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Introduction: Parkinson’s disease (PD) is characterized by muscle stiffness,
bradykinesia, and balance disorders, significantly impairing the quality of life
for affected patients. While motion pose estimation and gait analysis can aid
in early diagnosis and timely intervention, clinical practice currently lacks
objective and accurate tools for gait analysis.

Methods: This study proposes amulti-level 3D pose estimation framework for PD
patients, integratingmonocular video with Transformer and Graph Convolutional
Network (GCN) techniques. Gait temporal and spatial parameters were extracted
and verified for 59 healthy elderly and PD patients, and an early prediction model
for PD patients was established.

Results: The repeatability of the gait parameters showed strong consistency, with
most of the estimated parameters yielding an Intraclass Correlation Coefficient
(ICC) greater than 0.70. Furthermore, these parameters exhibited a high
correlation with VICON and ATMI results (r > 0.80). The classification model
based on the extracted parameter features, using a Random Forest (RF) classifier,
achieved an accuracy of 93.3%.

Conclusion: The proposed 3D pose estimation method demonstrates high
reliability and effectiveness in providing accurate 3D human pose parameters,
with strong potential for early prediction of PD.

Significance: This markerless method offers significant advantages in terms of
low cost, portability, and ease of use, positioning it as a promising tool for
monitoring and screening PD patients in clinical settings.
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1 Introduction

Parkinson’s disease (PD) is a chronic progressive
neurodegenerative disease, mainly caused by the degeneration
and death of dopaminergic neurons in the substantia nigra. It is
related to multiple factors such as genetics, environment, and aging
of the nervous system (Bloem et al., 2021). Dopamine, a critical
neurotransmitter, plays a pivotal role in regulating voluntary
movement in the human body. Dopamine deficiency usually
provokes symptoms of significant gait disturbance (Armstrong
and Okun, 2020) Currently, the prevalence of PD in the elderly
over 65 years old in China is 1.7%, and the number of PD patients
exceeds 3 million (Qi et al., 2021). PD is typically manifested by body
tremors (usually starting in the hands), muscle stiffness,
bradykinesia, and balance disorders, and may also lead to loss of
smell, constipation, sleep disorders, etc. (Poewe et al., 2017). Gait
motor disorder is among the most prevalent motor impairments in
PD, and gait analysis is closely linked to the assessment of disease
severity (Morris and Iansek, 1996a). Statistics indicate that over 60%
of patients with late-stage Parkinson’s disease (PD) develop severe
gait disorders, including freezing of gait (Virmani et al., 2015). Most
patients in late-stage are unable to walk independently. At the same
time, those with milder symptoms exhibit gait patterns that are often
challenging to differentiate from those of healthy individuals,
necessitating careful observation and assessment by clinicians.
Therefore, research on posture estimation and gait analysis in
patients with milder Parkinson’s offers a pathway to rapid and
objective early diagnosis. Providing timely interventions based on
these analyses is anticipated to delay disease progression and
enhance patients’ quality of life (Di Biase et al., 2020).

Currently, the diagnosis and evaluation of PD mainly include
clinical scales and commercial gait analysis equipment. Clinical
scales include the PD Rating Scale (UPDRS), gait evaluation
scales (Hoehn-Yahr Scale, MDS-UPDRS-III Scale, Berg), etc.,
which mainly rely on doctor experience and are subjective (Di
Biase et al., 2020). Commercial equipment includes the marker
motion capture system VICON, the wearable gait analysis system
XSENS, and the three-dimensional plantar pressure monitoring
system ATMI, which can provide high-precision, objective, and
effective results, but are expensive and complicated to operate
(Merriaux et al., 2017; Parati et al., 2022; Benjaminse et al.,
2020). In addition, gait analysis methods based on inertial
wearable measurement units (IMUs) have been widely used in
recent years for motion monitoring of patients with neuro-motor
degenerative diseases. Gu et al. developed a non-contact real-time
muscle activity measurement system that uses two IMUs to capture
the motion data during walking and is used to evaluate the flexion
and extension of the knee (Gu et al., 2022). Mallat et al. proposed a
new portable and easy-to-operate visual-inertial motion capture
system that integrates IMU data with visual information into a
biomechanical model to improve the accuracy of pose estimation
(Mallat et al., 2022). Nevertheless, IMU performs poorly in
estimating pose angles and suffers from signal drift problems, so
new clinical tools need to be developed to meet the needs of PD gait
monitoring.

Markerless human pose estimation technology can analyze
video data based on deep learning and image processing methods
and has become a new method for motion capture, with the

advantages of portability and simplicity (Altham et al., 2024). At
present, clinical studies have used single or multiple cameras to
capture patient motion data and assess the severity of patients
(Hulleck et al., 2022). Li et al. conducted a visual-based pose
estimation assessment study on PD and levodopa-induced
dyskinesia (LID), and successfully extracted features related to
PD and LID diseases (Li et al., 2018). Guo et al. proposed an
automated five-category freezing of gait (FoG) assessment
method based on graph convolutional networks (GCN), using
multi-camera motion video training data to achieve a
classification accuracy of 91.32%, providing a new solution for
PD diagnosis and management (Guo et al., 2024). Zheng et al.
proposed a video analysis method based on a skeleton-contour
fusion convolutional network to predict the MDS-UPDRS gait
score of PD patients. This method utilized dual-view imaging,
incorporating sagittal and coronal perspectives, and achieved a
prediction accuracy of 71.25% on 80 early patients and healthy
subjects (Zeng et al., 2023). Yuki et al. proposed a video-based FoG
automatic detection algorithm that combines target tracking and 3D
pose estimation. Utilizing multi-view video recordings from routine
clinical practice involving PD patients, the method demonstrated a
remarkable accuracy of 93.2% in distinguishing FoG from walking
stops (Kondo et al., 2024). However, current research tends to use
multi-camera data acquisition, which significantly increases the
complexity of the system and data processing. The acquisition
method of a monocular camera is more convenient and cheaper,
which has the potential to be more suitable for clinical promotion.

Markerless human pose estimation mainly includes 2D and 3D
methods. Among them, 2D pose estimation focuses on the position
of human joints in the two-dimensional plane, while 3D pose
estimation focuses on the precise coordinates of human joints in
three-dimensional space, which is more suitable for motion capture
and trajectory analysis of PD patients (Chen et al., 2020). Tang et al.
proposed a Transformer-based 3D human pose estimation model
STC-Former, which combined the STC and SPE modules to
improve the recognition accuracy of the spatiotemporal
relationship and local structure of human joints (Tang et al.,
2023). Yu et al. proposed a GLA-GCN model that combined
global (Bloem et al., 2021) spatiotemporal and local joint
representations and introduced individual connection layers for
3D pose estimation, achieving 3% and 17% error reduction on
the Human3.6 M and HumanEva-I datasets, respectively (Yu et al.,
2023). Tang et al. proposed a 3D human pose estimation method
MH-Former based on Transformer learning multiple hypothesized
spatial and temporal representations, which effectively solved the
challenges of depth blur and self-occlusion in monocular video 3D
pose estimation (Li et al., 2021). Li et al. integrated human skeletal
structure information and prediction uncertainty designed a new
self-attention mechanism and position encoding, and adopted
sampling and refinement strategies to significantly improve the
accuracy of 2D to 3D human pose estimation (Li H. et al., 2023).
Hu et al. developed a high-resolution graph convolutional multi-
layer perception (HGcnMLP) algorithm, which achieved 3D human
pose estimation of patients with musculoskeletal diseases through
smartphone monocular video, which was highly consistent with the
VICON system (Hu et al., 2024). Gholami et al. proposed an
automatic gait labeling method for PD based on weakly
supervised learning, with an accuracy of 89% in data detection of
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PD patients (Gholami et al., 2023). Although the current research on
unlabeled 3D pose estimation methods for monocular videos has
made great progress, there are still problems such as low accuracy
and poor robustness that limit its practical application in clinical
evaluation of PD patients.

Therefore, to improve the accuracy and stability of the model
and realize the evaluation of clinical gait motion function, this work
intends to develop a 3D pose estimation method for PD patients
based on monocular video and verify the feasibility of early
diagnosis. The main objectives include: 1) Construct a multi-level
3D pose feature extraction framework based on Transformer and
GCN networks, which can analyze motion data from the
perspectives of time series and spatial structure respectively; 2)
Extract gait temporal parameters and spatial parameters of PD
patients based on monocular video, and verify their repeatability
and reliability; 3) Construct a prediction model for early PD patients
and healthy elderly people to achieve accurate prediction of patients.

2 Experiment

The comprehensive experimental workflow of this study is
illustrated in Figure 1. The experimental validation phase focused
on two systems: the VICON optical motion capture system and the
plantar 3D pressure measurement system. The VICON system
captured kinematic parameters and spatio-temporal parameters,
such as step length and joint angles. The plantar pressure
measurement system simultaneously collects kinetic
characteristics and completes the segmentation of gait phases.
The collected data can be used to assess the reliability and
validity of the proposed algorithm framework. The classification
phase analyzes the dataset extracted from video information to
identify and differentiate healthy individuals from patients by
leveraging characteristics that exhibit significant differences.

2.1 Participants

A total of 59 participants were recruited for this study, including
25 healthy elderly and 34 PD patients. All subjects were recruited
from the University of Hong Kong Shenzhen Hospital. The criteria
for PD participant selection are as follows: 1) Patient is clinically
diagnosed with Parkinson’s disease; 2) Patients have bradykinesia,
along with either resting tremor or rigidity; 3) Patients have no
diseases other than PD that impair walking ability and can walk
independently. 4) Patients exhibit no cognitive impairment, have no
history of diabetes, and can complete all tests independently. Table 1
shows the demographic characteristics of the participants. Before the
experiment, a professional physical therapist assessed the severity of
Parkinson’s disease in participating patients using the H-Y clinical
scale and gait tests. All participants signed an informed consent
form, and all relevant experiments involving humans were approved
by the Medical Research Ethics Committee of the University of
Hong Kong Shenzhen Hospital (Ethics No. hkuszh2023089).

FIGURE 1
The flowchart and objectives of this research.

TABLE 1 Demographic characteristics of patients and healthy elderly.

Characteristics Mean ± Standard Deviation

Healthy adults Patients (mild +
medium)

Number 25 19 15

Disease duration 0 6.05 ± 4.55 6.80 ± 5.90

Age (years) 55.36 ± 5.77 69.79 ± 10.66 62.67 ± 10.61

Weight (kg) 62.92 ± 10.41 60.39 ± 10.33 61.53 ± 6.46

Height (cm) 158.08 ± 8.20 161.74 ± 7.76 161.47 ± 5.83

H-Y 0 1.34 ± 0.76 1.87 ± 0.79
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2.2 Experimental setup

The VICON motion capture system (Vicon Ltd., Oxford,
United Kingdom) was used, consisting of 12 MX infrared
microphotographic cameras to capture lower limb kinematic data
with a sampling frequency of 100 Hz; two force plates (AMTI,
Optima HPS, United States) with a sampling frequency of 1,000 Hz,
were used to synchronously collect mechanical signals acting on the
platform, including three-dimensional plantar pressure
information, the center of pressure (COP), and various kinetic
parameters calculated by the analysis software. The AMTI force
plates and VICON system hardware devices were connected to the
same synchronized signal source. A monocular camera was utilized
to capture motion videos. The experimental setup is depicted
in Figure 2.

(a) In a laboratory with an area of 15 m × 8 m, an effective
capture space region of 1.8 m × 0.8 m was established. Two force
measurement plates, each measuring 0.6 m × 0.405 m, were
embedded into a 3 m long wooden walkway (Figure 2A). (b)
Video data was collected by a monocular camera positioned
perpendicular to the forward direction of the human body,
located 2.8 m from the force plate runway (Figure 2B). The
camera has a resolution of 1,280 × 720 pixels at a frame rate of
30 Hz (fixed-focus mode). (c) Twelve motion capture cameras
(MoCap) were placed on a wall frame, markers were positioned
according to the 16 reflective marker points plug-in model
recommended by Visual 3D (C-motion Inc., Kingston, Canada),
and 16 marker balls were attached to the bony prominences of the
lower extremities bilaterally by a professional
physiotherapist (Figure 2C).

2.3 Data acquisition

Before each test, participants performed the task in the following
order: standing-walking-stopping-turning-walking-stopping. The
walking distance for a single trial was 8 m, with each movement
sequence repeated three times. The testing interval lasted until the
patient felt tired, usually more than 2 min. During the data
collection, two walking cycles were selected for each subject while
walking close to the range of the force plate. Throughout these
cycles, the dynamic joint angles, gait spatial-temporal parameters,
and plantar pressure parameters were observed. All operations were
carried out with professional physiotherapists.

3 Methods

3.1 Data preprocessing

A rigorous data preprocessing protocol was implemented for the
video data. In the validation experiment, synchronization criteria
were applied: only gait segments synchronized with both the Vicon
motion capture system and AMTI force platform measurements
were retained, resulting in a final dataset comprising 49 participants
with corresponding segments. For the reliability analysis, a robust
quality control framework was implemented. Frames with
incomplete participant visibility were systematically excluded, two
gait cycles within the force plate range were retained for each video
clip, and only participants with at least three valid video segments
were included in the analysis. To ensure data consistency, three
segments per participant were extracted, yielding a standardized

FIGURE 2
Experimental setup, (A) 3D plantar pressure measurement system setup, (B) depth camera position schematic, (C) VICON experimental
configuration.
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dataset of 177 segments from 59 participants. In the subsequent
variability and classification experiments, gait features were
extracted from each of the three segments per participant from
the reliability study dataset, and their mean values were computed,
generating 59 feature sets for comprehensive analysis.

3.2 Human 3D poses estimation framework

3.2.1 Extracting 2D key points
Cheng et al. proposed a high-resolution network (HRNet) that

can maintain high resolution throughout the propagation process
and perform repeated multi-scale fusion and is widely used as a 2D
input model in 3D key point detection (Cheng et al., 2019). In 2D
key point extraction, the width, height, frame rate, and other
information of video data are obtained based on the OpenCV
library (Bradski, 2000), and object detection is performed at the
initial frame of the video clip to ensure the presence of a human body
in the extracted frames (Bradski, 2000). Subsequently, the HRNet
model was used to output 2D key points for human pose
estimation (Figure 3A).

3.2.2 Extracting 3D key points
3.2.2.1 Hourglass tokenizer (HoT)

The HoT framework (Li et al., 2023b) was employed to
efficiently leverage the sequence-to-sequence (seq2seq) approach
within Video Pose Transformers (VPTs) for 3D human pose
estimation (Figure 3B (i)). Through seq2seq, a 2D pose sequence
for each frame xn ∈ RF×J×C, where J and F are the number of body
joints, and input frames and C denotes the feature dimension, is
input to output a 3D pose sequence across all frames (Zhang et al.,
2022). HoT is a plug-and-play framework that utilizes the Token
Pruning Cluster (TPC) and Token Recovering Attention (TRA)
modules to efficiently prune and recover tokens. TPC dynamically

captures pose tokens representing keyframes. For the input pose
tokens at the n − th Transformer block, average spatial pooling is
applied along the spatial dimension to mitigate spatial redundancy.
A density-peak clustering algorithm based on k-nearest neighbors
(DPC-kNN) is then applied to identify the most representative
tokens by maximizing intra-class proximity and inter-class
distance, discarding redundant tokens across the time dimension.

For a given token xi ∈ �xn, the local density of tokens ρ is
computed as Formula 1:

ρi � exp −1
k

∑
xj∈kNN xi( )

xi − xj
���� ����22⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ (1)

Where kNN(xi) represents the k-nearest neighbors of token xi.
The clustering center score δi is defined as Formula 2:

δi � minj: ρj > ρi xi − xj��� ���2, if∃ρj > ρi
max j xi − xj��� ���2, otherwise{ (2)

To restore the temporal resolution of the original video, the TRA
module leverages a multi-head cross-attention (MCA) mechanism.
Using a lightweight network, it recovers the pruned spatiotemporal
information. The recovered tokens are then passed to the regression
head, which outputs a 3D pose sequence q ∈ RF×J×3, achieving 3D
pose estimation for each frame.

3.2.2.2 Global-local adaptive graph convolutional network
(GLA-GCN)

The Global-Local Adaptive Graph Convolutional Network
(GLA-GCN) (Yu et al., 2023) is utilized, which extracts human
pose structure information through adaptive graph convolution of
global spatiotemporal representations, combined with local fine-
grained estimation (Figure 3B (ii)). In the global representation, an
Adaptive Graph Convolutional Network (AGCN) constructs a

FIGURE 3
The flowchart of the method includes extracting 2D key points, Extracting 3D key points, feature extraction and data analysis. (A) Extract 2D key
points. (B) Extract 3D key points (C) Feature extraction and analysis (i) Hourglass Tokenizer (HoT) Transformer Blocks. (ii) Global-local Adaptive Graph
Convolutional Network (GLA-GCN).
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global spatiotemporal graph from the input 2D pose sequence,
leveraging graph convolution to extract both spatial and temporal
pose features. Joints are classified into three categories: the vertex
itself, the centripetal subset (joints closer to the body’s center of
mass), and the centrifugal subset (joints farther from the center).

The local 3D pose joint estimation is carried out using two
independent fully connected layers: one with non-shared weights
and the other with shared weights. The non-shared layer assigns
unique weights to each joint, while the shared layer applies the same
weights across all joints. The final 3D position of each joint is
estimated via a weighted average of these two layers.

The individual connected layer can be denoted as Formula 3:

_p unshared( )
i � viWi + bi (3)

Here, _pi represents the 3D position estimate of joint i, and vi
denotes the flattened feature of joint i. The weight of the single fully
connected layer is denoted as Wi, bi representing the bias term.

The shared fully connected layer is expressed as Formula 4:

_p shared( )
i � viWs + bs (4)

Where Ws denotes the weight parameters of the shared layer,
and bs represents the bias term.

The weighted average is computed as Formula 5:

�pi � λ _p unshared( )
i + 1 − λ( ) _p shared( )

i (5)

Where λ, λ ∈ [0, 1], is the weighting parameter between the
shared and non-shared fully connected layers.

3.3 Gait feature extraction

3.3.1 Spatial features
The HoT framework is pruned along the temporal dimension,

making it relatively insensitive to variations in specific joints. While
GLA-GCN emphasizes the spatial relationships among joints,
enabling fine-grained estimation of joint positions. The
integration of HoT and GLA-GCN leverages their
complementary strengths, enhancing prediction accuracy and
improving the model’s generalization capability in the analysis of
spatial parameters.

The computation of joint kinematics is facilitated through the
implementation of Euclidean dot product formulation, enabling
efficient derivation of inter-vector angular measurements.

The Knee Angle can be obtained according to Formula 6:

θknee i � cos−1
HiKi
����→( ) · AiKi

����→( )
HiKi
����→����� ����� · AiKi

����→����� �����
⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ (6)

The Thigh Angle can be obtained according to Formula 7:

θthigh i � cos−1
HL iKL i
���������→( ) · HR iKR i

����������→( )
HL iKL i
���������→����� ����� · HR iKR i

����������→����� �����
⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ (7)

Where θknee i, θthigh i denote the knee angle and thigh angle at
frame i, respectively. The three-dimensional coordinates of the hip,
knee, and ankle joints at frame i are represented asHi, Ki, Ai; while

HL i¸ HR i, KL i and KR i represent the three-dimensional
coordinates of the left and right hip and knee joints.

The corresponding joint angular velocity and angular
acceleration video frame rate as Formulas 8, 9:

ωi � f · θi − θi−1( ) (8)
ai � f · ωi − ω i−1( )( ) (9)

Where f represents the sampling frequency (30 Hz), θi is the
joint angle at frame i, and ωi is the joint angular velocity at
frame i.

The step length for each frame is calculated as Formula 10:

Lstep i � ALiARi

������→����� ����� (10)

Where ALi, ARi denote the positions of the left and right ankle
joints at frame i.

Based on the frame rate, the walking speed vi and walking
acceleration astep i can be easily derived by Equations 11, 12:

vi � f · Lstep i − Lstep i−1( )( ) (11)
ai � f · vi − v i−1( )( ) (12)

The range of motion (ROM) is defined as Formula 13:

ROM � Max −Min (13)

3.3.1.1 Temporal features
To extract time-related parameters, a multi-level feature

extraction methodology is implemented. Based on the key frames
extracted by HoT framework combined with initial 3D key point
recognition, key frame filtering is performed on the GLA-GCN to
reduce the overfitting of the GCN network.

After obtaining the step length parameters, the corresponding
step length time can be calculated using the keyframes associated
with the step length and the frame rate. The maximum step length is
recorded as the keyframe corresponding to the moment of heel
strike, denoted as Ftouch. Additionally, the keyframe corresponding
to the moment when the ankle joint reaches its maximum vertical
height is recorded as Fsplit, indicating the moment the toe leaves the
ground, derived from the key points extracted using the Hot
method. The keyframes extracted by the GLA method are filtered
based on the reference of the keyframes obtained from the HoT
method (Figure 4).

Finally, the various time-related parameters are calculated as
Formulas 14–17:

t single step time( ) i � f · Ftouch i+1( ) − Ftouch i( ) (14)
t single support time( ) i � f · Fsplit i+1( ) − Ftouch i( ) (15)
t double support time( ) i � f · Fsplit i − Ftouch i( ) (16)

tstride time � f · Ftouch i+2( ) − Ftouch i( ) (17)
tsingle_step_time, tsingle_support_time, tdouble_support_time and tstride_time represent
the single step time, single support time, double support time, and
stride time, respectively. For ease of calculation, Ftouch_i denotes the
keyframe at the moment of the ith heel strike, and Fsplit i indicates
the first keyframe following the ith heel strike when the toe leaves
the ground.
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The Double Proportion is defined as the ratio of double support
time to single step time, as shown in Formulas 18, 19:

Double_proportioni

� t double support time( ) i/t single step time( ) i · 100% (18)
Swing_proportioni � 1 −Double_proportioni (19)

The extracted temporal and spatial features are listed
in Table 2.

3.4 Statistical analysis

Gait feature parameters derived from video data in the
experiment were assessed using the Intraclass Correlation
Coefficient (ICC, 2 k) to evaluate reliability. The ICC
calculation was based on Analysis of Variance (ANOVA), and
following the threshold set by Koo and Li (Koo and Li, 2016) the
ICC value greater than 0.75 is considered to indicate good
consistency.

For validation experiments, temporal synchronization was
established between video-captured heel-strike events and
corresponding force-onset signatures recorded by the AMTI force
platform, while simultaneously acquiring time-matched Vicon
motion capture data. In the validation of spatial motion
parameters, interpolation was used to match the frequencies of
Vicon data (100 Hz) with video data (30 Hz).

The Pearson correlation coefficient (r) was employed to examine
the degree of correlation between time-related parameters obtained
from video data and those from the AMTI force platform, as well as
spatial-related parameters obtained from Vicon. An r value of 0.7 −
0.9 indicates a high correlation, while a value of r≥ 0.9 suggests a
very high correlation (Mukaka, 2012).

The Kruskal-Walli’s test was conducted to evaluate parameter
differences among three subject groups: healthy controls, early
Parkinson’s, and mid-stage Parkinson’s patients. Statistical
significance was set at p< 0.05.

3.5 Classification of PD patients

A classification prediction model was developed to distinguish
between healthy individuals and patients based on extracted
temporal and spatial features. Considering the limited number of
extracted features, Recursive Feature Elimination with Cross-
Validation (RFECV) was employed to enhance the model’s

TABLE 2 Summary of gait parameters.

Number Feature name

Temporal features

1 Single step time

2 Single support time

3 Double support time

4 Double proportion

5 Swing proportion

6 Stride time

Spatial Features

7 Lknee angle ROM

8 Rknee angle ROM

9 Lknee angle velocity ROM

10 Rknee angle velocity ROM

11 Rknee angle acc. ROM

12 Lknee angle acc. ROM

13 Thigh angle max

14 Thigh angle velocity ROM

15 Thigh angle acc. ROM

16 Step length max

Note: Lknee represents left knee, Rknee represents right knee.

ROM, represents range of motion, acc. represents acceleration.

FIGURE 4
Temporal feature extraction diagram. (A) HoT + Transformer. (B)
Global-local Adaptive GCN. (C) Transformer + GCN.

Frontiers in Bioengineering and Biotechnology frontiersin.org07

He et al. 10.3389/fbioe.2024.1520831

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1520831


generalization capability. Ten-fold cross-validation was employed to
refine the temporal and spatial parameters extracted from the video
data. To capture the complex relationships between features and
enhance the model’s generalization ability, the random forest
algorithm was employed as the base learner. Subsequently,
RFECV was utilized to automatically identify the optimal feature
subset for performance.

Using the final feature set, classification prediction was
performed with machine learning methods including Adaptive
Boosting (AdaBoost), Decision Tree (DT), K-Nearest Neighbors
(KNN), Linear Discriminant Analysis (LDA), Logistic Regression
(LOG), the Naive Bayes (NB), Random Forest (RF) and Support
Vector Machine (SVM). Given the limited sample size in this study,
ten-fold cross-validation and leave-one-out validation were
employed to perform a comprehensive and fine-grained
evaluation of the model’s performance. Performance metrics
included accuracy (Acc), precision (Prec), recall (Rec), and
F1 score. All analyses were conducted using Python.

4 Results

4.1 Correlation coefficients of three sets of
video parameters

The features from the subject’s video data were extracted, and
the ICC for three population feature groups was calculated. The
results are shown in Table 3. The results indicate that Single step

time, Single support time, Double support time, and Stride time
exhibited excellent reliability and accurate estimation intervals in
healthy individuals, early PD, and mid-stage PD, demonstrating
strong intra-group consistency with statistically significant
differences (ICC (2, k): (0.93, 0.93, 0.97); (0.94, 0.90, 0.91); (0.83,
0.86, 0.80); (0.95, 0.91, 0.91), p < 0.01). Rknee angle acc. ROM, Lknee
angle acc. ROM, and Step length max also showed high consistency
across groups, with significant inter-group differences (ICC (2, k):
(0.90, 0.82, 0.89); (0.80, 0.83, 0.80); (0.87, 0.88, 0.89), p < 0.01).

4.2 Correlation and difference between
standard and monocular video

The parameters—Single step time, Single support time, Double
support time (measured via the AMTI force platform), Step length
max, Lknee angle ROM, and Rknee angle ROM (assessed using
VICON)—were utilized as gold standards to evaluate the reliability
and validity of parameters extracted from video. Correlations (r) and
differences (d) between the gold standard and video-extracted
features were calculated for both PD patients and healthy
subjects, with results presented in Table 4.

The results in Table 4 indicate strong correlations between the
gold standard and video-extracted parameters for Single step time,
Single support time, Step length max, Lknee angle ROM, and Rknee
angle ROM in both PD and healthy subjects (r = 0.95, 0.94, 0.88,
0.85, 0.80; r = 0.96, 0.99, 0.92, 0.90, 0.88). For time parameters, the
differences in foot pressure and video-extracted data between the

TABLE 3 ICC results of video features of three groups of people.

Parameter Healthy (25) Early PD (19) Mid PD (15)

ICC(2,k) p 95%CI ICC(2,k) p 95%CI ICC(2,k) p 95%CI

Single step time 0.93 p < 0.01 [0.87,0.97] 0.93 p < 0.01 [0.84,0.97] 0.97 p < 0.01 [0.94,0.99]

Single support time 0.94 p < 0.01 [0.88,0.97] 0.90 p < 0.01 [0.79,0.96] 0.91 p < 0.01 [0.76,0.97]

Double support time 0.83 p < 0.01 [0.69,0.91] 0.86 p < 0.01 [0.70,0.94] 0.80 p < 0.01 [0.55,0.92]

Double proportion 0.70 p < 0.01 [0.36,0.84] 0.86 p < 0.01 [0.70,0.94] 0.72 p < 0.01 [0.40,0.89]

Swing proportion 0.70 p < 0.01 [0.36,0.84] 0.86 p < 0.01 [0.70,0.94] 0.72 p < 0.01 [0.40,0.89]

Stride time 0.95 p < 0.01 [0.89,0.98] 0.91 p < 0.01 [0.74,0.98] 0.91 p < 0.01 [0.70,0.98]

Lknee angle ROM 0.70 p < 0.01 [0.54,0.89] 0.74 p < 0.01 [0.46,0.89] 0.81 p < 0.01 [0.57,0.93]

Rknee angle ROM 0.75 p < 0.01 [0.51,0.88] 0.82 p < 0.01 [0.62,0.92] 0.75 p < 0.01 [0.41,0.91]

Lknee angle velocity ROM 0.83 p < 0.01 [0.67,0.92] 0.80 p < 0.01 [0.57,0.91] 0.77 p < 0.01 [0.44,0.92]

Rknee angle velocity ROM 0.78 p < 0.01 [0.57.0.89] 0.86 p < 0.01 [0.71,0.94] 0.84 p < 0.01 [0.62,0.94]

Rknee angle acc. ROM 0.90 p < 0.01 [0.80,0.95] 0.82 p < 0.01 [0.61,0.92] 0.89 p < 0.01 [0.73,0.96]

Lknee angle acc. ROM 0.80 p < 0.01 [0.62,0.91] 0.83 p < 0.01 [0.65,0.93] 0.80 p < 0.01 [0.51,0.93]

Thigh angle max 0.73 p < 0.01 [0.48,0.87] 0.85 p < 0.01 [0.68,0.93] 0.71 p < 0.01 [0.34,0.89]

Thigh angle velocity ROM 0.87 p < 0.01 [0.75,0.94] 0.67 p < 0.01 [0.31,0.86] 0.86 p < 0.01 [0.67,0.95]

Thigh angle acc. ROM 0.76 p < 0.01 [0.55,0.89] 0.69 p < 0.01 [0.35,0.87] 0.83 p < 0.01 [0.59,0.94]

Step length max 0.87 p < 0.01 [0.74.0.94] 0.88 p < 0.01 [0.74,0.95] 0.89 p < 0.01 [0.73.0.96]

Note: Lknee represents left knee, Rknee represents right knee, ROM, represents range of motion, acc. represents acceleration.
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two groups are minimal (d = 0.02, 0.03, 0.04; d = 0.02, 0.02, 0.02).
However, notable differences exist between the groups in VICON
and video measurements (d = 53.7, 0.18, 0.18; d = 63.2, 0.13, 0.13).

4.3 Differences in video parameters among
three types of people

Based on the Transformer and GCN methods, 6 temporal
features and 10 spatial features of healthy people, early PD, and
mid-stage PD in the video were extracted, the differences between
the three groups were analyzed, and box plots were drawn. The
results are shown in Figure 5. Among the 16 features, there were
significant differences between healthy people and patients with
mid-stage PD.

In terms of temporal features: there are significant differences (P
< 0.05, P < 0.01, P < 0.01, P < 0.01) between healthy people and early
PD patients in Single support time, Double support time Double
proportion, and Swing proportion. There are significant differences
in Single step time and Stride time between healthy and patients with
mid-stage PD (P < 0.05, P < 0.05); in terms of spatial features: There
are significant differences between healthy people and patients with
mid-stage PD in Lknee angle velocity ROM and Lknee angle acc.
ROM (p < 0.05, p < 0.01); there is no significant difference in the
three characteristics of the right knee joint between the three groups
of people; healthy and mid-stage PD have substantial differences in
step length max and the 3 parameters of thigh joint angle
characteristics; and there are differences between healthy people
and early PD in Thigh angle velocity ROM, Thigh angle acc. ROM,
Step length max (p < 0.05, p < 0.05, p < 0.05).

4.4 Health and patient classification results

The final feature set was obtained by using recursive feature
elimination with cross-validation (RFECV). (Single step time,
Double support time, Double proportion, Stride time, Lknee angle
ROM, Lknee angle velocity ROM, Rknee angle acc. ROM, Lknee angle
acc. ROM, Thigh angle velocity ROM, Thigh angle acc. ROM, Step
length max), The above 11 features were input, and classification
prediction was performed using machine learning methods such as

AdaBoost, DT, KNN, LDA, LOG, NB, RF, and SVM. Ten-fold cross-
validation was used to classify healthy people and PD patients. The
accuracy (Acc), precision (Prec), recall (Rec), and F1 score tables are
shown in Table 5. Except for the DT classifier, the accuracy,
precision, recall, and F1 scores of all classifiers were higher than
90%, among which the RF classifier had the highest accuracy,
precision, and F1 score (Acc = 93.33, Pre = 93.50, F1 = 94.07).
The recall rates of LDA and LOG both reached 97.50.

The Receiver Operating Characteristic (ROC) curve of the
classifier algorithm was drawn and the Area Under the Curve
(AUC) value was calculated using the leave-one-out validation
method (11 features). The image is shown in Figure 6. The
results show that the ROC curves all rise rapidly near the upper
left corner, indicating that each separator has high sensitivity and
specificity, and the overall performance of the classifier is excellent
(AUC ≥0.91). Among them, the AUC of LDA, LOG, and RF all
reached 0.96, reflecting their superior classification performance.

5 Discussion

This study aims to evaluate gait parameters in Parkinson’s
disease (PD) patients using a markerless 3D human pose
estimation method based on monocular video and to develop an
accurate classification model for the early detection of PD. The main
contributions include: 1) The proposed multi-level 3D pose
estimation method based on Transformer and GCN can reliably
and effectively provide the gait spatial and temporal parameters; 2)
The established early prediction model for PD patients based on RF
classifier can achieve a classification accuracy of 93.3%,
demonstrating robust performance; 3) This work verifies the
feasibility of the pose estimation method based on monocular
video in patient motion capture, which is expected to become a
new tool for clinical auxiliary diagnosis and rehabilitation
evaluation.

Results 4.1 showed that the Intraclass Correlation Coefficient of
multiple gait parameters of the subjects (healthy, early, and mid-
stage PD patients) had ICC (2, k) > 0.7, indicating high repeatability.
Armando et al. evaluated the repeatability of the Opal system in
measuring the spatiotemporal gait characteristics of 45 PD patients.
The results showed that most parameters had ICC <0.8, indicating

TABLE 4 Correlation and difference between gold standard and video.

Parameter Gold standard Video data (transformer + GCN)

PD patients Healthy PD patients Healthy

Mean (SD) Mean (SD) Mean (SD) r d Mean (SD) r d

Single step time (s) 0.56 (0.06) 0.54 (0.08) 0.57 (0.06) 0.95 0.02 0.55 (0.09) 0.96 0.02

Single support time (s) 0.71 (0.09) 0.67 (0.12) 0.73 (0.09) 0.94 0.03 0.68 (0.11) 0.99 0.02

Double support time (s) 0.15 (0.04) 0.12 (0.04) 0.17 (0.04) 0.6 0.04 0.13 (0.04) 0.73 0.02

Step length max (mm) 491.3 (102) 553.5 (50.0) 441.3 (100.8) 0.88 53.7 456.9 (82.2) 0.92 63.2

Lknee angle ROM (rad) 0.82 (0.15) 0.91 (0.11) 0.78 (0.15) 0.85 0.18 0.74 (0.13) 0.9 0.13

Rknee angle ROM (rad) 0.88 (0.16) 0.89 (0.11) 0.76 (0.15) 0.8 0.18 0.74 (0.14) 0.88 0.13

Note: SD represents standard deviation.
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low repeatability (Coccia et al., 2020). Liang et al. built a markerless
pose estimation system based on OpenPose and 3DposeNet and
evaluated the reliability and validity of the system for gait analysis in
healthy elderly people. The ICC (C, 1) ranged from 0.538 to 0.765,

which was relatively weaker than the present results (Liang et al.,
2022). Hu et al. used a high-resolution graph convolutional multi-
layer perception (HGcnMLP) 3D pose estimation framework based
on monocular video to verify the reliability of spatiotemporal gait

FIGURE 5
Analysis of difference results. Box plot of the difference analysis of temporal features and spatial features extracted from video data among healthy
people (yellow), carly PD (bluc), and mid-stage PD (purple) groups, represents p-value < 0.05, ** represents p-value < 0.01.
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parameters such as joint angles in arthritis patients, and the ICC (2,
k) ranged from 0.839 to 0.975, which was comparable to our results
(Hu et al., 2024). Azhand et al. proposed a highly reliable gait
parameter estimation algorithm based on monocular video, with the
Intraclass Correlation Coefficient (ICC (2, k): 0.958 - 0.987) that was
better than our results, but it was only verified in healthy adults
(Azhand et al., 2021). In summary, the pose estimation method
proposed in this study, which integrates Transformer and Graph
Convolutional Network (GCN) architectures, demonstrates high
repeatability.

Results 4.2 show the correlation analysis between the gait temporal
parameters and spatial parameters estimated by the proposed method
and the gold standard. Except for the Double support time (r = 0.60,
0.73), the correlation of all other parameters is r > 0.80, indicating high
validity. Considering that the overall average Double support time is
approximately 0.15 s, with the AMTI force plate (the gold standard)
operating at 1,000 Hz and the video data captured at 30 Hz, the average
error of 0.04 seconds—equivalent to roughly one frame (33 m)—falls
within the acceptable range (Wu et al., 2022). Zachary et al. explored the
comparison of gait parameters in PD patients based on markerless and
marker motion capture, and the joint angle parameters showed
excellent consistency in the sagittal plane (r > 0.90), but poor

performance in the frontal and transverse planes (r < 0.60) (Ripic
et al., 2023). Zhu et al. used a depth-based pose estimation algorithm to
measure the joint angles of finger movements in real-time without
contact, and compared them with the camera 3DMA gold standard
system, showing excellent validity (0.88< r< 0.97), which is comparable
to our results (Zhu et al., 2021).

Results 4.3 showed significant differences in the most of gait
parameters between different groups, indicating that there were
significant differences between healthy elderly and PD patients (p <
0.05), and the differences in mid-stage PD were greater than those in
early PD patients. However, no significant differences were observed
among the three groups in the three characteristics of the right knee
joint. In the video dataset, the probability of the left and right legs
approaching the camera is approximately equal, minimizing the
impact of one leg obstructing the other. This observation may be
attributed to the fact that the right leg is the dominant leg for most
individuals. Kiwon Park et al. compared the gait data of 10 healthy
elderly individuals and 10 PD patients, reporting that PD patients
exhibited significantly greater asymmetry across all lower limb joints
(Park et al., 2016). Chen et al. compared the gait parameters of PD
patients and healthy controls through differential analysis, thereby
quantifying the severity of gait disorders and providing important
information for the diagnosis and treatment of phenomena such as
FOG (Chen et al., 2013). In summary, the analysis of correlation and
differential results not only verifies the effectiveness of the proposed
method but also provides a reference for the subsequent
classification feature selection.

Results 4.4 shows the classification results of PD patients based
on features extracted from monocular video and machine learning
models, among which the RF classifier achieved an accuracy of
93.33%, showing good performance. Guo et al. proposed a novel
two-stream spatiotemporal attention graph convolutional network
(2s-ST-AGCN) for video assessment of gait movement disorders in
PD patients, and the classification accuracy was 65.66% (Guo et al.,
2022). Hu et al. used the monocular video HGcnMLP algorithm
framework to well evaluate the balance ability of patients with
musculoskeletal diseases, and the K-means++ clustering accuracy
was 99% (Hu et al., 2024). Although better than our results, the
healthy subjects were students aged 20–30 years, and there were
significant gait differences between them and patients. Connie et al.
used the AlphaPose pose gait analysis method to extract PD

TABLE 5 Classification results of PD patients and healthy elderly.

Model Acc Prec Rec F1

AdaBoost 90.00 91.50 94.17 91.53

DT 80.00 88.50 79.17 80.02

KNN 91.67 93.50 94.17 92.64

LDA 91.67 91.50 97.50 93.53

LOG 91.67 90.50 97.50 93.17

NB 91.67 93.00 94.17 92.60

RF 93.33 93.50 96.67 94.07

SVM 91.67 93.50 94.17 92.64

Note: Acc represents accuracy, Prec represents precision, Rec represents recall, F1 represents F1 score.

FIGURE 6
ROC curve and AUC calculation results of each classifier.
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discriminative gait features from the original video, and the
classification accuracy based on RF was 93%, which was
comparable to our results. In addition, our work also made a
detailed comparison of the gait differences between early and
mid-stage PD patients (Connie et al., 2022). Katsuki et al. used a
2D video pose estimation algorithm to distinguish the feasibility of
gait between PD and spinocerebellar degeneration, with accuracy,
sensitivity, and specificity of 0.83, 0.88, and 0.78 respectively (Eguchi
et al., 2024). The above results show that the 3D pose estimation
method has better performance than 2D in gait evaluation. In
summary, this study preliminarily verified the feasibility of the
monocular video estimation method for clinical diagnosis and
gait evaluation of PD patients.

We acknowledge some limitations of this work. First, during the
experimental data collection, to use the ATMI plantar pressure data as
the standard for time parameters, there were only 2 complete gait
cycles per video on average that could be reliably identified and
verified. Next, the experimental settings and data collection schemes
should be improved to provide more gait information; second, the
proposed pose estimation method provides only a limited set of gait
temporal and spatial parameters, and it needs to estimate additional
parameters that reflect external manifestations of Parkinson’s disease
(PD), such as the center of mass and gait variability. Moreover, it does
not extract advanced features such as gait symmetry or joint coupling.
Based on the differences in parameters related to the left and right
joints observed in Result 4.3, future research could further explore and
validate the differences in corresponding parameters between the
dominant and non-dominant legs across different groups. This could
provide valuable insights for developing more efficient and effective
early screening methods for PD in clinical practice; finally, the
established classification model only considers the binary
classification situation and a disease severity evaluation model for
PD patients can be established in the future. Nevertheless, this work is
an effective attempt to use markerless pose estimation methods in PD
gait monitoring and evaluation, providing a new solution for early
intervention of PD patients.

6 Conclusion

The verification results of gait spatial parameters and temporal
parameters in this study show that the proposed markerless 3D pose
estimation method has good reliability and effectiveness, and the
superiority of the classification results shows that the constructed
prediction model can be used for early monitoring of PD patients.
Due to the advantages of simplicity, portability, cheapness, and easy
operation, the proposed method is expected to provide a clinical
alternative to humanmotion capture in the future and provide a new
and easy-to-operate tool for remote gait monitoring and functional
evaluation of PD patients.
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