 2002), xylan (Hamady et al., 2010), and
rhamnose (Mimee et al., 2015) in the diet, as well as chemical
substances produced by the gut microbiota in mice (Pickard et al.,
2014). Although intracellular reception modules play an important
role in disease diagnosis, they also have limitations because they
cannot sense extracellular disease signals.

Transmembrane reception modules are the primary means for
engineered bacteria to sense extracellular stimuli (Gao and Stock,
2009; Galperin, 2010). The classic transmembrane reception module
features a histidine kinase transmembrane protein that, upon
stimulation by specific signals in the environment,
phosphorylates histidine on the intracellular side of the
membrane. It then phosphorylates a transcriptional regulatory
protein, which can bind to the promoters of the transmission
control module or the output module, activating or inhibiting the
transcription of the encoded genes (Beier and Gross, 2006). Many
transmembrane reception modules have been utilized for disease
diagnosis and treatment (Lazar and Tabor, 2021). Two early-
developed transmembrane reception modules from the marine
bacterium Shewanella, thiosulfate sensor ThsS-ThsR and
tetrathionate sensor TtrS-TtrR, respectively receive thiosulfate
and tetrathionate signals across the membrane, and these
modules have been designed to be installed in E. coli as a
potential therapeutic means for intestinal inflammation (Daeffler
et al., 2017; Riglar et al., 2017). Recently, researchers designed a
NarX-NarL-based transmembrane reception module to detect
nitrate levels, and in EcN, the combination of NarX-NarL with
ThsS-ThsR modules across the membrane receives nitrate and
thiosulfate, enhancing the specificity of the engineered bacteria in
diagnosing intestinal inflammation (Woo et al., 2020). Another
study integrated the transmembrane reception elements CqsS-
LuxU-LuxO derived from Vibrio cholerae with a dCAS9-based
green fluorescent protein (GFP) reporter gene system into E. coli,
constructing a biosensor with high sensitivity to quorum sensing
(QS) ligand cholera CAI-1, indicating the presence and proliferation
of Vibrio cholerae (Holowko et al., 2016). The reception module can
act directly on the output module or can be combined with the
output module through the transmission control module to form a
more intelligent biosensing system (Anderson et al., 2007).

2.2.2 Transmission control module
The transmission control module is located between the

reception module and the output module, and it is composed of
several serial or parallel transcriptional units (Figure 1). The
efficiency of the transmission control module is equal to the sum
of the rates of all transcriptional units. The efficiency of each
transcriptional unit depends on its promoter, terminator, and

ribosome binding site (RBS) components. The promoter marks
the starting point of transcription and can ensure the
transcription rate of mRNA through a series of well-designed
constitutive promoter libraries or chemically inducible promoters
(Kelly et al., 2009; Mutalik et al., 2013; Yao et al., 2013; Lutz and
Bujard, 1997; Cox et al., 2007; Armetta et al., 2021). Terminating the
transcription process is crucial to avoid unintended interactions
between different transcriptional units in the engineered DNA
sequence. Previous studies have established numerous high-
efficiency transcription terminator resource libraries, which
include a large number of high-performing terminators (Chen
et al., 2013; Cambray et al., 2013). The RBS determines the
efficiency and location of ribosome binding, and it can regulate
the rate of translation initiation, thereby controlling the expression
level of proteins. By using RBS calculation tools to design specific
ribosome binding sequences (Salis et al., 2009; Espah Borujeni et al.,
2014; Farasat et al., 2014), or employing amore flexible “dual-cistron
design” method with RBS (Mutalik et al., 2013), the translation
efficiency of target genes in engineered bacteria can be
conveniently adjusted.

The transmission control module, based on Boolean logic, is
divided into three basic modes: “AND gate transmission control”
(functional factors are expressed only when both signals are present
simultaneously) (Figure 2A) (Woo et al., 2020; Anderson et al.,
2007), “OR gate transmission control” (functional factors are
expressed as long as one of the two signals is present)
(Figure 2B) (Wong et al., 2015), and “NOT gate transmission
control” (functional factors are not expressed when a certain
signal is present, otherwise they are expressed) (Figure 2C)
(Bartoli et al., 2020). These three basic modes can also be
combined to form advanced transmission control modules such
as NAND (Wang et al., 2011), NOR (Tamsir et al., 2011), and XOR
gates (Wong et al., 2015).

2.2.3 Output module
The output module of intelligent therapeutic engineered bacteria

is the functional gene that ultimately exerts its effect, which can be
divided into two types: diagnosis and treatment (Figure 1).

Diagnostic output modules often express pigments, luciferases,
or fluorescent proteins because the intensity of this form of output is
easily observable and measurable. The advantage of pigments as
diagnostic outputs is that they are visible to the naked eye without
the need for special equipment. The earliest example is the
enzymatic activity of the lacZ gene on X-gal, which produces a
blue pigment (Horwitz et al., 1964). Violacein, lycopene, and
carotenoids are induced to express by Zur and ZntR zinc-
responsive transcription factors (TFs) to sense serum zinc levels
for identifying zinc deficiency (McNerney et al., 2019). Luciferase,
due to its very low background luminescence in fecal samples,
typically produces higher sensitivity than pigment reporter genes.
Although the use of specific equipment and substrates is required,
these limitations do not hinder their significant role in improving
the reliability of detection (Corthier et al., 1998). Fluorescent
proteins are also commonly used as output proteins for disease
diagnosis. Researchers have combined GFP and its variants (such as
RFP, YFP, CFP) with transmembrane reception modules for the
diagnosis of inflammatory bowel disease (IBD) (Daeffler et al., 2017;
Riglar et al., 2017; Woo et al., 2020). This allows researchers to more
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accurately observe the morphology, growth status, and interactions
of engineered bacteria at the single-cell level.

Therapeutic output modules express functional factors such as
interleukins, hormones, enzymes, and bacterial toxins. Lactobacillus
expressing interleukin-27 (IL-27) can be used to treat inflammatory
bowel disease (Hanson et al., 2014). Interleukin-10 (IL-10) and
proinsulin are co-expressed in Lactobacillus for the treatment of type
1 diabetes (Takiishi et al., 2017). Engineering EcN can bind to
heparin sulfate proteoglycans (HSPG) on the surface of cancer cells
and secrete a substance called myrosinase, which converts
glucosinolates in food into sulforaphanes with anticancer activity
(Ho et al., 2018). E. coli loaded with the bacterial toxin antimicrobial

protein (S5 pyocin) and biofilm-degrading enzyme (DspB) has
shown a synergistic effect in eliminating P. aeruginosa, improving
the efficiency of pathogen clearance (Hwang et al., 2017).

2.3 Design of release method

The release of functional factors from engineered bacteria into
the lesion environment is essential for their pharmacological
efficacy. These factors are typically released through mechanisms
of bacterial lysis or via excretion systems (Figure 3). The cutting-
edge lytic system derived from bacteriophage iEPS5 has been used to

FIGURE 2
Boolean logic of transmission control module (A) Biological “AND gate”. Two input promoters were used that react with small molecule salicylates
(Sal) and arabinose (Ara). The first promoter Psal is related to the transcription of the amber inhibitory factor tRNA supD. The second promoter PBAD drives
transcription of T7 RNA polymerase. The polymerase gene has beenmodified to contain two amber stop codons (T7ptag). When supD is also transcribed,
these stop codons are translated into serine. The polymerase T7 is only expressed in the presence of supd and T7ptag mRNA. Therefore, GFP can be
output only when Sal and Ara are input at the same time. (B) Biological “OR gate”. PBAD and PRHAB promoters were designed upstream of an RFP reporter
gene with strong RBS. When rhamnose (Rha) or arabinose (Ara) existed in the environment, they could combine with the corresponding receiving
module, and then induce the expression of RFP. (C) Biological “NOT gate”. In the absence of isopropyl-β-d-thiogalactoside (IPTG), the repressor protein
lacI will prevent the polymerase from binding to the promoter Plac and cannot express CI. At this time, GFP can be expressed. When IPTG is present, IPTG
inhibits lacI, CI repressor protein can be expressed, and then interacts with the promoter Plam to inhibit the expression of GFP.
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FIGURE 3
Release Method of Intelligent Diagnosis and Treatment Engineering Bacteria. (A) Bacterial lysis: Engineering bacteria first express functional factors,
andwhen they reach the lesion, special signals in the disease environment induce engineering bacteria to express lytic proteins, followed by the release of
bacterial lytic functional factors. (B) Extracellular secretion system: SEC-type secretion system, which first secretes functional proteins with signal
peptides into the cytoplasm, and then secretes them out of the cell through outer membrane proteins. Hemolysin secretion system is comprised of
three components (HlyB, HlyD, and TolC), which can secrete functional proteins carrying the HlyA signal peptide outside the cell. Type III secretion
system (T3SS) can directly inject functional factors into host cells. Omp, outer membrane proteins; Hly, Hemolysin.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Zhao et al. 10.3389/fbioe.2024.1524376

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1524376


induce lysis of Salmonella typhimurium, promoting the release of
mitochondrial targeted domain protein (MTD) (Jeong et al., 2014)
and immunotoxin TGFα- PE38 (Lim et al., 2017) for cancer
treatment (Figure 3A).

Among the various excretion systems, the SEC-type secretion
system plays a pivotal role by linking a signal peptide to the
functional factor, which aids in the translocation of the factor
across the inner membrane of the engineered bacteria from the
cytoplasm to the periplasm, ultimately secreting it into the
surrounding environment (Zheng et al., 2017; Lim et al., 2017;
Pöhlmann et al., 2012) (Figure 3B). The hemolysin secretion system
is a continuous tunnel that spans the inner and outer membranes
(composed of HlyB/HlyD/TolC), which can induce functional
proteins with signal peptides to be excreted from the intracellular
space (Gentschev et al., 2002; Zou et al., 2023) (Figure 3B).
Researchers have implanted the Type III secretion system (T3SS)
from pathogenic bacteria into non-pathogenic E. coli, which can
directly inject functional factors into host cells (Reeves et al., 2015;
Ruano-Gallego et al., 2015; González-Prieto and Lesser, 2018)
(Figure 3B). Although these release systems have been proven to
be effective in animal models, their safety for human disease
applications still requires further validation.

3 Application of intelligent diagnosis
and treatment engineering bacteria

Compared to other therapies, engineered bacteria can perform
sensitive, noninvasive, and in situ detection and treatment of
diseases at low cost (Tanniche and Behkam, 2023), and the rapid
advancement of synthetic biology has further enhanced their
stability and intelligence (Landry and Tabor, 2017).
Consequently, the application of intelligent diagnostic and
therapeutic engineered bacteria has been extended from
gastrointestinal diseases to metabolic disorders, oncology,
infectious diseases, and other areas (Lim and Song, 2019;
Gurbatri et al., 2022).

3.1 Metabolic disorders

Metabolic disorders can lead to diseases such as diabetes and
obesity. Most of these disease belongs to chronic diseases, and
current treatment methods include long-term scheduled
medication or injections. These therapies have significant side
effects, high costs, and require patients to strictly follow the
treatment plan. Consequently, the deployment of intelligent
diagnostic and therapeutic engineered bacteria presents itself as a
potential treatment strategy for metabolic diseases.

3.1.1 Diabetes
Type 1 diabetes is an autoimmune disease that leads to insulin

deficiency and ultimately the loss of function of pancreatic β-cells,
necessitating lifelong treatment, particularly with long-term,
scheduled insulin injections (Subramanian et al., 2024).
Researchers have utilized Lactobacillus gasseri to express
glucagon-like peptide 1 (GLP-17–37) and engineered it to be
released via a type III secretion system. Data from diabetic rats

treated orally provide evidence for the use of engineered commensal
bacteria in the treatment of diabetes (Duan et al., 2015). Oral
administration of engineered Lactococcus lactis expressing both
human proinsulin (PINS) and human interleukin-10 (hIL-10), in
combination with low-dose systemic anti-CD3 monoclonal
antibodies, can stably restore blood glucose levels in non-obese
diabetic (NOD) mice (Takiishi et al., 2017; Takiishi et al., 2012).
Similarly, engineered Lactococcus lactis co-expressing human
glutamic acid decarboxylase (GAD65) and human interleukin-10
(hIL-10) has shown the same therapeutic efficacy (Robert
et al., 2014).

Type 2 diabetes is widely concerned because of its incidence rate
and complications (Tao et al., 2020). GLP-1 is an incretin hormone
produced by intestinal cells that stimulates insulin secretion from
the pancreas in a glucose-dependent manner. Exogenous GLP-1
analogs are used for the treatment of type 2 diabetes. Lactobacillus
lactis (LL-pUBGLP-1) containing a plasmid encoding GLP-1 was
used as a delivery system for GLP-1, and its effectiveness was
demonstrated by the reduction in plasma glucose levels and
increment insulin concentrations in obese type 2 diabetic rats
(Zucker Diabetic Fatty rats, ZDF) following oral administration
(Agarwal et al., 2014). Researchers have designed a GLP-1 mutant
pentamer (5 × GLP-1), which is expressed and extracellularly
anchored on the cell wall of lactic acid bacteria, and retains its
in vitro bioactivity after being digested by intestinal trypsin into
GLP-1 monomers (Lin et al., 2016). To induce a significant
insulinotropic effect in diabetic animal models, further
enhancement of the expression level of GLP-1 by lactic acid
bacteria is required. Consequently, researchers have further
mutated GLP-1 and linked it to form a GLP-1 hexamer (6 ×
mGLP-1), and the hexamer expressed by E. coli has been shown
to exert a long-lasting hypoglycemic effect in type 2 diabetic mice
(Xu et al., 2017). Additionally, exendin-4, a GLP-1 receptor agonist
with a more prolonged bioactivity compared to GLP-1, has been
effectively expressed and secreted by Lactobacillus paracasei
transformed with a plasmid encoding the exendin-4 gene. The
secreted exendin-4 significantly enhanced insulin secretion from
INS-1 β-cells, providing a novel strategy for the treatment of
diabetes with engineered bacteria (Zeng et al., 2016). Recently,
researchers have orally administered optogenetic engineered
Lactococcus lactis in the gut, which secretes GLP-1 to regulate
metabolism under the control of a wearable optical device, and
this strategy has effectively controlled blood glucose, body weight,
and other characteristics in rat and mouse models (Zhang X.
et al., 2023).

3.1.2 Phenylketonuria
Phenylketonuria (PKU; also known as phenylalanine

hydroxylase deficiency) is an autosomal recessive genetic disorder
of phenylalanine (Phe) metabolism, where excessive Phe levels can
lead to brain dysfunction (van Spronsen et al., 2021). To reduce Phe
levels in the body, Synlogic Corporation has designed a strain, EcN
(SYNB1618), capable of expressing genes for phenylalanine
transport protein (PheP), phenylalanine ammonia lyase (PAL),
and L-amino acid deaminase (LAAD), which can convert Phe to
trans-cinnamic acid (TCA) and phenylacetate (PP) in the
gastrointestinal tract, effectively reducing blood Phe levels in
mice and crab-eating macaques (Isabella et al., 2018).
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Subsequently, researchers conducted human trials with EcN
(SYNB1618), which demonstrated safety and good tolerability
(Puurunen et al., 2021). Building upon the success of EcN
(SYNB1618), the entire cell PAL activity was optimized, resulting
in a more effective strain, EcN (SYNB 1934), which showed
approximately twice the PAL activity in vivo compared to its
predecessor (Adolfsen et al., 2021).

3.1.3 Obesity
Obesity is a major global issue that significantly impacts public

health (Perdomo et al., 2023). In recent years, researchers have also
made attempts to treat obesity using smart engineered bacteria.
N-acylphosphatidylethanolamines (NAPEs) synthesized in the
small intestine can enhance satiety and reduce food intake.
Engineered EcN, through genetic modification, can synthesize
NAPEs in the gut, thereby treating obesity. This approach is
more effective and enduring than traditional dietary and lifestyle
interventions (Chen et al., 2014). Butyrate can reduce appetite and
alleviate fatty liver through gut-brain neural circuits. Transgenic
Bacillus subtilis SCK6 can increase butyrate production, which has
beneficial effects on obesity, fasting blood glucose, insulin resistance,
hepatic steatosis, and fat accumulations (Bai et al., 2020). Engineered
Lactobacillus expressing GLP-1 has an ameliorative effect on obesity
in mice induced by a high-fat diet (HFD) (Wang et al., 2021).

3.1.4 Hyperammonemia
Ammonia (NH3) is a toxic metabolite, which is produced in the

small intestine and colon. The main route of ammonia (NH3) is to
synthesize urea in the liver and excrete it in the urine from the
kidney. Hyperammonemia occurs when there is a defect in
ammonia metabolism. A large amount of ammonia that is not
metabolized into urea by the liver enters the brain through the blood
circulation, which can lead to brain injury and death (Ribas et al.,
2022). Kurtz et al. Modified the metabolism of probiotic ECN,
deleted the gene encoding arginine repressor ArgR, and then
integrated the gene Arga215 encoding ArgAY19C into the
intergenic region of malE and malK genes under the control of
endogenous anaerobic inducible promoter fnrS (Pfnrs) of Escherichia
coli. ArgAY19C is the feedback resistant version of
N-acetylglutamate synthase ArgA (argAfbr). This engineered
strain, SYNB1020, can overproduce arginine, thereby sequestering
some ammonia produced by intestinal bacteria into amino acid
molecules. The experiment proved that synb1020 could reduce
blood ammonia, improve the survival rate of mouse
hyperammonemia model, and showed repeated dose tolerance in
non-human primates. A phase 1 dose escalation study in healthy
human volunteers did not result in serious adverse events and
showed that the bacterium was metabolically active in vivo,
indicating that SYNB1020 needs further clinical development
(Kurtz et al., 2019). Subsequently, the researchers conducted
experiments using two engineered EcN strains, S-ARG
(SYNB1020) and S-ARG + BUT (SYNB1536), in a rat model of
chronic liver injury (CLD) and hepatic encephalopathy induced by
bile duct ligation (BDL). The S-ARG (SYNB1020) strain showed
positive benefits in reducing hyperammonemia, thereby alleviating
memory impairment in BDL rats. The S-ARG + BUT (SYNB1536)
strain exhibits similar therapeutic effects in hyperammonemia and
shows additional positive effects in systemic inflammation and

endotoxemia, leading to adequate protection against memory
deterioration (Ochoa-Sanchez et al., 2021).

3.1.5 Hyperuricemia and gout
Uric acid is the final product of purine degradation in the human

body, which can be excreted from the body through the kidneys and
intestines. Excess uric acid will lead to hyperuricemia. The chronic
form of arthritis caused by precipitation of sodium urate crystals is
called gout. Gout afflicts hundreds of millions of people worldwide,
with a high incidence rate in developed countries (Borghi et al.,
2020). Yang et al. discovered a new method to eliminate purines
from the diet by engineering gut bacteria, integrating a set of
enzymes and transporters capable of degrading purines under
anaerobic conditions into the EcN chromosome, which can
bypass the formation of uric acid. By orally supplementing these
engineered probiotics or purified recombinant enzymes, it is
possible to effectively treat hyperuricemia fruit fly models,
providing a new approach for developing novel probiotic
therapies for the treatment of hyperuricemia and gout (Tong
et al., 2023). Zou et al. also developed a probiotic EcN called
YES301, which significantly improved the ability of bacteria to
uptake xanthine and hypoxanthine by rationally designing
overexpression of the xanthine transporter XanQ. As a result,
serum uric acid levels were reduced and kidney damage was
improved in a hyperuricemia mouse model. YES301 has shown
comparable efficacy to traditional uric acid lowering drugs such as
allopurinol, but with fewer side effects and higher biosafety,
highlighting the potential of engineered probiotics in reducing
intestinal purine levels to manage hyperuricemia (Zou et al., 2024).

3.2 Inflammatory bowel disease

Inflammatory bowel disease (IBD), which includes Crohn’s
disease and ulcerative colitis (UC), is a type of incurable
inflammatory condition (McDowell et al., 2024; Lu et al., 2022;
Taku et al., 2020). The oral administration of smart diagnostic and
therapeutic engineered bacteria, equipped with an internal
biosensing system that can directly deliver therapeutic molecules
to the gut, offers a highly promising approach for the diagnosis and
treatment of inflammatory bowel disease (IBD).

In the early diagnosis of IBD, Archer et al. (2012) used the
transcriptional regulator NorR as a receiving module that reacts with
nitric oxide (NO) released during intestinal inflammation, thereby
relieving the repression of the promoter and activating the
expression of the DNA recombinase FilmE. FilmE can reverse
the expression type of the fluorescent protein, from yellow
fluorescent protein (YFP) to cyan fluorescent protein (CFP), and
the change in fluorescence color can serve as a basis for the diagnosis
of intestinal inflammation. Another study designed an E. coli strain
(NGF1) that uses the transmembrane receiving module TtrS-TtrR to
sense tetrathionate in the inflammatory intestinal environment, then
remembers the presence of tetrathionate through the phage CI/Cro
control module, and finally expresses β-galactosidase (β-gal) as an
output. The β-gal in the feces reacts with a reagent to produce a color
change, which can serve as a diagnostic basis for intestinal
inflammation. This smart diagnostic engineered bacterium is
effective for a long period within mice (Riglar et al., 2017).
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Engineered bacterial strains that directly or indirectly express
anti-inflammatory factors to inhibit pro-inflammatory factors show
great promise in the treatment of IBD. Cui et al. constructed a
photosensitive E. coli strain that uses YF1/FixJ as a transmembrane
receiving module, capable of sensing blue light to secrete IL-10, and
this system demonstrated real-time monitoring and long-term
alleviation effects in acute and chronic UC mouse models (Cui
et al., 2021). Recently, Zou et al. designed an EcN named i-ROBOT
for real-time diagnosis and treatment of IBD. The transmembrane
receiving module thsS/thsR of i-ROBOT senses the inflammatory
signal thiosulfate, triggering the expression of the diagnostic factor
superfolder green fluorescent protein (sfGFP) and the therapeutic
factor immunomodulator AvCystatin. The therapeutic factor
AvCystatin, connected with the Hly signal peptide, is released
into the lesion through the implanted hemolysin secretion system
to exert its pharmacological effect. At the same time, the inserted
codon ACG in the chromosome is edited by BE2 and sgRNA to
become the start codon ATG, initiating the expression of LacZ,
which serves as a signal recording function. DSS-induced colitis in
mice treated with i-ROBOT by gavage effectively alleviated the
disease (Zou et al., 2023). Chua et al. designed an EcN strain
using the endogenous regulatory factor NorR as a receiving
module to respond to the colorectal inflammatory marker nitric
oxide (NO), then activating the inducible promoter pNorV to
express interferon lambda 1 (IFNL1). IFNL1 is excreted from the
bacteria with the help of the signal peptide YebF, acting on immune
cells to regulate inflammatory pathways. This engineered bacterium
played an anti-inflammatory role in two in vitro IBD models (Chua
et al., 2023). Researchers administered Lactobacillus expressing the
antimicrobial peptide (LL37) to mice by continuous gavage for
10 days, with a single rectal injection of the inflammatory
inducer DNBS on the 7th day, and the results proved that this
engineered bacterium could prevent the occurrence of colitis and
alleviate colitis symptoms (Noguès et al., 2022). In addition,
Lactobacillus has been engineered to express IL-10 (Steidler et al.,
2000), IL-27 (Hanson et al., 2014), IL-35 (Wang et al., 2019), thymic
stromal lymphopoietin (TSL) (Aubry et al., 2015), and heme
oxygenase (PHO-1) (Shigemori et al., 2015), among other
immune factors, for the treatment of IBD.

Restoring intestinal mucosal healing and epithelial integrity is
also a strategy for the treatment of IBD. Liang et al. (2022) directly
inserted the nattokinase gene, connected with a signal peptide, into
the natural plasmid pMUT1 of EcN. As a therapeutic factor,
nattokinase alleviates DSS-induced intestinal epithelial injury and
restores mucosal integrity by upregulating the levels of tight junction
proteins (including ZO-1 and occludin). Praveschotinunt et al.
(2019) linked the trefoil factor family (TFF) with a membrane
protein (CsgA) to form a mucosal component that can protect
the intestinal epithelium. This component, expressed by EcN and
secreted onto the intestinal mucosa through the curli secretion
system, can promote the repair of DSS-induced intestinal
epithelial cells in mice.

The production of reactive oxygen species (ROS) leads to
oxidative stress, which can damage intestinal cells. Increasing the
activity of enzymes that can scavenge ROS becomes another strategy
for the treatment of IBD (Montero-Blay et al., 2023). Zhou et al.
(2022) engineered EcN to express superoxide dismutase (SOD) and
catalase (CAT), which are capable of scavenging ROS. In a mouse

model of IBD, this engineered bacterium, coated with chitosan/
alginate, effectively alleviated colonic inflammation and
unexpectedly increased the abundance of important
microorganisms that maintain intestinal homeostasis.

3.3 Cancer

The use of engineered bacteria for cancer therapy is an emerging
biotherapeutic approach that leverages genetically modified bacteria
to combat cancer cells. This method primarily operates through the
following three mechanisms: releasing natural toxins to induce
apoptosis in cancer cells, activating the immune system to
recognize and eliminate cancer cells, and delivering anticancer
drugs directly to the tumor site (Weerakkody and Witharana,
2019; Li et al., 2021; Yang et al., 2021).

3.3.1 Releasing natural toxins promotes cancer
cell apoptosis

Firstly, many bacteria contain natural toxins with potential anti-
cancer properties. To better utilize these bacterial toxins for cancer
treatment, scientists have recombined the natural toxin genes to
express and purify them through engineered bacteria. This not only
enhances the targeting of cancer cells but also reduces damage to
normal tissues. For instance, researchers have mutated the P.
aeruginosa exotoxin A (PE) and fused it with anti-CD25 to form
a new recombinant toxin (CD25-PE38KDELKQK). The
recombinant toxin, expressed and purified by E. coli, significantly
reduced the natural toxin’s toxicity to the pulmonary vessels in the
lungs of mice with lung cancer (Wang et al., 2008). Researchers have
also linked the B subunit of the natural bacterial toxin Shiga-like
toxin (STXB) with the DT389 fragment of the natural diphtheria
toxin (DT538) to form a fusion toxic protein (DT389-STXB). STXB
is responsible for recognizing the cancer cell surface receptor GB3,
while the DT389 toxin is responsible for eliminating cancer cells,
showing high affinity for breast cancer cells (Mohseni et al., 2021).

3.3.2 Activate the immune system to recognize and
eliminate cancer cells

Engineering bacteria can activate immune cells or guide them to
recognize and kill cancer cells by expressing specific immune-
stimulating molecules, such as cytokines or chemokines. This
approach enhances the immune memory effect, preventing the
recurrence of cancer.

Interleukin-2 (IL-2) can activate immune cells infiltrating tumor
tissues, including T cells, NK cells, and ILC cells (Raeber et al., 2022).
By electroporation of plasmids carrying the human IL-2 gene into
the attenuated Salmonella typhimurium strain x455O, a drug
delivery system x455O (pIL2) is constructed. Gavage of this
engineered bacteria in MC-38 adenocarcinoma mice not only
reduced liver metastasis of MC-38 adenocarcinoma but also did
not observe toxicity of IL-2 or Salmonella (Saltzman et al., 1996).
Subsequently, researchers successively attempted to use Clostridium
butyricum secreting rat interleukin-2 (rIL2) (Barbé et al., 2005), and
Bacillus cereus secreting mouse interleukin-2 (mIL2) as engineered
bacteria for tumor treatment (Kubiak et al., 2021). Recently,
scientists have progressively optimized the bioactivity of IL-2
using EcN, and mice with colon cancer models treated with
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intravenous injection of this engineered bacterial strain showed a
moderate reduction in tumor growth rate and a significant increase
in IL-2 levels in the tumor (Tumas et al., 2023).

Components of the interleukin-18 (IL-18) signaling pathway are
upregulated on tumor-infiltrating lymphocytes, indicating that IL-
18 can enhance the immune system’s ability to combat tumors
(Zhou et al., 2020). Researchers synthesized IL-18 using an
engineered attenuated Salmonella typhimurium strain
(VNP20009), and after intravenous injection of this engineered
bacteria into a mouse model, the growth of colon cancer and
breast cancer cells was significantly inhibited, as well as lung
metastasis in immunocompetent mice (Loeffler et al., 2008).

L-arginine in tumor tissue can enhance the antitumor capability
of immune checkpoint inhibitors. To increase the production of
L-arginine, scientists deleted the arginine repressor gene (ArgR) of
EcN and mutated the N-acetylglutamate synthase gene (ArgAfbr).
The engineered bacteria, when co-injected with anti-PD-L1,
significantly reduced tumor growth rate (Canale et al., 2021).

Researchers used EcN with the lysis gene (ΦX174E) to
express nanobodies targeting immune checkpoints PD-L1nb
and CTLA-4nb. After intratumoral injection of this
engineered bacteria, the tumor partially or completely
regressed in the mouse model, and no visible liver metastasis
was observed (Gurbatri et al., 2020).

Another study utilized engineered Salmonella (△ppGpp) to
secrete the Del-1 protein (a potent inhibitor of neutrophil
recruitment, antagonizing the antigen-1 associated with
lymphocyte function on vascular endothelial cells). After tail vein
injection of this engineered bacteria into amouse model, the number
of neutrophils in the tumor decreased, the number of M1-type
macrophages increased, and tumor elimination was observed in
some samples (Tian et al., 2022).

3.3.3 Transporting anti-cancer drugs directly to the
tumor microenvironment

Engineering bacteria can serve as drug delivery systems, directly
delivering anticancer drugs to tumor cells. This approach can
increase the local concentration of drugs and reduce systemic
side effects. Researchers have used E. coli DH5α that can
specifically target tumor tissues to express beta-glucuronidase
(βG), which converts inactive prodrugs into anticancer active
drugs at the tumor site, significantly inhibiting tumor growth
(Cheng et al., 2008; Afkhami-Poostchi et al., 2020).

Bacterial spores can also serve as carriers for anticancer drugs
because obligate anaerobic bacterial spores can only germinate in the
hypoxic necrotic areas present in solid tumors, while remaining
dormant in other parts of the body (Barbé et al., 2006; Kubiak and
Minton, 2015). However, the original bacterial spores cannot
eliminate cancer cells and require genetic modification or
combination with other anticancer strategies. Scientists have
covalently attached the chemotherapeutic drug gemcitabine
(MGEM) to Clostridium butyricum spores (SPORE), and after
oral administration, the drug (SPORE-MGEM) migrates from the
upper gastrointestinal tract to pancreatic tumors, with a threefold
increase in drug accumulation within the tumor compared to
MGEM alone. In a mouse model of pancreatic cancer, SPORE-
MGEM inhibited tumor growth without significant side effects (Han
et al., 2022).

3.4 Infectious diseases

3.4.1 AIDS
The primary mode of transmission for HIV/AIDS is sexual

contact, with the cervicovaginal mucosa being the main route of
HIV infection in women. Scientists have engineered Lactobacillus
jensenii, isolated from vaginal mucosa, to express a bispecific CD4
(2D CD4) molecule on its surface that can bind to HIV proteins,
which can impede heterosexual transmission of HIV (Chang et al.,
2003; Liu et al., 2008). Subsequently, a study used engineered
Lactobacillus acidophilus (ATCC 4356) to express human CD4,
with the expressed CD4 protein anchored on the outer wall of
the engineered bacteria to adsorb HIV-1 virus. In a humanized
mouse model, the engineered bacteria, when stimulated rectally,
prevented HIV-1 infection, but the vaginal effect was suboptimal
(Wei et al., 2019). Similarly, the probiotic EcN was designed to
secrete HIV-gp41-lysin peptides, thereby preventing HIV fusion and
subsequent invasion. This engineered bacterial strain can colonize
persistently and stably in the colon and cecum, releasing anti-HIV
peptides in mice for several months (Rao et al., 2005).

3.4.2 Cholera
Cholera is a life-threatening gastrointestinal infectious disease

caused by the infection of toxigenic Vibrio cholerae (Kanungo et al.,
2022). Engineered bacterial interventions have been used for the
diagnosis and treatment of cholera. Scientists have constructed an
intelligent engineered bacterium using Lactococcus lactis, whose
recombinant transmembrane receptor module HR4M can
specifically detect the quorum-sensing signal CAI-1 of Vibrio
cholerae in the intestine and trigger the expression of the reporter
gene β-lactamase. The expressed product is easily detectable in fecal
samples, thereby assisting in the diagnosis of cholera (Mao et al., 2018).
Holowko et al. (2016) developed an intelligent diagnostic engineered
bacterium based on the quorum-sensing mechanism of Vibrio cholerae
and CRISPRi technology for detectingVibrio cholerae. It uses E. coli as a
vector, and when Vibrio cholerae is at a high density, the
transmembrane receptor module CqsS-LuxU-LuxO reacts with the
signal molecule CAI-1, and the CRISPRi-based transmission control
system triggers the expression of the diagnostic factor GFP, which has
been successfully used for detecting Vibrio cholerae. Similarly,
Jayaraman et al. (2017) replaced the GFP from the previous study
with the lytic protein YebF-Art-085, and introduced the expression of
the killing protein Art-085. The lysed engineered bacteria release the
killing protein, thereby eliminatingVibrio cholerae. In vitro experiments
have shown that this intelligent engineered bacterium can effectively
inhibit the growth of Vibrio cholerae cells.

3.4.3 Pseudomonas aeruginosa infection
P.aeruginosa primarily colonizes the respiratory and

gastrointestinal tracts (Ungor and Apidianakis, 2024). It is one of
the main causes of hospital-acquired infections due to its resistance
to many antibiotics and antimicrobial agents (Jurado-Martín et al.,
2021). Utilizing engineered bacteria to effectively sense and kill P.
aeruginosa provides a novel antibacterial strategy for controlling
infections caused by this bacterium. Researchers have designed a
smart E. coli that can detect acyl-homoserine lactone 3OC12HSL
produced by P. aeruginosa using the intracellular receptor protein
lasR. Upon detection, the bacteriocin Pyocin S5 is produced, which
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can be released by the E7 lysis protein after lysing E. coli, and then
kills P. aeruginosa in the infected environment (Saeidi et al., 2011).
Building on the aforementioned research, another study changed the
release mode of the smart engineered bacteria from lysis to secretion.
When lasR binds to the P. aeruginosa infection signal 3OC12HSL,
the pathogen-specific toxin CoPy, which carries the signal peptide
Flgm, is expressed and can be released through the flagellar secretion
system. This design can obviously kill P. aeruginosamore effectively
and for a longer duration (Gupta et al., 2013). Subsequently, a
similar study used the probiotic strain EcN as a host and added the
expression of the biofilm-degrading enzyme DspB to the bactericidal
protein Pyocin S5. This engineered bacterium showed both
preventive and therapeutic activity in Caenorhabditis elegans and
mouse models of P. aeruginosa intestinal infection (Hwang et al.,
2017). Recently, Gao et al. (2023) constructed a chimeric pyocin
(ChPy) to specifically kill P. aeruginosa and designed a near-infrared
(NIR) light-responsive strain to produce and deliver this drug. This
smart engineered bacterial strain can continuously produce ChPy
without light and release it to kill P. aeruginosa upon NIR light-
induced bacterial lysis.

4 Discussion

Although intelligent engineered bacteria have achieved preliminary
research results in disease diagnosis and treatment, there are still a series of
challenges and issues to be faced before they can be applied clinically. First,
most of the research on therapeutic engineered bacteria is still focused on
in vitro testing and animal experiments. While these experiments are
important, they do not fully simulate the human body’s environment.
Therefore, more rigorous clinical trials are needed to prove the actual
efficacy and safety of therapeutic engineered bacteria. Second, the
biosensing systems of the diagnostic and therapeutic engineered
bacteria that have been developed are relatively simple, with some
having only a single input and output, and some only containing
basic logic control, which is not intelligent enough. Faced with
complex disease environments, it is necessary to design biosensing
systems with signal storage, automatic calibration, and self-learning
capabilities to improve the specificity and targeting of intelligent
diagnostic and therapeutic engineered bacteria. Finally, the ethics, legal
issues, and social acceptance of intelligent diagnostic and therapeutic
engineered bacteria are also issues that cannot be ignored. How to balance
innovation and risk, ensure that technological development complies with
ethical standards, and gain public understanding and support are
necessary conditions for promoting the development of intelligent
diagnostic and therapeutic engineered bacteria.

Despite the many challenges, with the comprehensive progress
and in-depth research in various fields such as synthetic biology,
artificial intelligence, and nanomaterials, interdisciplinary
cooperation has injected new vitality and hope into the
development of intelligent diagnostic and therapeutic engineered
bacteria. The rapidly developing field of synthetic biology
continuously provides various components for intelligent
diagnostic and therapeutic engineered bacteria. These include
easily manipulated engineered bacterial strains, biosensing
systems with computational capabilities, storage capacity, and
calibration functions. These standardized module libraries make
the development of intelligent diagnostic and therapeutic

engineered bacteria more convenient (Zhang C. et al., 2023).
With the integration of artificial intelligence and big data
technology in the field of bioinformatics, researchers have built
numerous computational platforms for predicting protein structures
and simulating drug-target interactions (Gupta et al., 2021). These
platforms have greatly accelerated the research and development
and evolution of intelligent diagnostic and therapeutic engineered
bacteria. Innovations in fields such as optics (Gao et al., 2023),
ultrasound technology (Bourdeau et al., 2018; Lakshmanan et al.,
2020), and nanomaterials (Cao et al., 2023; Ma et al., 2023) have
opened up multiple paths for the widespread clinical application of
intelligent diagnostic and therapeutic engineered bacteria.

In summary, intelligent diagnostic and therapeutic engineered
bacteria will play an important role in the future medical field. It will
open up a new method of treatment and inject new vitality into the
cause of human health.
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