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Gene therapy has emerged as a pivotal component in the treatment of diverse
genetic and acquired human diseases. However, effective gene delivery remains a
formidable challenge to overcome. The presence of degrading enzymes, acidic
pH conditions, and the gastrointestinal mucus layer pose significant barriers for
genetic therapy, necessitating exploration of alternative therapeutic options. In
recent years, transdermal and transpulmonary gene delivery modalities offer
promising avenues with multiple advantages, such as non-invasion, avoided liver
first-pass effect and improved patient compliance. Considering the rapid
development of gene therapeutics via transdermal and transpulmonary
administration, here we aim to summarize the nearest advances in
transdermal and transpulmonary gene drug delivery. In this review, we firstly
elaborate on current delivery carrier in gene therapy. We, further, describe
approaches and applications for enhancing transdermal and transpulmonary
gene delivery encompassing microneedles, chemical enhancers, physical
methods for transdermal administration as well as nebulized formulations, dry
powder formulations, and pressurized metered dose formulations for efficient
transpulmonary delivery. Last but not least, the opportunities and outlooks of
gene therapy through both administrated routes are highlighted.
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GRAPHICAL ABSTRACT

This abstract graphic takes concerted action with abstract section and illustrates the Approaches in transdermal and transpulmonary gene drug delivery.

1 Introduction

The concept of gene therapy, was first proposed by Joshua
Lederberg in 1963, a therapeutic intervention that modulates the
expression of defective proteins by in ducting exogenous genes
encoding beneficial proteins into cells to compensate for aberrant
genes. Gene therapy did not achieve clinical success until the early
1990s, French Anderson and colleagues utilized ex vivo gene therapy
for patients with adenosine deaminase deficiency severe combined
immunodeficiency (ADA-SCID) by administering injections of
T cells transformed by recombinant retroviruses carrying the
ADA. This intervention is recognized as the first successful gene
therapy in humans. (Authors Anonymous, 1990). Nowadays, the
application of gene therapy has emerged as a well-established
approach to address diverse human diseases at the genetic level
(Wu et al., 2021; Li et al., 2023; Bulcha et al., 2021). The initial scope
of gene therapy, which was primarily focused on the treatment of
genetic diseases, has now expanded to encompass acquired diseases

(Dunbar et al., 2018). However, the successful translation of gene
therapy is significantly impeded by various challenges, including the
lack of targeted gene delivery to specific disease areas and cells,
degradation during the gene delivery process, and rapid clearance
within the system (Chen, 2018; Zakrewsky et al., 2015; Pecot et al.,
2011). Besides, numerous oligonucleotides currently in clinical
development are commonly systemic administered. Nevertheless,
injectable patients often exhibit poor compliance and therapeutic
efficiency. A diverse range of non-invasive local gene delivery
modalities have been developed, including oral, intranasal,
pulmonary, cutaneous, ocular, vaginal, and rectal routes (Foldvari
et al., 2016). However, the presence of degrading enzymes, acidic
pH, and gastrointestinal mucus layer pose challenges for local
delivery of genetic material (Chen, 2018). Among them,
transdermal and transpulmonary gene delivery employ specific
vectors to enhance their penetration through the stratum
corneum of the skin and the mucus layer of the airways, offering
advantages such as bypassing gastrointestinal influences, enhancing
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patient compliance and therapeutic potentials (Foldvari et al., 2016;
Singh et al., 2022; Prausnitz and Langer, 2008).

In this review, we highlight representative examples of recent
materials, formulations, and approaches employed for transdermal
and transpulmonary gene delivery. Firstly, we present the primary
vectors utilized in gene therapy. Subsequently, we summarize the
skin barrier and novel approaches to transdermal drug delivery
encompassing chemical enhancers as well as microneedles (MNs)
and other modalities. Meanwhile, various inhaled formulations for
gene delivery through the lung such as spray formulation and dry
powder formulation are elucidated upon. Last but not least, we
address the challenges and prospects associated with percutaneous/
lung gene delivery.

2 Gene therapy

Gene therapy can be categorized into several distinct methods.
Gene correction and gene replacement, which leverage gene-editing
technologies to identify and excise mutated genes, and cellular DNA
repair mechanisms to either correct the mutated genes to normal
sequence or facilitate homologous recombination with exogenous,
normal genes. Gene inactivation involves the introduction of
transcription factors or DNA-binding proteins to suppress the
expression of abnormally active genes and thereby treating
diseases (Hardee et al., 2017).

Nucleic acids, extensively utilized for gene therapy, encompass
DNA and mRNA macromolecules for gene overexpression, as well as
smaller entities such as siRNA, miRNA, and antisense oligonucleotides
(ASO) for gene knockdown. Gene therapy holds the potential to
address diseases that traditional medicine cannot cure.
Consequently, it has become a research hotspot in recent years.
Although the utilization of naked DNA represents a straightforward
approach to gene therapy, its negative charge and the absence of
protective vectors increase its vulnerability to nuclease recognition and
degradation (Herweijer and Wolff, 2003). Addressing the challenges
associated with its susceptibility to nuclease degradation in serum
necessitates the implementation of vectors (Santana-Armas and Tros
de Ilarduya, 2021). Ideal gene therapy vectors should demonstrate both
high reliability and efficiency in delivering therapeutic genes to target
cells. This capability is crucial in facilitating long-term expression,
ensuring the sustained effectiveness of the treatment (Shirley et al.,
2020). Gene therapeutic vectors can be classified into twomain groups:
viral and nonviral vectors. Each approach comes with its own set of
distinct advantages and limitations, which would be explored in the
discussion below (Zhang et al., 2021).

2.1 Viral vectors

Viral vectors, extensively utilized in gene therapy, are
recombinant virus that removed disease-causing genes and
maintain the capacity to transfect cells (Santana-Armas and Tros
de Ilarduya, 2021; Ibraheem et al., 2014). Until now, a multitude of
viral vectors, such as adenovirus (Ad), adeno-associated virus
(AAV), and herpes simplex virus (HSV), have demonstrated their
potential for secure and effective gene therapy delivery (Zhao et al.,
2022). However, viral vectors pose a potential risk of insertional

mutagenesis, and may trigger an immune response in the host,
potentially limiting the vectors’ reuse and adversely affecting the
therapeutic outcome. Owing to the risk of viral transmission,
especially in the context of employing replication-competent and
soluble tumor viruses, applications involving virus vectors
necessitate enhanced levels of biological safety (Lundstrom,
2023). The following section outlines typical viral vectors.

2.1.1 Adenovirus (AdV)
Adenoviruses are non-enveloped double-stranded DNA viruses

with an icosahedral structure, measuring 70–100 nm in size
(Athanasopoulos et al., 2017). These viruses primarily enter the
target cell by binding to various cell surface proteins (Li et al., 2023).
In comparison to other viruses, adenoviruses exhibit lower
genotoxicity because they do not integrate into the host genome.
As a result, they are widely employed as gene therapy vectors
(Athanasopoulos et al., 2017).

Recombinant adenoviruses can be rapidly and extensively
prepared, showcasing proven genomic stability after successive
passages. They exhibit high transduction efficiency and serve as
excellent vectors for infectious disease vaccines. Adenoviruses have
the ability to infect both quiescent and dividing cells, thereby inducing
innate and adaptive immunity. The wide tissue tropism of
adenoviruses and their capacity to induce strong expression of
target antigens could facilitate their utilization in the development
of candidates for infectious diseases (Mendonça et al., 2021). The
majority of current vaccines utilize Adenovirus type 5 (Ad5). However,
a significant proportion of adults have pre-existing anti-Ad5 antibodies
that impede the transduction efficiency of the adenovirus vector.

Adenoviruses are extensively used in gene therapy platforms.
Nevertheless, their high immunogenicity poses a challenge to the
broad application of adenoviral vectors in treating genetic disorders.
In turn, this immunogenicity can be harnessed for cancer
immunotherapy applications. This has led to the deployment of
adenoviral vectors as vehicles for therapeutic gene transfer, vaccines,
and oncolytic agents in the realm of cancer gene therapy (Shaw and
Suzuki, 2019). The prevailing trend in adenoviral-based cancer gene
therapy focuses on the refinement of adenoviral vectors. For
example, adenoviruses can be transformed into oncolytic
adenoviruses (OAs). OAs can selectively infect and eradicate
cancer cells, resulting in the release of tumor-associated antigens.
Thereby recruiting immune cells and subsequently increasing anti-
tumor immune responses (Vitale et al., 2022). Various delivery
systems, including different cell types and extracellular vesicles, are
being investigated for delivering OAs to tumor sites following
systemic administration. Moreover, numerous strategies have
been devised to enhance the cancer-specific replication ability of
OAs, primarily through modifications made to the early region 1
(E1) within the viral genome (Gao et al., 2020).

2.1.2 Adeno-associated virus (AAV)
AAV was initially discovered in laboratory adenovirus (AdV)

preparations in the mid-1960s (Atchison et al., 1965). Currently,
there are two classes of recombinant AAVs (rAAVs) in use: single-
stranded AAV (ssAAV) and self-complementary AAV (scAAV).
ssAAVs are packaged as either sense (plus-stranded) or anti-sense
(minus-stranded) genomes. These single-stranded forms remain
transcriptionally inert upon reaching the nucleus and must
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undergo conversion to double-stranded DNA before transcription
can occur. This conversion can be achieved through second-strand
synthesis via host cell DNA polymerases or by strand annealing of
the plus and minus strands that may coexist in the nucleus. In
contrast, scAAVs are already double-stranded by design, allowing
them to immediately undergo transcription (Naso et al., 2017).

The capsid protein of AAVs binds to specific receptors on host
cells, which confers their natural tropism for different tissues. This
inherent preference is crucial for gene therapy, especially for
targeting the liver, striated muscles, and the central nervous
system (CNS). As a result, the majority of recombinant AAV
(rAAV) gene therapy programs focus on these areas to address
existing medical challenges, leveraging AAV’s tropism to enhance
treatment efficacy and specificity.

Due to the dual blood supply and the highly permeable sinusoid of
the liver, nearly all natural AAVs capsids efficiently transduce the
hepatocytes upon systemic administration. Consequently, rAAVs
serve as a robust platform for liver targeting in the treatment of
various diseases, including but not limited to haemophilia A and
haemophilia B, familial hypercholesterolaemia, ornithine
transcarbamylase deficiency, and Crigler-Najjar syndrome (Ronzitti
et al., 2020; Santiago-Ortiz and Schaffer, 2016; Pasi et al., 2020).
Capsids like AAV8 and AAV9 demonstrate the ability to target
various muscle types throughout the body, thereby facilitating the
development of rAAV gene therapies for multiple muscle diseases
(Zolotukhin and Vandenberghe, 2022; Verdera et al., 2020), especially
those affectingmuscles throughout the entire body, such as Duchenne
muscular dystrophy (DMD). The rAAV gene therapy strategies
include gene replacement, gene silencing, gene addition, and gene
editing. Among these vectors, AAVs are the most commonly utilized
vectors for delivering the CRISPR/Cas9 system. The rAAV protein
capsid, its DNA genome, and the protein product of the transgene can
interact with the host immune system at multiple levels, presenting
substantial barriers to effective gene delivery and persistent gene
expression (Barnes et al., 2019). AAV-based gene therapy faces
challenges due to its high cost and the complexity involved in
mass production (Naso et al., 2017). The AAV vector, the primary
focus of this review, possesses unique features advantageous for
clinical applications. These include broad tropism, low
immunogenicity, ease of production, non-pathogenicity, rare
integration into the host chromosome, and the ability to result in
long-term expression of the transgene (Verdera et al., 2020). While
AAV vectors have demonstrated initial therapeutic efficacy in clinical
settings, concerns have emerged regarding their transduction
efficiency and their potential to elicit an immune response against
AAV-transduced cells. Vector engineering offers avenues to enhance
AAV transduction efficiency through optimization of the transgene
cassette, vector tropism through capsid engineering, and the capability
of the capsid and transgene to evade the host immune response
through genetic modifications of these components. Additionally,
vector engineering also aims to optimize the large-scale production of
AAV (Pupo et al., 2022).

2.1.3 Herpes simplex virus (HSV)
Herpesviruses have a substantial double-stranded DNA genome

ranging from 120 to 230 kilobases. This genome is encased in a protein
capsid, enveloped by a tegument layer comprised of viral and host
proteins, and surrounded by a lipid bilayer adorned with surface

glycoproteins (Mody et al., 2020). Until now, the carrier derived
from human herpesvirus has been utilized in vaccines targeting
various infectious agents, including the Ebola virus and human
immunodeficiency virus (HIV) (Kamel et al., 2023). Herpes simplex
virus 1 (HSV-1) is frequently employed as an oncolytic virus (OV)
candidate, attributed to its sizable genome, overall safety profile, and
capability to infect various cell types (Scanlan et al., 2022). Herpes
simplex virus type 1 (HSV-1)-derived amplicon vectors can
accommodate large DNA molecules, exhibit minimal toxicity,
persist during flares, and pose a negligible risk of insertional
mutations. These attributes make them particularly well-suited for
gene therapy in neurological diseases due to their capability to deliver
genes to neurons and other nerve cells (Fernández-Frías et al., 2020).
Achieving sustained therapeutic gene expression in the absence of
vector-related toxicity or inflammation is crucial for highly defective
HSV vectors. The supplementation of cell lines with carrier production
significantly increases the complexity of carrier production (Kuroda
et al., 2022). To address this issue, Iván Fernández-Frías et al. have
developed methodologies that enhance the production of HSV-1
amplicon, facilitating the preparation of vectors with increased titers
and improved purity (Fernández-Frías et al., 2020). HSV-1 amplicon
can also serve as a therapeutic carrier driven by a sensory neuron-
specific promoter for gene therapy targeting neurogenic detrusor
overactivity (NDO) using genetically modified (GM) approaches
(Joussain et al., 2022). Despite the immense potential of HSV,
certain drawbacks, including limited research and safety concerns,
related to the use of herpesvirus vectors in vaccine production. Thurs, a
comprehensive understanding of herpesvirus biology is imperative to
overcome any persisting limitations (Kamel et al., 2023).

2.1.4 Lentivirus (LV)
LVs, derived from the human immunodeficiency virus, serve as

potent tools for the genetic modification of eukaryotic cells, including
hematopoietic stem cells and neuronal cells (Wang et al., 2021). LVs
are capable of transducing both splinter cells and non-dividing cells,
including neurons, hematopoietic stem cells, immune system cells,
and T-cells. Notably, they can accommodate genetically modified
sequences up to 11,000 bases in size. It is capable of delivering
complex therapeutic genes or gene-editing systems, implementing
multi-gene therapy strategies, and adapting to various research and
treatment requirements (Perry and Rayat, 2021). LVs for gene transfer
are now regarded as safer, given their ability to infect non-dividing
cells and ensure long-term expression. This characteristic makes them
a preferred choice for clinical research (Martínez-Molina et al., 2020).
The initial clinical application of lentiviral vectors involved the use of a
conditionally replication-competent lentiviral vector encoding an
antisense RNA targeting the HIV envelope gene (Milone and
O’Doherty, 2018). APOBEC3G (A3G), an intracellular antiviral
factor, its function is always inhibited by the Vif protein of HIV-1.
Krista A. Delviks-Frankenberry et al. replaced aspartic acid at position
128 with lysine to construct A3G-D128K mutants, which exhibit
resistance to the Vif protein. The researchers further developed self-
activating LVs to deliver the A3G-D128K to target cells, inducing
hypermutations in the HIV genome during reverse transcription and
effectively inhibiting viral gene replication (Figure 1) (Delviks-
Frankenberry et al., 2019). D.B. Kohn et al. conducted a study on
patients diagnosed with clinically severe combined immunodeficiency
(ADA-SCID) caused by adenosine deaminase (ADA) deficiency,
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wherein they employed a gene therapy approach involving ex vivo
transduction of autologous CD34+ hematopoietic stem and
progenitor cells (HSPCs) with a self-inactivated lentiviral vector
encoding human ADA. The results demonstrated that this ex vivo
lentiviral HSPC gene therapy exhibited remarkable efficacy, with high
overall and event-free survival rates, sustained ADA expression,
metabolic correction, and functional immune reconstitution (Kohn
et al., 2021).

LVs have the advantage of enabling long-term and stable gene
expression while demonstrating minimal production of neutralizing
antibodies (Li et al., 2023). LVs, however, exhibit genotoxicity as one

of their drawbacks. The issue can be addressed by appropriately
modifying LVs to mitigate the risk of insertion-induced mutations
(Schenkwein et al., 2020). Furthermore, the genetic modification of
T lymphocytes is a crucial aspect in both research and therapy.
Traditional lentiviral vectors (LVs) lack selectivity for T cells and are
unable tomodify quiescent or minimally stimulated cells. To address
this limitation, Annika M. Frank et al. introduced a novel CD3-
targeting lentiviral vector (CD3-LV) capable of genetically
modifying human T lymphocytes without prior activation. This
makes it suitable for in vivo delivery specifically to T cells (Frank
et al., 2020). LVs are also employed in gene therapy for liver

FIGURE 1
(A) Schematic representation of the development of lentiviral vectors for HIV-1 gene therapy. (B, C) Efficient Transduction of CD4+ T Cells and
CD34+ HSPCs with the A3x3G-D128K-Expressing Vector. (D) NL4-3 virus was infected with different proportions of CEM: CEM/D128K cells and
measured by p24 CA ELISA to determine replication kinetics. (E) Virus was produced by a first round of cultures, standardized against p24 CA, used to
infect 100% CEM or 100% CEM/D128K cells, and the amount of p24 CA was quantified by ELISA to determine replication kinetics. Reprinted with
permission from Ref (Delviks-Frankenberry et al., 2019).
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hereditary coagulation disorders such as hemophilia. However, LVs
exhibit mild acute toxicity and require low drug delivery dosages.
Michela Milani et al. utilized the natural inhibitor CD47 to
counteract the capture of LVs by professional phagocytes. This
approach resulted in the development of phagocytoshielded LVs
with enhanced efficiency of hepatocyte gene transfer and reduced
activation of acute inflammatory responses (Milani et al., 2019).

2.2 Non-viral vectors

Due to the limited gene delivery capacity of viral vectors and
the expensive methods for large-scale production of engineered
viruses, non-viral vectors have garnered attention as alternative
gene delivery vehicles (Tong et al., 2023; Ren et al., 2021;
Mohammadinejad et al., 2020). Non-viral vectors, without viral
proteins, possess extremely low immunogenicity and favorable

biodegradability mitigates potential cytotoxicity stemming from
the prolonged accumulation of the vectors. Though lacking the
innate capabilities of virus, non-viral vectors realize cellular
uptake by mimicking viral surface properties or triggering
membrane fusion by incorporating specific ligands, allowing
for the targeted release to enhance the precision of treatment
(Ren et al., 2021; Zu and Gao, 2021). Certain vectors are equipped
with membrane-active peptides, which can disrupt the endosomal
membrane and permit the therapeutic agent to evade into the
cytoplasm (Figure 2) (Mohammadinejad et al., 2020).
Furthermore, the production and purification for non-viral
vectors are typically more straightforward and economical
compared to viral vectors, rendering them more cost-effective
for large-scale production. The extensively investigated non-viral
vectors primarily include lipid nanoparticles, polymers, inorganic
nanoparticles and other emerging nanomaterials (Ren et al., 2021;
Yan et al., 2022).

FIGURE 2
An overviewof non-viral gene delivery tools for non-systemic administration. (A)Nucleic acids (DNA, therapeutic oligonucleotides and gene editing)
and bio- and nanotechnology tools, including ex vivo methods, used in non-viral gene therapy. (B) Schematic diagram of the building blocks, delivery
systems and non-invasive administration routes in gene therapy applications. Reprinted with permission from Ref (Foldvari et al., 2016).
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2.2.1 Lipid nanoparticles (LNPs)
LNPs serve as prominent non-viral vectors for gene therapy,

particularly in mRNA delivery exemplified by the rapid
development and approval of mRNA vaccine in COVID-19
pandemic (Wang et al., 2023). Moderna’s mRNA-1273 vaccine
utilizes LNPs to deliver mRNA encoding the SARS-CoV-2 spike
protein, thereby stimulating an immune response against the virus.

In gene therapy, endosomes are tasked with transporting the
internalized vectors to various cellular compartments, and
endosomal escape enables therapeutic nucleic acids to evade the
endosome’s acidic milieu, which is essential for subsequent gene
expression. LNPs are composed of ionizable lipids, typically
uncharged under neutral pH conditions and acquiring a cationic
charge within acidic endosomes. This unique property facilitates
endosomal escape, thereby ensuring successful mRNA translation.
Among the widely employed LNPs, those incorporating cationic or
ionizable lipids, cholesterol, auxiliary phospholipids, and pegylated
lipids are prevalent (Huang et al., 2022). As versatile nano-delivery
vectors, LNPs demonstrate efficacy in delivering cytotoxic
chemotherapy drugs, antibiotics, and nucleic acid therapeutics
(Jung et al., 2022). Despite this, the intracellular delivery
efficiency of state-of-the-art LNPs remains relatively modest, with
lingering concerns regarding the safety and immunogenicity of
synthetic lipid components. Addressing this challenge, Bram
Bogaert et al. presented a novel approach utilizing tricyclic
cationic amphiphilic drugs (CADs) as structural and functional
components of mRNA-formed lipid NPs. Their study demonstrated
that selected CADosomes exhibit highly efficient mRNA delivery in
an in vitro cell model (Figure 3) (Bogaert et al., 2022). In another
breakthrough, Min Qiu et al. engineered a pioneering LNPs delivery
platform with specificity, efficacy, and safety for in vivo genome
editing of Angptl3 by CRISPR-Cas9 (Qiu et al., 2021). In vivo, LNPs
quickly adsorb plasma proteins to form a protein corona, showing a
particular affinity for soluble apolipoprotein E (ApoE). This
interaction promotes the binding of LNPs to low-density
lipoprotein receptors (LDLr), which are highly expressed on the
hepatocytes. Receptor-mediated endocytosis is a key mechanism for
the internalization of LNPs by hepatocytes, partially explaining the
preferential targeting of the liver by intravenously administered
LNPs (Liu et al., 2023). The widespread clinical application of gene
therapy has been impeded by the absence of delivery vectors capable
of inducing protein expression in extrahepatic organs and tissues
(LoPresti et al., 2022). Recent efforts have redirected nucleic acid
delivery towards tissues beyond the liver (Kimura and Harashima,
2023). The type and proportion of helper lipids can modify the LNP
structure, are essential for the stability and tissue targeting of LNPs.
For instance, ester and amide bonds in lipid compounds enhance
targeting to the liver and lungs, respectively. Samuel T. LoPresti et al.
observed that the complete substitution of conventional helper lipids
with anionic or cationic lipids led to significant and consistent
transfer of lipid nanoparticles specifically to the spleen or lung,
respectively (LoPresti et al., 2022). Beyond their role as delivery
components, lipids may exert therapeutic effects synergistically with
mRNA-encoded proteins. Multifunctional lipid materials
encompass self-adjuvant lipids that enhance vaccine efficacy and
paclitaxel-derived lipids enabling the combined treatment of
chemotherapy and gene therapy for cancer (Hou et al., 2021;
Johnson et al., 2022).

2.2.2 Polymers
Among non-viral vectors, polymer vectors possess the

advantages of minimal immunogenicity and easy production,
making them optimal alternatives to viral vectors in
contemporary research (Chen et al., 2020). The delivery system
extensively employs various polymers, including dendritic
macromolecules (Luo et al., 2014), polylactic acid (PLA) (Jain
et al., 2015), polyethylene imine (PEI) (Peng et al., 2014), and
chitosan (CS) (Saeedi et al., 2022; Dong et al., 2024), finding
broad applications in the field of cancer therapy and nervous
system disease.

The dendritic macromolecules and PLA stand out among gene
delivery vehicles due to their non-toxicity, multiple surface
functionalities and the capacity to encapsulate and deliver a
broad range of therapeutic agents effectively. The high positive
charge of PEI promotes endosomal escape of gene complexes and
is renowned for its high gene transfection efficiency. CS functions as
a natural adhesive polymer, its cationic nature allows for strong
interactions with negatively charged cell membranes, which is
beneficial for enhancing the residence time and local
bioavailability of gene vectors. Pang J et al. prepared DPLL-
functionalized amyloss (ADP) and utilized it for the co-delivery
of plasmid pIRES2-EGFP-TNFα and curcumin, demonstrating the
efficacy of this approach in pancreatic cancer treatment (Pang et al.,
2023). Yu-Shiang Peng et al. synthesized PEI-grafted CHI with two
different molecular weights (PEI600-g-CHI and PEI1800-g-CHI,
Mw = 600 and 1800 g/mol, respectively) through the ring-opening
reaction of ethylene glycol diglycidyl ether (EX-810), aiming for
Parkinson’s disease (PD) treatment (Peng et al., 2014). Lei Lia et al.
developed a cationic polymer, PCL-ssP (PEGMA-co-GMA), as a co-
carrier for both anticancer drugs and genes, demonstrating
promising prospects for its application (Li et al., 2020).
Furthermore, gene delivery can be achieved using composite
nanoparticles composed of polymers and cationic peptides. The
exceptional transfection efficiency exhibited by Arvind K Jain et al.’s
cationic peptide-DNA nanoparticles were synergistically integrated
with the biocompatibility and extend release properties inherent in
polylactic acid-polyethylene glycol (PLA-PEG). Specifically, the
cationic cell-penetrating peptide RALA was utilized to
concentrate DNA within nanoparticles, which were subsequently
encapsulated in a series of PLA-PEG copolymers. This refined
formulation effectively facilitated cellular transfection while
preserving cell viability (Jain et al., 2015).

2.2.3 Inorganic nanoparticles
Graham and Bacchetti’s 1983 study, which innovatively

employed calcium phosphate as a gene delivery vector, marked a
pivotal moment in the field of nonviral gene therapy (Graham and
van der Eb, 1973). Nowadays, inorganic nanoparticles (NPs), such as
mesoporous silicon nanoparticles (MSNs), gold nanoparticles,
magnetic nanoparticles (MNPs), carbon nanotubes, MXenes, and
quantum dots (QDs), have emerged as promising vectors for non-
viral gene delivery (Patil et al., 2019).

Carbon nanotubes (CNTs), are single-walled or multi-walled
tubular nanostructures capable of encapsulating gene molecules in
their outer walls and internal cavities, featuring high aspect ratio and
high gene-loading capacity (Singh et al., 2005). The tubular
nanostructure of CNTs facilitates easier penetration through
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biological barriers, which is advantageous for the delivery of
exogenous plasmids (Talaei and Farzad, 2024). However, the
transient expression efficiency of carbon nanotube-mediated
exogenous plasmids is undesirable, necessitating further
optimization of the delivery system for the carriage and
expression of large gene fragments (Hashem Nia et al., 2017).

Silicon-based delivery vectors, such as mesoporous silicon
nanoparticles (MSNs), represent a novel type of non-viral gene

delivery vectors due to their high loading capacity and stability
(Zhou et al., 2018). The mesoporous structure of MSNs provides a
large surface area and pore volume, which is advantageous for the
accommodation and controlled release of therapeutic genes.
Notably, insufficient endosomal escape efficiency of MSNs,
necessitating further exploration to enhance the intracellular
release of gene fragments (Tong et al., 2019). In addition, the
stable framework of MSNs hinders their degradation and

FIGURE 3
(A) Schematic representation of NT-DOPE mRNA CADosomes, produced with vesicles obtained via an ethanol dilution (ED) or lipid film hydration
(LFH) method. Created with BioRender.com (B) Representative transmission electron microscopy (TEM) image of enhanced green fluorescent protein-
encoding messenger RNA (eGFP-mRNA) NT-DOPE CADosomes, prepared via ED. Scale bar corresponds to 200 nm. (C) Schematic illustration of the
NanoBiT

®
system. (D) Percentage eGFP + cells as analyzed via flow cytometry 24 h after transfection with NT-DOPE CADosomes N/P 9–12 and

DOTAP-DOPE N/P 2. (E) Representative flow cytometry dot-plots of non-treated cells (NTC) and NT-DOPE CADosomes N/P 9 or DOTAP-DOPE N/P
2 transfected HeLa reporter cells, respectively. Reprinted with permission from Ref (Bogaert et al., 2022).
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excretion, potentially leading to accumulation in vital organs and
causing damage.

Magnetic materials, such as Fe3O4, leveraging magnetic
targeting under an external field for directional delivery and
controlled release of genetic materials (Bi et al., 2020). This
strategy holds the promise of dual functionality in both
diagnostics and therapeutics (Shasha and Krishnan, 2021). MNPs
can be functionalized with various compounds to improve MNPs’
biodistribution and metabolism. Yu et al. utilized PEI--modified
MNPs to develop a miRNA-based tumor recognition system,
resulting in approximately 42% tumor growth inhibition in mice
models (Yu et al., 2016). However, it is important to note that certain
MNPs, like CoFe2O4, NiFe2O4, and MnFe2O4, may have
limitations due to potential toxicity from metal ion leakage and
prolonged exposure to external magnetic fields. These issues require
comprehensive research and thoughtful consideration in the
application of these systems in biomedicine to ensure safety
and efficacy.

Quantum dots (QDs), semiconductor nanocrystals typically
range from 2 to 10 nm in diameter. Their photoluminescence
properties, ease of functionalization, biocompatibility, and
resistance to degradation offer significant advantages for long-
term detection and transport within biological organism.
However, it is crucial to recognize that metal quantum dots
possess inherent cytotoxicity, the mechanisms underlying QDs
degradation and clearance remain poorly understood, which
could potentially impact the safety and therapeutic efficacy in
biomedical applications. Carbon-based quantum dots (CQDs)
with their low cytotoxicity and ability to enhance transfection
efficiency by decorated with nuclear-targeted peptides, present an
exciting alternative in the field of non-viral gene delivery vectors
(Zhai et al., 2022).

MXenes are composed of transition metal carbides,
carbonitrides, or nitrides. These materials are renowned for their
exceptional thinness, large specific surface area, remarkable
mechanical strength, and encapsulation capability (Cheng et al.,
2020). Concerns persist regarding their stability and
biodegradability in physiological environments, potentially
leading to long-term accumulation and cytotoxicity. A
comprehensive understanding of MXenes’ degradation and
clearance mechanisms within the body is an area that merits
further research (Bai et al., 2022).

Furthermore, gold nanoparticles exhibit excellent stability,
biocompatibility, and facile functionalization. They protect
nucleic acids from enzymatic and chemical hydrolysis, thereby
enhancing their biological stability to prolong the circulation
time (Ren et al., 2021). However, due to their insolubility and
propensity for aggregation in biological media, a diverse range of
connections and encapsulation is required to render these
nanoparticles water-soluble and prevent their aggregation (Xu
et al., 2013). In the field of cancer treatment, combination
therapy has emerged as a highly effective approach.
Nanotechnology-based gene delivery systems offer the potential
for co-delivery or simultaneous delivery of multiple therapeutic
agents, thereby enhancing existing drug delivery systems through
their exceptional drug-loading surface area and passive targeting
capability. Binita Shrestha et al. have successfully developed a carrier
based on gold nanoparticles for concurrent delivery of drugs and

siRNA, which holds great promise for investigating various
combinations of drugs and genes (Shrestha et al., 2020).
Moreover, gold nanoparticles can also synergize with polymeric
chitosan. Xiaoguang Dai et al. developed a generic and
straightforward strategy to construct a near-infrared (NIR)-
responsive Janus platform for imaging-guided complementary
cancer therapy. It is demonstrated that the J-ACP, composed of
polycationic chitosan nanospheres and PEGylated gold nanorods,
holds significant potential in achieving photoacoustic (PA) imaging-
guided complementary photothermal therapy (PTT)/gene therapy
for breast cancer (Dai et al., 2021).

3 Transdermal gene delivery system

Nucleic acid molecules exhibit sensitivity to various endogenous
enzymes within the body, often leading to systemic toxicity and
undesirable effects or degradation. To address this predicament,
transdermal gene delivery offers a promising approach for achieving
high efficacy and low toxicity in genetic medicine (Singh et al., 2022).
However, in the implementation of transdermal gene (TG) delivery,
the drug must traverse the stratum corneum (SC), which constitutes
the outermost layer of the skin, serving as a barrier against the
infiltration of foreign molecules into the body (Singh et al., 2022).
The skin, recognized as the largest organ in the human body,
comprises the epidermis, dermis, and subcutaneous tissue. The
linkage between the epidermis and dermis is facilitated by
basement membranes anchored by proteins such as collagen,
which effectively withstand external shear forces (Zhu et al.,
2022). The stratum corneum serves as the primary barrier of the
skin (Zhu et al., 2022), selectively allowing penetration of low
molecular weight (<500 Da) and highly lipophilic (oil soluble)
drugs while effectively preventing transdermal absorption of
macromolecules (Yang et al., 2023). In this section, we would
present exemplary strategies to surmount these obstacles
(Table 1) and discuss their advantages and limitation (Table 2).

3.1 Microneedles

Microneedles (MNs) are needle-like structures and an effective
approach for gene delivery. It has microscale diameter and lengths
up to 1 mm that can penetrate into the stratum corneum (10–40 µm
in thickness), and enter the epidermis/dermis layers without
touching blood vessels and pain-sensing neurons (Amani et al.,
2021). MNs possess several outstanding properties for gene delivery.
Firstly, they exhibit minimal invasiveness and can traverse the
stratum corneum painlessly. Secondly, MNs can be fabricated
and customized in terms of shape, size, and geometry. The
material, typically a polymer, can be chosen based on the
intended use and release mechanism, showcasing excellent
biocompatibility. Dissolvable MNs are crafted from biodegradable
polymers such as hydrogel or other dissolving materials, enabling
sustained co-delivery of drugs/vaccines and eliminating the
necessity for multiple dosing (Singh and Kesharwani, 2021).
Thirdly, they enable bypassing first-pass metabolism, facilitating
the direct translocation of therapeutics into the systemic circulation
(Li et al., 2021). Fourthly, the administration is easy enough to avoid
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the need for professional training. The development of MNs has
resulted in the improvement and expansion of immuno-
reprogramming strategies due to the housing of high
accumulation of immune cells such as neutrophils (Singh and
Kesharwani, 2021), langerhans (Singh and Kesharwani, 2021)
dendritic cells, macrophages, lymphocytes, and mast cells in the
dermis layer of the skin. These advantages make MNs excellent
candidates for the delivery of immunological biomolecules to the
dermal antigen-presenting cells in the skin with the aim of
vaccinating or treating different diseases, such as cancers and
autoimmune disorders, with minimal invasiveness and side
effects. Due to the unique properties of the skin, nucleic acid
delivery through this tissue holds great potential for treating a
wide range of pathologies, including genetic skin conditions,
hyperproliferative diseases, cutaneous cancers, wounds, and
infections.

DNA vaccines are potentially attractive, but their low
immunogenicity has been a barrier to their approval for use.
DNA vaccines have demonstrated limited efficacy in clinical
trials, owing to the lack of a suitable DNA delivery system.
Delivery of DNA vaccines to the highly immune responsive layer
of the skin may enhance its immunogenicity. The skin is a significant
component of immune system which contains a large amount of
antigen presenting cells (APCs). The APCs can transport antigens to
lymph nodes and present peptide fragments to lymphocytes which
then drive adaptive immune response (Nestle et al., 2009). However,
the accuracy and precision of intradermal injection are often low,
leading to vaccine preparations frequently leaking out of the skin,
thus challenging the induction of an effective immune response.
Overall, the delivery of prophylactic vaccines is primarily hindered
by factors such as low transfection efficacy, poor immunogenicity,
and safety concerns associated with the materials utilized (Duong
et al., 2018b). MNs designed for delivering cancer vaccines offer
precise delivery of antigens or immune adjuvants to specific skin
layers. This targeted approach effectively addresses immune cells in
the skin, inducing a more robust immune response compared to
intradermal injection, thereby enhancing the therapeutic effect on
melanoma. Grace Cole conducted a study to assess the efficacy of a

two-tier delivery system incorporating cationic RALA/pDNA
nanoparticles (NPs) into a dissolvable MN patch for DNA
vaccination against prostate cancer. The application of NP-loaded
MN patches successfully resulted in the endogenous production of
the encoded prostate stem cell antigen (PSCA). Furthermore,
immunization with RALA/pPSCA-loaded MNs elicited a tumor-
specific immune response against TRAMP C-1 tumors, postponed
tumorigenesis in prophylactic models, with 1 mouse remaining
tumor-free for 100 days after challenge. This provides additional
evidence that this two-tier MN delivery system serves as a robust
platform for prostate cancer DNA vaccination (Cole et al., 2019). In
addition, Yan et al. devised a DNA vaccine encoding the secreted
protein Ag85B ofMycobacterium tuberculosis and administered it in
the skin using microneedles. This approach demonstrated an
improvement in protective immunity compared to conventional
intramuscular (IM) injection. Notably, MNs’ immunization was
more effective in eliciting an antibody response than IM
injection, particularly at a high dose of 12.6μg, which
significantly decreased bacterial counts in both lungs and spleen
compared to control groups. These findings suggest that the use of
transdermal dissolving microneedles for DNA vaccination may offer
a new strategy against tuberculosis (Yan et al., 2018). In another
example, Huu Thuy Trang Duong et al. reported on the successful
delivery of polyplex-based DNA vaccines using MNs arrays coated
with a polyelectrolyte multilayer assembly of charge reversal pH-
responsive copolymer and heparin. The charge reversal pH-
responsive copolymer, consisting of oligo (sulfamethazine)-b-poly
(ethylene glycol)-b-poly (amino urethane) (OSM-b-PEG-b-PAEU),
served as a triggering layer in the assembly of the polyelectrolyte
multilayer on microneedles. The unique charge reversal
characteristics of this copolymer, specifically the OSM-b-PEG-b-
PAEU copolymer, involve exhibiting a positive charge at low
pH (pH 4.03) and transitioning to a negative charge when
exposed to physiological pH conditions (pH 7.4). This property
allows for the facile assembly and disassembly of polyelectrolyte
multilayers. The electrostatic repulsion between heparin and the
OSM-b-PEG-b-PAEU charge reversal copolymer initiated the
release of DNA vaccines. In vitro studies demonstrated that DNA

TABLE 1 Representative examples of transdermal protein delivery systems in different diseases.

Strategies Approaches Delivery systems/
Delivery strategy

Applications Evaluation models Refs

Microneedles Coated MNs BRAF siRNA/R8 Melanoma Mice bearing melanoma Ruan et al. (2018)

Dissolving MNs STAT3 siRNA/PEI Melanoma Mice bearing B16F10 melanoma tumor Pan et al. (2018)

Degradable MNs DNA/OSM-(PEG-PAEU)/poly Cancer BALB/c female mice Duong et al. (2018a)

Metal MNs Ova/c-di-GMP(c-di-AMP) Skin disorders Balb/c female mice Shakya et al. (2018)

Chemical
enhancers

Ionic liquids siRNA/robed-siRNA Skin diseases Female SKH-1E hairless mice Dharamdasani et al.
(2020)

Biological peptide DOTAP-based SPACE Ethosomal
System

Gene delivery Female BALB/C mice Chen et al. (2014)

Physical
approaches

Ultrasound UMGD Genetic diseases Specific-pathogenfree (SPF)-derived
Yorkshire hybrid swine

Tran et al. (2019)

Iontophoresis AuNP-CS/siRNA/CS melanoma B16F10 murine melanoma cells Labala et al. (2016)

Electroporation FIEA Gene delivery Male C57BL/6 mice Huang et al. (2050)
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vaccines loaded onto microneedles were effectively transfected into
RAW 264.7 macrophage cells, indicating the potential for these
microneedles to deliver DNA vaccines to antigen-presenting cells.
Moreover, vaccinating BALB/c mice with microneedles loaded with
the DNA vaccine and coated with a polyelectrolyte multilayer
induced robust, antigen-specific humoral immune response, the
expression of Aβ was significantly elevated in mice treated with
microneedles compared to those receiving subcutaneous injections,
suggesting the potential effectiveness of this method for vaccination
against diseases like Alzheimer’s (Duong et al., 2018b).

Dissolvable MNs technology encounters two primary
challenges: the suboptimal transfection efficacy of pDNA after
release from the microneedle matrix, and the constrained loading
capacity of micron-scale devices. Two-tier delivery systems, which
integrate microneedle platforms and DNA delivery vectors, have
improved efficacy, yet the challenge of augmenting loading capacity
persists. Grace Cole et al. employed lyophilization to augment the
loading of RALA/pDNA nanoparticles within dissolvable PVA
microneedles. In vivo delivery was substantially enhanced,
reaching an appropriate range for DNA vaccination (~50 μg per
array) (Cole et al., 2018). To enhance the uptake of genetic material
while ensuring biocompatibility and avoiding inflammatory
responses or cytotoxicity associated with nondegradable synthetic
polymers, Qu et al. utilized naturally-derived gelatin methacryloyl
(GelMA) as a biodegradable polymer. They employed poly (β-amino
ester) (PBAE) as a gene carrier for local and percutaneous controlled
delivery of plasmid DNA (pDNA) in vivo, effectively penetrate the
epidermal layer of the skin and reach the dermal layer, achieving a
transfection rate of approximately 31%without causing skin damage
(Qu et al., 2020).

Small interfering RNA (siRNA) in gene therapy offers relatively
low toxicity and high specificity, attributed to its ability to target and
silence specific genes (Figure 4) (Ruan et al., 2018). When delivered
by MNs, siRNAs must be resistant to enzymatic degradation,
capable of entering target cells, and able to escape the
endosome–lysosome degradation axis. One solution to this
challenge is to encapsulate these gene drugs in nanoparticles for
transdermal delivery using MNs. Wang et al. introduced a
nanoparticle-embedding MNs system featuring a soluble
hyaluronic acid (HA) matrix. This innovative system utilizes a
mesoporous silica (mSiO2) shell to both load and protect small
interfering RNA (siRNA). Additionally, it incorporates an
upconversion nanoparticle (UCNP) core for tracking microneedle
skin penetration and the diffusion of nanoparticles. Studies showed
an initial burst release of 75% of molecular beacons (MBs) within
12 h, followed by a sustained release, reaching 85% of MBs with
3 days (Wang et al., 2020). To introduce large molecule siRNA into
tumor cells, Ruan et al. developed a siBraf delivery system based on
cell-penetrating peptide octaarginine (R8) nanocomplexes
combined with coated MNs. Specifically, they employed R8/
siBraf-coated MNs (R8/siBraf coated MNs) for targeted anti-
melanoma treatment, efficiency of A375 cellular internalization
approached 90% (Ruan et al., 2018). The delicate and
temperature-sensitive nature of mRNA drugs makes them
unsuitable for delivery via MNs composed of metals, polymers,
and ceramics. To overcome this challenge, Yu et al. employed frozen
microneedles to deliver the mRNA vaccine, using subcutaneous
injections of mRNA-loaded liposomes as a positive control. In the

seventh week of the experiment, mouse serum was collected for an
antibody neutralization assay, revealing that serum from the frozen
microneedle group exhibited potent neutralizing activity against
SARS-CoV-2 wild-type pseudovirus, with a virus inhibition rate
surpassing 50% at a serum dilution of 1:320 (Yu et al., 2022).

In addition, MNs loading of ribonucleoproteins enables gene
editing. For instance, Wan et al. reported a dissolvable MNs patch
capable of mediating transdermal codelivery of CRISPR-Cas9-based
genome-editing agents and glucocorticoids for the effective
treatment of inflammatory skin disorders (ISDs) (Figure 5).
Direct blockade of NLRP3 gene by CRISPR-Cas9 gene editing to
reduce glucocorticoid resistance, the indel mutation frequency of the
NLRP3 gene increased from 13.6% to 21.4% in the atopic dermatitis
mouse model, and the expression levels of inflammatory cytokines
IL-1β and IL-18 in skin tissues were significantly reduced. In the
psoriasis model, the combination treatment increased the
NLRP3 gene indel mutation frequency from 10.7% to 17.2%
(Wan et al., 2021). The synergistic combination of gene therapy
and photothermal therapy (PTT) has been extensively investigated
as a promising strategy for cancer treatment. In this context, Xu et al.
designed a MN patch co-loaded with p53 DNA and IR820,
employing a two-step casting method for fabrication. Hyaluronic
acid was selected as the matrix, and p53 DNA and IR820 were
predominantly loaded into the tips to enhance utilization and
minimize waste. The MN patch demonstrated efficient
penetration of the stratum corneum and rapid dissolution,
facilitating the release of p53 DNA and IR820 in the
subcutaneous tumor site. The highly effective photothermal
properties of IR820 led to a substantial temperature increase of
14.7 °C at the tumor site upon near-infrared light irradiation. The
MN patch exhibited excellent antitumor effects, exhibited only 40%
increase in tumor volume, highlighting the synergistic impact of
gene therapy and PTT. The rapid release of genes is imperative upon
the insertion of the MN patch (Xu et al., 2020). To achieve rapid
gene release, Xinfang Li et al. capitalized on the acidic skin
environment. They assembled pH-responsive polyelectrolyte
multilayer (PEM) layers on the surface of polycaprolactone
(PCL) microneedles, resulting in a rapid gene release of 33% in a
simulated skin environment, compared to the 4% release observed
with microneedles lacking PEM coatings (Li et al., 2019).

3.2 Chemical enhancers

Chemical enhancers have the capability of facilitating the
penetration of drugs through the stratum corneum into the skin
through a chemical process (Marwah et al., 2016). Peptides, whether
natural or synthetic, possess superior biocompatibility. Among
them, cell penetrating peptides possess unique ability to directly
penetrate the cell membrane without interfering with its structure,
have recently gained attention as potential vectors for
macromolecules, including proteins and plasmid DNA. A team
led by Manika Vij et al. identified an amphotericin M peptide
(CRRLRHLRHHYRRRWHRFRC), referred to as Mgpe9, which
possesses the unique ability to permeate both in vitro and in vivo
skin without any external intervention. This peptide demonstrates
the capability to deliver plasmid DNA into skin cells and holds
potential as a nucleic acid transporter (Figures 6A, B) (Vij et al.,
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2016). As biological macromolecules, naked siRNAs exhibit low
target cell permeability when delivered transdermally. To address
this issue, Tamae UCHIDA et al. employed two peptides,
AT1002 and Tat, as chemical osmotic enhancers to facilitate

siRNA delivery. The results show that these peptides significantly
accelerated the transdermal delivery of siRNA and approximately
60% of the siRNAs retained stability in 10 h after the addition of
RNaseA (Uchida et al., 2011). Furthermore, two articles discovered

FIGURE 4
(A) Schematic representation of R8/siBRAF-coated MNs for targeted anti-melanoma therapy. (B) Image of stainless steel microneedles
photographed by digital camera. (C) The coating process of R8/siBraf onto the microneedles. (D) Transmission electron microscope image of R8/siRNA
nanocomplexes. (E) Cellular uptake of R8 and FAM-siRNA nanocomplexes at different N/P ratios by A375 cells after 4 h incubation. Each value
represented mean ± standard derivation, *p < 0.05, n = 3. (F)Circular dichroism spectra of R8, siRNA, and R8/siRNA nanocomplexes. Reprinted with
permission from Ref (Ruan et al., 2018).
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that the SPACE-peptide can enhance siRNA penetration across the
stratum corneum into the epidermis and dermis, and can augment
the penetration of various cell types (Figure 6C) (Chen et al., 2014;
Hsu and Mitragotri, 2011). Building on this foundation, Ming Chen
et al. combined the SPACE peptide with the DOTAP-based
proteasome vector system to enhance siRNA delivery. Ultimately,
the results confirmed that the SPACE peptide enhances the skin
penetration of siRNA, and this skin penetration was further
enhanced when combined with the DOTAP proteasome (Chen
et al., 2014). Using a unique mouse model, Vikas Hegde et al.

compared the effectiveness of various nucleic acid gene-silencing
agents in the skin of living animals. They discovered that only the
commercially available “self-delivery” modified accell-sirna
(Dharmacon) demonstrated potent and durable gene silencing in
vivo. Consequently, they developed a novel topical formulation, and
sustained N40% luc2p inhibition was observed after just two 1-hour
treatments with accell-sirna in the formula, successfully delivering
siRNA locally (Hegde et al., 2014).

Chemical enhancers can also be combined with iontophoresis to
facilitate transcutaneous gene delivery. Liu et al. used a model anion

FIGURE 5
Schematic illustration of stepwise transdermal (A) and intracellular (B) delivery of genome-editing agents (Cas9) and glucocorticoids (Dex) for the
treatment of ISDs. (C) Schematic illustration of dual MN patch for the treatment of DNCB-induced AD. (B) Photographs of mice treated with various
formulations. (D) Immunoblot analysis of NLRP3 and other inflammasome protein expression in the dorsal skin homogenates. GAPDH, glyceraldehyde-
3-phosphate dehydrogenase. Reprinted with permission from Ref (Wan et al., 2021).
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drug, limonene/ethanol, which resulted in a slight increase in the
penetration of sodium fluorescein. It was demonstrated that
chemical osmosis agents combined with iontophoresis could
increase the delivery of endothelial oligonucleotides, but it still
could not achieve complete delivery (Liu et al., 2013). The use of
chemical enhancers faces several challenges, such as interfering with
drug activity (Lv et al., 2006), limited potency, irritation caused by
potent enhancers, unpredictability of action, and complex
mechanisms. These issues need to be addressed in the future
development of chemo-osmotic agents (Kováčik et al., 2020).

3.3 Ultrasound

The use of ultrasound in transdermal drug delivery is a time-
honored approach that dates back to the middle of the 20th century

(Mitragotri, 2013). Sonophoresis refers to the transdermal drug
delivery using ultrasound waves to penetrate through the skin
membrane. Ultrasound-induced microfluidics and cavitation-
induced pressure perturb the lipid structure of the stratum
corneum, and the thermal effect of ultrasound induces localized
skin warming to improve blood circulation, leading to the dilation of
pores and sweat glands, and expedite the absorption of therapeutic
agents (Phatale et al., 2022). In transdermal drug delivery, both low-
frequency sonophoresis (LFS) and high-frequency sonophoresis
(HFS) are commonly employed (Polat et al., 2011). The
expansion of the void in SC induced by LFS has been
experimentally demonstrated, leading to an enhanced drug
penetration (Paliwal et al., 2006). Sonophoresis typically employs
ultrasound ranging from 4 kHz to 5 MHz, directly applied to the
skin. This technique facilitates drug delivery by enhancing the
permeation of the skin barrier (Zhao et al., 2023).

FIGURE 6
(A) Schematic representation of the process by which Mgpe9 peptide penetrates the skin for plasmid delivery. (B) Human skin penetration ability of
FITC labeled peptides (Mgpe9 and TAT) 4 h and 24 h after application was studied using the peptide skin penetration test in independent experiments.
Direct visualization of FITC fluorescence was performed after single topical application of peptides using fluorescence microscopy at ×10magnification.
Scale bar: 20 μm. Reprinted with permission fromRef (Wan et al., 2021). (C) A cell penetrating peptide, SPACE has been identified using in vitro phage
display in porcine skin. Reprinted with permission from Ref (Hsu and Mitragotri, 2011).
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Compared with other transdermal techniques, ultrasound offers
advantages such as deep tissue and organ penetration, high
biological safety, and portable equipment (Zhao et al., 2023).
Utilizing ultrasound, Schoellhammer et al. successfully
administered mRNA and siRNA to the colonic mucosa of mice.
This resulted in the downregulation of target mRNA expression,
showcasing the potential application of ultrasound for delivering
nucleic acids to the gastrointestinal tract (Schoellhammer et al.,
2017). Dominic M. Tran et al. employed ultrasound-mediated gene
delivery (UMGD) of nonviral vectors to target the liver in large
animal models. Successful UMGD relies on acoustic perforation
induced by exogenous cavitated nuclei, such as microbubbles, which
oscillate radially under specific frequencies and peak negative
pressures (PNPs). This phenomenon leads to transient pores
formation in the cell membrane and opening of endothelial tight
junctions. Nonviral vectors, including bare plasmid DNA (pDNA)
carrying the gene of interest, are effectively disseminated during this
transient state (Tran et al., 2019). Despite the proven efficacy of
ultrasound in enhancing transdermal drug delivery, achieving
precise control over the location, shape, and size of the localized
skin delivery area remains challenging. To address this issue, Hu
et al. developed an ultrasonic erosion protocol to establish precise
delivery zones in mouse skin, facilitating the successful delivery of
nanoparticles (India ink) and hepatitis B antigen. The importance of
hair follicles in ultrasound-mediated transdermal delivery is also
illustrated (Hu et al., 2019).

In recent years, bubble-assisted ultrasound has been gradually
applied (Escoffre et al., 2016). However, the impact of microbubbles
generated during ultrasound stimulation on drug transduction to
tumor cells remains not obvious. Zandi et al. have developed an
electrochemical stimulator integrated on zinc-oxide nanowires
modified microneedles for the localized intratumoral generation
of microbubbles (MBs). A ZnO nanowire-based microbubble
generator probe was employed to induce cavitation, thereby
enhancing ultrasound-assisted drug delivery efficiency to the
tumor. This approach can reduce the side effects of
chemotherapy and improve the efficacy of chemotherapy (Zandi
et al., 2019). In addition, ultrasound can be combined with other
transdermal drug delivery methods (Schoellhammer et al., 2014),
such as MNs (Bok et al., 2020a; Chen et al., 2010; Ryu et al., 2018)
and iontophoresis (Park et al., 2019). MNs penetrate the cuticle to
deliver drugs to the epidermis, while acoustic phoresis emitters can
enhance macromolecular diffusion rates by providing energy and
inducing acoustic cavitation. Furthermore, the application of
ultrasound has been shown to facilitate the dissolution of
hyaluronic acid (HA) microneedles (Figure 7) and enhance drug
permeation (Bok et al., 2020a). The combination of MNs and low-
frequency ultrasound has been demonstrated to improve the
transdermal drug delivery rate in vitro and enable the
transdermal delivery of macromolecular drugs such as calcein
and bovine serum albumin (BSA) (Chen et al., 2010). Yeong
Chae Ryu et al. penetrated pig skin using Cy3-labeled siRNA,
MNs, and ultrasound, resulting in a 6.9-fold higher concentration
of siRNA penetration than microneedles alone. Similarly, they
observed a 5.2-fold higher penetration of ovalbumin than
microneedles alone when employing Cy3-labeled ovalbumin,
microneedles, and ultrasound (Ryu et al., 2018). Park et al. have
developed a novel device capable of simultaneous acoustic and ion

electrophoresis, enabling enhanced skin penetration of multiple
drugs with reduced intensity and application time, thereby
mitigating skin irritation (Park et al., 2019).

Despite numerous studies investigating the efficacy and safety of
ultrasound-mediated transdermal drug delivery, certain limitations
remain to be addressed pertaining to modifiable parameters
including frequency, duty cycle, coupling medium, and pressure
amplitude. The potential of ultrasound-mediated transdermal drug
delivery is promising. With an enhanced comprehension of this
technology by physicians, engineers, and scientists coupled with
their persistent efforts, ultrasound-based transdermal drug delivery
platforms are poised to advance closer towards clinical application
(Seah and Teo, 2018).

3.4 Iontophoresis (IP)

IP is a skin-permeation technology that employs low-level
electrical current to solubilize drugs and facilitate their
transdermal delivery to the underlying tissues of the skin
(Meadows et al., 2014). IP uses electric fields to deliver drugs and
vaccines to the skin, is particularly effective against charged and
polar molecules (Banga et al., 1999). Two electrode patches form
circuits through the skin that disrupt the lipid arrangement between
stratum corneum cells and reversibly modifying the skin’s barrier
properties by applying a small electric current to the skin. This
process enhances skin permeability, facilitating the passage of
therapeutic agents through the skin barrier (Hettinga and
Carlisle, 2020). IP applications are simple and do not require
complex devices (Paudel et al., 2010). In addition, IP does not
produce cytotoxicity and is easy to combine with other drug delivery
methods (Hasan et al., 2022). Studies indicate that no obvious skin
changes are observed at current densities below 10mA/mm2. In each
application, the amplitude of the current usually below 0.5 mA/cm2,
which is considered physiologically acceptable (Hasan et al., 2022).
Nevertheless, it is essential to account for individual differences in
practice. Careful selection of treatment parameters, along with close
monitoring of the skin response during treatment, is necessary.

In recent years, IP has been used to deliver siRNA, CpG and
mRNA. The delivery of biomacromolecules through IP can
effectively treat inflammatory skin diseases. For example, the
study conducted by Fukuta et al. demonstrated the successful
delivery of IP-delivered antibodies to inflamed tissues, leading to
a significant improvement in epidermal hyperplasia in rats with
silver cuttle disease. This groundbreaking finding establishes IP as a
non-invasive and efficient intradermic drug delivery method
(Fukuta et al., 2020). One year later, Tatsuya Fukuta al.
Combined AT1002 and IP to deliver NF-κB decoy
oligonucleotides, and promoted macromolecular transfer through
the synergic effect of weak current mediated intercellular junction
cutting and AT1002s tight junction opening ability, thus achieving
stronger intercellular space cutting and overcoming the skin barrier
of psoriasis thickening. In addition, NF-κB decoy
oligodeoxynucleotides play a therapeutic role in the intradermal
transmission, and significantly inhibit the upregulation of the
mRNA level of inflammatory cytokines induced by psoriasis, thus
improving epidermal hyperplasia (Figure 8) (Fukuta et al., 2021).
Additionally, K. Kigasawa et al. employed iontophoresis technology

Frontiers in Bioengineering and Biotechnology frontiersin.org15

Zhang et al. 10.3389/fbioe.2024.1519557

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1519557


to selectively accumulate siRNA in the epidermis while avoiding
dermal deposition. This approach achieved effective delivery
without inducing tissue damage and successfully suppressed the
expression of endogenous immunomodulatory cytokines (Kigasawa
et al., 2010).

IP technology has extended to the field of cancer treatment. Jose
et al. encapsulated curcumin in cationic liposomes and then
complexed it with STAT3 siRNA to study the transdermal effect
of co-delivery of curcumin and STAT3 siRNA by liposomes in pig
skin models in vitro through non-invasive local ion implantation.
Local iontophoresis enhances the skin penetration of the
nanocomplex, allowing it to penetrate the living epidermis for
non-invasive ion delivery of curcumin and siRNA for skin cancer
treatment (Jose et al., 2017). The literature also includes numerous
reports on IP-administered drugs utilized in the treatment of
melanoma. Kaoru Kigasawa et al. investigated the antitumor
activity of CpG-ODN (unmethylated cytosine phospho-guanosine
oligodeoxynucleotides) delivered by iontophoresis for mouse
B16F1 melanoma immunotherapy. Ultimately, iontophoresis-
delivered CpG-ODN induced both local and systemic immune
responses, significantly inhibiting melanoma growth after
repeated ion permeation (Kigasawa et al., 2011). Husseini et al.

prepared a minimal mRNA vaccine encoding the tumor-associated
antigen human gp10025-33 peptide (KVPRNQDWL) for potential
melanoma therapy. The delivery of the iontophoresis-induced
mRNA vaccine induces an immune response that activates skin-
resident immune cells (Husseini et al., 2023). In addition, elevated
mRNA expression levels of various cytokines, primarily interferon
(IFN)-γ, and infiltration of cytotoxic CD8+ T cells in tumor tissues
have been observed in mice with melanoma. In addition, Suman
Labala et al. delivered layer-by-layer gold nanoparticles (LbL-AuNP)
via IP as a carrier for ion delivery of STAT3 siRNA for melanoma
treatment (Labala et al., 2016).

Many factors affect the effectiveness of IP, including the
properties of the drug itself such as the pH of the drug solution,
the size of the drug molecules, and the hydrophilicity of the drug.
Electrode type, current intensity, application time, current type, etc
(Akhtar et al., 2020). The successful delivery of 15-kDa
macromolecules is limited by IP. Achieving effective IP-mediated
transdermal penetration and therapeutic concentrations of such
macromolecules poses challenges. Furthermore, the transfer
efficiency may vary based on the physicochemical properties (e.g.,
solubility, stability) of each macromolecule. The application of IP
can also have potential effects on the skin, leading to skin irritation,

FIGURE 7
(A) The attachment structure of HAmicroneedles in gelatin hydrogel, (B)multi-system structure of HAmicroneedles, and the ultrasonic and electric
field in gelatin hydrogel. The inset image indicates the vibration of the needle. Schematic representation of the predicted scenario of (C) the dissolution
mechanism using ultrasound; (i) fine bubbles and the vibration of the needles by ultrasound and (ii) needle dissolution by ultrasound, (D) The predicted
dissolution mechanism and ion direction in relation to the direction of the electric field; (i) voltage > 0 and (ii) voltage < 0. Reprinted with permission
from Ref (Bok et al., 2020b).
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numbness, itching, and erythema in patients. Additionally,
improper electrode selection or placement on damaged skin,
prolonged usage duration, and excessive current density may
increase the risk of burns (Hasan et al., 2022). Most
commercially available IP devices are expensive, bulky, and
require an external power supply (Yamada and Prow, 2020).
Therefore, there is a need for intelligent IP devices with high
cost-performance. The clinical application of IP for these drugs is
still at the laboratory level, moreover. There are several challenges
that still need to be overcome for the clinical translation and
commercialization of biomacromolecule IP. A good option to
improve it may be making IP work in conjunction with other
enhancement techniques (Hasan et al., 2022).

3.5 Electroporation

Electroporation, an innovative transdermal delivery method,
transiently rearranges lipid molecules to create reversible
hydrophilic pores in the cell membrane by subjecting it to high
pressure and short-time electrophoresis, enabling the transport of
large molecules (Ita, 2016). Normally, transient water pores that are
thermodynamically unstable in cell membranes also appear in the
absence of external electric field stimulation, which can only be

maintained for nanoseconds. However, when the cell membrane is
exposed to an electroporation electric field, it can change the
permeability of cell membranes (Gong et al., 2022).
Electroporation of the skin is a temporary phenomenon that
occurs when an applied electric field surpasses its critical
transmembrane potential. Electroporation, as a prevalent cell
transfection strategy, possesses numerous merits. Firstly, it is a
straightforward and efficient method. Secondly, it obviates the
need for vectors, thereby circumventing interference with the
immune system. Thirdly, in contrast to other permeation
techniques, electroporation does not breach the cell membrane;
instead, it transiently enhances permeability. In addition,
electroporation offers the advantage of controlling the membrane
disruption effect by adjusting parameters (Gong et al., 2022).
However, precise mechanisms governing alterations in skin
structure during perforation remain undefined (Ita, 2016).

Traditional skin electroporation poses a risk of potential skin
damage owing to its high voltage. In addressing this concern, Huang
et al. implemented a strategy involving the integration of a
microneedle roller and a flexible cross-finger electroporation
array (FIEA) to facilitate the efficient delivery of DNA and
siRNA into the skin of mice. This innovative approach allows for
the successful transportation of nucleic acids at lower voltages,
concurrently exhibiting favorable safety profiles (Huang et al.,

FIGURE 8
(A) Schematic of the iontophoretic technique. (B, C) Intradermal distribution of IP-administered fluorescence-labeled oligodeoxynucleotides in
healthy and psoriatic skin. (D) TNF-α and IL-6mRNA levels in the skin of rats after IMQ treatment of a psoriasis model. Reprintedwith permission from Ref
(Fukuta et al., 2021).
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2050). Cindy Bernelin-Cottet al comparatively evaluated the
efficiency of vaccine DNA delivery in vivo to pigs using
dissolvable microneedle patches, intradermal inoculation with
(ID), surface electroporation (EP), with DNA associated or not to
cationic poly-lactic-co-glycolic acid nanoparticles (NPs). They used
a luciferase encoding plasmid (pLuc) as a reporter and vaccine
plasmids encoding antigens from the Porcine Reproductive and
Respiratory Syndrome Virus (PRRSV), a clinically-significant swine
arterivirus. This study concludes that successful DNA vaccine
administration in skin can be achieved in pigs with
electroporation and patches, but only the former induces local
inflammation, humoral and cellular immunity, with the highest
potency when NPs were used. This finding shows the importance of
evaluating the delivery and immunogenicity of DNA vaccines
beyond the mouse model in a preclinical model relevant to
human such as pig and reveals that EP with DNA combined to
NP induces strong immunogenicity (Bernelin-Cottet et al., 2019).

4 Transpulmonary gene delivery system

Due to the extensive surface area, abundant vascular network,
ease of administration through inhalation, the respiratory tract
represents an optimal non-invasive route for the gene delivery
(Gomes Dos Reis et al., 2017), offering distinct advantages in
terms of targeted therapeutic effects on diseased organs and
minimal toxicity to target cells (Bardoliwala et al., 2019). In the
realm of lung gene therapy, the effective delivery of nucleic acid
cargo to specific target areas within the lungs faces hindrances from
various factors, including lung architecture, clearance mechanisms,
immune activation, the presence of airway mucus, and the absence
of representative biological models (Birchall, 2007). Delivering
therapeutic genes to the pulmonary system through inhalation
requires the administration of biologic drugs in aerosol form, a
process that involves intricate formulation engineering and
manufacturing processes (Chow et al., 2021). Developing effective
aerosol formulations is crucial for advancing lung gene therapy,
particle size dictates the deposition site of the agents within the
lungs, and a biocompatible aerosol with high stability can ensure the
efficiency in pulmonary gene therapy, reducing irritation and
toxicity to the respiratory tract and lungs. When choosing the
most suitable approach for delivering nucleic acids into the
lungs, gene delivery presents three fundamental options:
aerosolization of liquid-suspended gene particles, aerosolization
of dry formulations of gene vectors with carrier particles, or
pressurized ejection of DNA from propellant dispersions
(Table 3). Among these methods, atomization stands out as the
predominant technique for introducing gene vectors into both
animal and clinical studies (Birchall, 2007).

4.1 Nebulized formulations

Nebulisation refers to the process of dispersing a liquid into fine
droplets, which can be inhaled (Chow et al., 2021). Nebulizers are
employed for generating liquid aerosols and can be used to
administer significant quantities of drug solutions or suspensions
through inhalation. They are often preferred in cases where

measurement is unsuitable for a mixture inhaler or for
measuring inhaler drugs (Lam et al., 2012). Additionally,
nebulizers could be considered for the delivery of siRNA and
mRNA. Daryll Vanover et al. have developed an inhalable
formulation that facilitates the expression of membrane-anchored
neutralizing antibodies encoded by mRNA in the lungs, effectively
mitigating SARS-CoV-2 infection. This study demonstrates that
nebulizer-based delivery of these mRNA-expressed neutralizing
antibodies proves highly effective in eliminating the disease
(Figure 9) (Vanover et al., 2022). Musa Khaitov et al. have
developed a suction-based modified siRNA-peptide tree
macromolecular preparation for COVID-19 treatment strategies
(Khaitov et al., 2021). However, the delivery of siRNA drugs to
cells is inefficient (Merckx et al., 2020; Merckx et al., 2018) and
requires overcoming numerous extracellular and intracellular
barriers by siRNA-loaded nanoparticles (De Backer et al., 2015).
To address this concern, hybrid nanoparticles have been developed,
consisting of nanogels with loaded siRNA cores and coated with
clinically approved pulmonary surfactants. Importantly, the
endogenous protein pulmonary surfactant-B has shown potential
as an intracellular siRNA delivery enhancer (Merckx et al., 2018).

To enable the long-term preservation of siRNAs, the team
successfully lyophilized lung surfactant-coated siRNA-loaded
nanogels (siNGs) without the need for freezing or cryoprotectants.
Following freeze-drying, reconstitution, and atomization processes,
the physicochemical properties of the nanocomposites remained
unchanged, while retaining the ability of nanocellulose to
efficiently deliver siRNA into the cytoplasm of human lung
epithelial cell lines (Merckx et al., 2020). Additionally, Lynn De
Backer et al. have proposed the potential co-administration of
siRNA-loaded nanoparticles (NPs) alongside pulmonary
surfactants (De Backer et al., 2015). Whereas transpulmonary gene
delivery fails to achieve sustained high levels of transgene expression
in vivo, Mastorakos et al. have successfully attained stable and elevated
levels of transgene expression for a minimum duration of 4 months
following a single administration of poly (β-amino esters) (PBAEs)
slime penetrating DNA nanoparticles (Mastorakos et al., 2015).

The utilization of in vitro transcribed (IVT) mRNA exhibits
extensive therapeutic applicability due to its ability to regulate the
temporal and dose-dependent expression of encoded proteins (Guan
et al., 2021; Patel et al., 2019). Patel et al. synthesized hyperbranched
poly (beta amino esters) (hPBAEs), achieving a polymer nano
formulation with a stable concentration suitable for efficient
pulmonary delivery. Repeated inhalation of hPBAE-mRNA resulted
in consistent production of lung proteins, without any observed local
or systemic toxicity (Patel et al., 2019). Guan et al. have successfully
formulated liposomes containing in vitro transcribedmRNA encoding
alpha-1-antitrypsin (A1AT-mRNA), which can be efficiently
transfected into human bronchial epithelial cells without any
observed toxicity. The resulting A1AT produced by atomized
A1AT-mRNA lipid plexus-transfected cells demonstrates functional
properties, effectively inhibiting the activities of trypsin and elastase
(Guan et al., 2021). To overcome the low membrane permeability of
pDNA, Gomes dos Reis et al. employed a cell-penetrating peptide as an
uptake enhancer for pDNA delivery to the lungs, forming a complex
between pDNA and CPP. The proposed approach effectively addresses
the challenges associated with pDNA degradation caused by
inadequate protection (Gomes Dos Reis et al., 2018).
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The presence of cystic fibrosis (CF) sputum poses a challenge
to the local delivery of gene transfer agents to the lungs. To
overcome this physical barrier, Ibrahim et al. employed mannitol
microparticles as a vehicle for gene transfer agents, creating a
local osmotic gradient (Ibrahim et al., 2011). Furthermore, the
negative impact of bacterial lung infection on atomization
efficiency in cystic fibrosis gene therapy was addressed by
introducing a novel type of lipid chain n-heterocyclic carbon
silver complexes with cationic lipid and DNA (ternary

combination). These complexes were successfully delivered via
atomization for therapeutic genes targeting lung infections
(Mottais et al., 2019). Nebulisation is also utilized for
vaccination purposes. The bacterial culture supernatant extract
(CSE) anthrax vaccine, developed by Li-Na Zhai et al., in liquid,
powder, and powder formulations, can be administered via
aerosol intratracheal inoculation, making it suitable for
pulmonary anthrax immunization through inhalation (Zhai
et al., 2023).

TABLE 2 Summary of representative transdermal delivery methods.

Strategies General advantages General limitation

Microneedles easy to apply
high compliance

painless
sustained delivery

limited loading capacity
suboptimal transfection efficacy

Chemical enhancers easy to apply
low-cost

limited penetration ability
potential skin irritation

affect nucleic acid activity

Ultrasound non-invasion
painless

deep penetration

thermal damage

Electroporation mature products
high penetration ability

high cost
complicated operation
potential skin damage

Iontophoresis high penetration ability high-cost
potential skin irritation

TABLE 3 Summary of different delivery methods for gene delivery to the lung.

Strategies of
administration

Gene Delivery vectors Applications Evaluation models Refs

Nebulizer IVT-
mRNA

Lipoplexes Lung-related and respiratory
diseases

16HBE14o- (16HBE) Guan et al. (2021)

Aerosol inhalation IVT-
mRNA

Hyperbranched poly (beta
amino esters)

Lung epithelium delivery
system

C57BL/6 female mice Patel et al. (2019)

Nebulizer mRNA Poly-beta amino ester Respiratory virus infections Golden Syrian hamster Vanover et al. (2022)

Nebulizer siRNA Nanogel coated with Curosurf® Pulmonary disease H1299_eGFP cells Merckx et al. (2020)

Intratracheal DNA Poly (β-amino esters) Lung gene therapy Balb/C mice Mastorakos et al.
(2015)

Supercritical fluid technology siRNA Poly-L-lactide porous
microparticles

Cancers with multidrug
resistance

Human small cell lung
cancer cells

Xu et al. (2018)

Spray drying siRNA Lipid nanoparticle (PEG-DMG) Respiratory diseases H1299-GFP cells Zimmermann et al.
(2022)

Spray drying bDNA Polyethylenimine Pulmonary diseases A549 cells Keil et al. (2019)

Inhalation powder pDNA Naked pDNA Pulmonary gene therapy ICR female mice Ito et al. (2019a)

Inhalation powder siRNA Naked siRNA Respiratory epithelium disease ICR female mice Ito et al. (2019b)

Spray drying mRNA Lipid nanoparticle Gene delivery Male Wistar
Han rats

Friis et al. (2023)

Spray drying siRNA DOTAP modified PLGA Respiratory disease EGFP-H1299 cells Jensen et al. (2012)

Pressurized metered dose inhalers siRNA G4NH2-TPP “non-druggable” diseases EGFP-A59 cells Bielski et al. (2017)

Pressurized metered-dose inhalers DNA Cationic-polymer Lung gene therapy A549 cells Conti et al. (2012)
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4.2 Dry powder formulations

Due to its simplistic formulation, nebulization remains the
preferred treatment option (Chow et al., 2021). However, inhaled
powder formulations exhibit significantly reduced susceptibility to
instability, chemical contamination, and microbial contamination
compared to liquid formulations (Carneiro et al., 2023). Dry powder
inhalation route is widely regarded as the optimal choice for siRNA

therapy in the treatment of human pulmonary diseases (Lam et al.,
2012). Christoph M. Zimmermann et al. developed a spray drying
apparatus for the efficient delivery of lipid nanoparticle siRNA
formulations. This method simultaneously preserves the
structural integrity, cargo stability, and bioactivity, as well as
gene-silencing efficiency of lipid nanoparticles (LNPs)
(Zimmermann et al., 2022). Monica Agnoletti et al. employed a
3D-printed micromixer to fabricate siRNA-dendrimer

FIGURE 9
(A)mRNA schematics encoding GPI-anchored and secreted IgG heavy chains and the IgG light chain sequences. (B) Luminescence imaging of the
lungs of nebulized mRNA-treated hamsters. (C)Quantification of luminescence in lungs. (D) Hamster lungs were excised and assessed for pathology via
H&E staining at 24 h post-transfection of 31 µg of aNLucmRNA. (E) Schematic representation of the preventive efficacy of GPI-anchored anti-SARS-CoV-
2 antibodies in hamsters tested for aerosolized mRNA expression. (F) Mean hamster weights over time normalized to the day of infection. Bars
indicate mean ± SEM. (G–I) Individual hamster weights (G), lung titer (H), and lung normalized viral N RNA (I) on day 5 post infection. Reprinted with
permission from Ref (Vanover et al., 2022).
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nanocomplexes (Figures 10A–C), which were subsequently
transformed into dry powder-based microparticles for inhalation
via spray drying. This approach effectively preserves the structural
integrity and biological activity of siRNA, facilitating the
reconstitution of nanocomposites without compromising their
functionality (Agnoletti et al., 2017). Drying powder formulation
can also be employed for the pulmonary delivery of other biological

macromolecules, including mRNA (Friis et al., 2023) and pDNA
(Munir et al., 2022). Friis et al. developed a lipid nanoparticle-based
mRNA formulation suitable for spray drying, demonstrating its
ability to preserve drug stability and maintain mRNA functionality
(Friis et al., 2023). Munir et al. employed nanospray drying
technique to develop an inhalable dry powder formulation of
RALA/pDNA nanoparticles for efficient gene therapy via

FIGURE 10
(A) Schematic representation of siRNA-dendritic nanocomposites prepared by 3D printed micromixers processed into dry powder. (B)
Representative SEM images of spray dried NEMs. (C) XRPD patterns of NEMs prepared using different excipients. Reprinted with permission from Ref
(Agnoletti et al., 2017). (D) In vitro transfection efficiency of spray-dried RALA/pEGFP-N1 complexes at different mannitol concentrations. Reprinted with
permission from Ref (Munir et al., 2022). (E) Luciferase expression in normal (N) and tumorous (T) tissues in the mouse lung burdened with
pulmonary metastasis. Reprinted with permission from Ref (Okamoto et al., 2011).
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pulmonary administration (Figure 10D) (Munir et al., 2022). The
continuous pulmonary administration of siRNA and pDNA powder
is a suitable approach for achieving more precise, rapid, and cost-
effective assessment of the effects exerted by siRNA (Ito
et al., 2019b).

The development of inhaled powder preparations requires the
utilization of stable complex biological materials, along with
different formulation strategies integrated into the manufacturing
process. This ensures both biological and physical stability during
production and throughout the warranty period (Chang et al., 2021).
Dry powder preparations utilizing vectors (Keil et al., 2019; Jensen
et al., 2012; Lam et al., 2012; Liang et al., 2014; Schulze et al., 2018;
Mohri et al., 2010) such as chitosan (Mohri et al., 2010), PLGA
(Jensen et al., 2012), and PEI (Keil et al., 2019) enable efficient
pulmonary delivery of siRNA. The experiment conducted by Tobias
W.M. Keila et al. demonstrated the feasibility of preparing nano-
embedded particles containing nucleic acid for the production of
suitable powder for inhalation (Keil et al., 2019). Mohri et al. also
demonstrated the suitability of chitosan dry powder, prepared using
the spray freeze-drying method, as a dosage form for lung gene
therapy (Mohri et al., 2010). Furthermore, Schulze et al. developed a
highly efficient spray drying technique to encapsulate
polyethylenimine and lipid polymers within polyvinyl alcohol
microparticles. This approach enhances nanoparticle retention
time, mitigates cytotoxicity, augments transfection efficiency, and
enables direct inhalation as dry powder (Schulze et al., 2018). Jensen
et al. developed a cationic lipid-based modified PLGA nanoparticle
powder formulation for targeted delivery of bioactive siRNA to the
lung tissue (Jensen et al., 2012). However, the presence of a vector
can have detrimental effects on drug efficacy, and several studies
have demonstrated that utilizing naked DNA (without any delivery
vector) can yield superior outcomes. Therefore, Xu et al. employed
siRNA co-spray drying with mannitol and L-leucine to transform
naked siRNA into an inhalable dry powder for the first time using
the spray drying technique (Chow et al., 2017). Furthermore, Ito
et al. demonstrated that the gene expression in mouse lungs was
significantly higher when using pDNA powder composed of LHA
compared to pDNA solution containing PEI and other bare pDNA
powders, indicating that the composition of excipients also plays a
crucial role in regulating gene expression in bare pDNA powder (Ito
et al., 2019a). The preparation method of the dry powder has also
been demonstrated to impact the formulation’s properties. For
instance, vectors like mannitol are commonly used by Wanling
Liang et al., and two methods, namely, spray drying (SD) and spray
freeze drying (SFD), are employed for preparing pH-responsive
peptides and plasmid DNA powders respectively. Both formulations
exhibit favorable aerodynamic performance and biological activity;
however, the spray drying powder demonstrates superior physical
stability, higher transfection efficiency, and greater industrial
potential (Liang et al., 2014).

Lung-targeted delivery of small interfering RNAs (siRNAs)
holds promise for the treatment of viral respiratory infections,
including influenza. Wanling Liang et al. developed inhalable
spray-dried (SD) siRNA powder formulations incorporating
pH-responsive peptides to facilitate efficient delivery of
antiviral siRNAs against influenza (Liang et al., 2015). Dry
powder inhalation therapy is widely employed in the treatment
of both localized and metastatic lung cancer, presenting distinct

advantages over injectable and nebulized aqueous formulations
(Okamoto et al., 2011; Kuehl et al., 2020). Hirokazu Okamoto
et al. formulated a chitosan mannitol powder incorporating two
reporter genes, pCMV-Luc and pEGFP-F. The expression of the
luciferase gene, driven by the CMV promoter (pCMV-Luc), and
the plasmid DNA encoding acylated enhanced green fluorescent
protein (pEGFP-F), exhibited elevated levels of gene expression in
both normal and tumor tissues, as well as in intratracheal
powders, in comparison to intravenous or intratracheal
solutions (Figure 10E) (Okamoto et al., 2011). Philip J. Kuehl
et al., conversely, devised a dry powder formulation for the
inhalation administration of 5-aza, demonstrating enhanced
stability in comparison to injection preparations. Moreover,
aspirating powdered 5-aza exhibited improved pharmacokinetic
characteristics in lung, liver, brain, and blood tissues, with the
exception of lung tissues, when contrasted with nebulized aqueous
preparations (Kuehl et al., 2020).

4.3 Pressurized metered dose formulations

Pressurized metered dose formulations (PMDIs) offer potential
advantages over alternative pulmonary delivery systems,
characterized by their portability, cost-effectiveness, rapid
administration, and the capacity to store multiple doses in a
compact tank. Metering valves ensure consistent dose delivery.
As a result, PMDIs represent a more expedient alternative to
nebulizers, particularly for treatments requiring frequent dosing
(Bains et al., 2010). However, achieving particle dispersion stability
in low dielectric HFA propellants poses a formidable challenge for
PMDI (Conti et al., 2012). Incorporating the appropriate surfactant
into the HFA matrix to enhance the fluidity of dry powders and
mitigate particle aggregation by reducing surface tension and
improving particle dispersion. This ensures uniform distribution
of drug particles during inhalation. Denise S. Conti et al. employed a
core-shell strategy to efficiently disperse cation-polymer-DNA
nanoparticles in hydrofluoroalkane propellants, generating
aerosols with exceptional characteristics from the corresponding
PMDI. It was demonstrated that the propellant had no discernible
impact on the biological activity of plasmid DNA (Conti et al., 2012).
The key focus of the future development of pMDI system is still to
solve the above problems. To sustain their position within the
inhalation therapy market amidst rapid developments in DPIs
and other SMIs, substantial improvements are indispensable
(Smyth, 2005).

5 Summary and outlook

Transdermal and transpulmonary gene delivery aim to
overcome challenges associated with systemic gene delivery, such
as first-pass metabolism during oral administration, enzymatic
degradation in circulation, and poor target specificity for
systemic administration. The skin emerges as an ideal site for
gene therapy due to its rich population of lymphocytes,
keratinocytes, dendritic cells, and T cells. Transdermal gene
delivery has shown potential in treating skin conditions such as
epidermolysis bullosa (EB) and Netherton syndrome, as well as
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inhibiting skin inflammation by locally delivering siRNA for
immunomodulation. However, transcutaneous gene delivery does
present certain obstacles, such as limited cellular expression of genes
or instability in gene transfer. Future advancements in
transcutaneous gene delivery should prioritize optimizing
equipment functionality, exploring delivery mechanisms, and
ensuring technological safety.

Transpulmonary gene delivery not only allows for noninvasive
drug administration but also mitigates drug degradation. The
expansive alveolar surface area facilitates drug absorption and
lowers the local required dosage, thereby minimizing potential
side effects. However, the efficacy of inhaled gene therapy can be
influenced by lung anatomy, physiological state, and metabolic
characteristics. Increased mucus production and inflammation
result in airway obstruction, hindering therapeutic agent delivery,
necessitating specialized delivery systems for targeted pulmonary
deposition. Considering the successful application of nucleic acid
molecules in various lung disease treatments, it is crucial to develop
inhalable and stable nucleic acid preparations for future clinical
applications.

Interdisciplinary collaboration, technological innovation, and
robust evaluation systems are necessary to overcome these
challenges and achieve industrialization. Addressing these
challenges is crucial not only for the advancement of gene
therapy but also for realizing its substantial social value by
providing patients with better therapeutic options.
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