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Humerus greater tuberosity (HGT) avulsion fracture is one of the most common
types of proximal humerus fractures. The presence of motion and gap lead to the
failure of implants, due to the force pulling from the supraspinatus. In this work,
electrospinning technology was applied to fabricate PCL-PEG/CS/AST nanofiber
with superior biocompatibility and mechanical property. Furthermore, PCL-PEG/
CS/AST nanofiber could promote proliferation and osteogenic differentiation of
bone mesenchymal stem cells (BMSCs) in vitro. We believe that this work
indicates a promising way to promote the union of HGT avulsion fractures by
using PCL-PEG/CS/AST nanofiber.

KEYWORDS

electrospinning, nanofiber, humerus, bone, tuberosity

1 Introduction

Bone repair and bone regeneration are crucial task in clinical treatment. The healing of
the humerus greater tubercle (HGT) is highly important. As the main attachment point of
the rotator cuff, humerus greater tubercle (HGT) plays an important role in maintaining the
function of shoulder joint abduction and rotation (Lacheta et al., 2023; Bekmezci et al.,
2024). HGT avulsion fractures are among the most common types of proximal humerus
fractures, especially in the osteoporosis population, accounting for approximately 20% of
proximal humeral fractures (Handoll et al., 2022; Kim et al., 2024b). Arthroscopic suture
anchor and locking plate fixation are common methods in the clinical treatment of HGT
avulsion fractures, however, surgical treatments still have high failure rates, and adverse
events, such as internal fixation failure and fracture displacement often occur (Makaram
et al., 2023; Kim et al., 2024b; Tao et al., 2024). Previous studies reported that the suture
anchor technique requires adequate bone mineral density to hold the anchor and that the
anchors are easily pulled out in patients with severe osteoporosis around the proximal
humerus (Lee S. et al., 2021; Kim et al., 2023). In addition, many studies founded that the
presence of motion and gaps due to pulling from the supraspinatus, which is known to delay
the union of fractures, eventually leaded to failure of internal fixation (Zeng et al., 2021;
Handoll et al., 2022). Thus, better approaches for promoting HGT avulsion fracture healing,
which are essential for the recovery of shoulder function, are needed for elderly and
osteoporotic population.

In recent years, many types of material have been developed and utilized in bone repair
and bone regeneration. Among them, nanofiber is an ideal scaffold for therapeutic
medicines, with the features of huge aspect ratio, specific surface area, flexibility, and
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mechanical strength (Zhu et al., 2021; Cheng et al., 2021; Cheng
et al., 2022b; Cheng et al., 2022a). Many polymer nanofibers with
excellent biocompatibility have shown outstanding results for
prosthetics, including polylactic acid (PLA), polycaprolactone
(PCL), polyethylene glycol (PEG) and numerous biomolecules.
For example, Kim et al. (2024a) utilized the oxygen plasm to
treat PCL nanofibrous scaffold, aiming to improve the
hydrophilicity and protein adsorption properties. As the results
illustrated the treated PCL nanofiber showed dramatically
improved new bone formation behavior (Kim et al., 2024a). As a
one of the natural polysaccharides, chitosan owns an unique
chemical structure, which attracted enormous interest in
controlled drug delivery, gene delivery, cell culture, and tissue
engineering. After assisting by bioactivated magnesium-doped
hydroxyapatite, electrospun chitosan nanofiber scaffolds
simultaneously displayed the great bone mineralization ability
(Sedghi et al., 2020). To further improve the effects of bone
repair and regeneration, various bioactivated materials are added
into the scaffold, including drugs, ceramics, metal-organic
frameworks, semiconductor materials (Wang et al., 2019; Liu
et al., 2022; Sun et al., 2022; Fan et al., 2024; Makurat-
Kasprolewicz et al., 2024). Alendronate sodium ([(4-amino-1-
hydroxybutylidene)-bisphosphonate] trihydrate) have the
capability inhibit the bone remodeling activity and resorption by
interacting with bone matrix to treat osteoporosis and other
osteolytic bone diseases (Akyol et al., 2015; Doca et al., 2016). He
et al. (2018) chosen Alendronate Sodium modified the collagen type
I for bone regeneration, because the Phosphorylated materials could
provide the beneficial environment of extracellular matrix.
Compared with the treatment of 4 weeks, the new bone
formation is apparent after treatment of 8 weeks (He et al., 2018).

In this work, PCL-PEG/CS/AST nanofiber was prepared via
electrospinning technology. The fibrous morphology of PCL-PEG/
CS/AST nanofiber is beneficial for cell adhesion and proliferation,
exhibiting superior biocompatibility. Furthermore, an adhesive-
nanofiber membrane based approach was proposed to promote
HGT avulsion fracture healing.We hypothesized that PCL-PEG/CS/
AST nanofiber membrane could enhance HGT avulsion fracture
healing by promoting osteogenesis and reducing the failure rate after
surgery. We believe this work provides an universal and simple
approach for bone repair and bone regeneration with
potential insight.

2 Materials and methods

2.1 Materials and reagent

Polycaprolactone-polyethylene glycol copolymer (PCL-PEG)
was synthesized from Ruijiu Technology Co., Ltd. Chitosan (CS,
deacetylation degree ≥95%, viscosity: 100–200 Mpa/s), sodium
alendronate (AST), hexafluoroisopropyl alcohol (HFIP) were
purchased from Shanghai Macklin Biochemical Technology Co.,
Ltd. Alpha-modified minimal essential medium (α-MEM),
penicillin–streptomycin (P/S) and fetal bovine serum (FBS) were
purchased from Thermo Fisher Scientific (Scoresby, Vic., Australia).
The Cell Counting Kit-8 (CCK-8) was purchased from Bioscience
(Shanghai, China). Alkaline Phosphatase (ALP) Assay Kit was

purchased from Beyotime (Shanghai, China). Live and Dead™
Viability Assay Kit and rhodamine-conjugated phalloidin were
purchased from US Everbright Inc (Suzhou, China). The
universal RNA extraction kits and Evo M-MLV RT kits were
purchased from Accurate Biotechnology Co., Ltd. (Hunan,
China). The primers that used in this study were purchased from
Sangon (Shanghai, China). All reagents were used directly without
pretreatment.

2.2 Characterizations

The morphologies of PCL-PEG/CS/AST nanofiber membrane
was achieved by field emission scanning electron microscope (FE-
SEM, Regulus 8100). The chemical structure of PCL-PEG/CS/AST
nanofiber membrane was analyzed by Fourier Transform infrared
spectroscopy (FTIR, Nicolet IS350). The valence information and
surface composition of PCL-PEG/CS/AST nanofiber membranes
were analyzed by X-ray photoelectron spectroscopy (XPS,
ESCALAB QXi).

2.3 Preparation of PCL-PEG/CS/AST
nanofiber membrane

0.2 g of PCL-PEG was added into 4.2 g of HFIP and kept stirring
to forming a homogeneous solution. Then, 0.04 g of CS and 0.012 g
AST were injected to the above-mentioned solution. Subsquently,
the precursor solution was loaded into a syringe with a single
stainless steel nozzle for electrospinning. The voltage supply was
maintained at 15 kV. Then, the PCL-PEG/CS/AST nanofiber
membrane were prepared.

2.4 BMSCs cultivation, BMSCs viability assay
and live-dead cell staining

BMSCs were purchased from Shanghai Zhong Qiao Xin Zhou
Biotechnology Co., Ltd. BMSCs were cultured in α-MEM complete
culture medium for 72 h and the culture medium was changed every
48 h until BMSCs reached 80% confluence. BMSCs were seeded on
the surfaces of PCL/PEG, PCL-PEG/ALN, PCL-PEG/CTS and PCL-
PEG/ALN/CTS with the density of 5 × 104/well in a 12-well plate,
respectively (3 duplicate wells for each sample). The viability of the
BMSCs on the surfaces of the four samples was detected on the third
and seventh days, respectively, which is according to a related
published article. (Zhang et al., 2022). Meanwhile, BMSCs on the
samples were fixed and stained according to the live-dead cell
staining kit manufacturer’s protocol at day third and seventh,
respectively. Image J software was used to count the living and
dead cells on the surface of nanofiber membranes, respectively.

2.5 Osteogenic differentiation in vitro

For quantitative real-time polymerase chain reaction (qRT-
PCR) and ALP activity, BMSCs were seeded on each sample as
described above and α-MEM complete culture mediumwas changed
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to the osteoblast inducing conditional medium when BMSCs
reached 100% confluence. ALP activity of BMSCs was detected
according to the manufacturer’s protocol after 14 days of osteogenic
induction. The absorbance was detected at 405 nmwith a microplate
reader. The total RNA of BMSCs on the surface of bionanofiber
membranes was extracted after 14 days of osteogenic induction via a
Universal RNA Extraction Kit, respectively. Then, the total RNAwas
reverse transcribed into cDNA with an Evo M-MLV RT kit and the
data were analyzed by the 2-△△CT method. The sequences of the
primers of osteogenic genes were shown in Table 1.

2.6 Statistical analysis

In this study, all experiments were repeated at least 3 times. The
results were presented as mean ± standard deviation (SD) if the data
obeyed normal distribution. GraphPad Prism (version 7, GraphPad
Software, San Diego, United States) was used for statistical analysis
and statistical graphs. One-way ANOVA with Tukey’s post hoc test
was used to determine the significant differences among several

groups. P values <0.05 were considered to indicate statistically
significant differences.

3 Results and discussion

The typical synthesis process of PCL-PEG/CS/AST nanofiber is
shown in Figure 1A. The PCL-PEG/CS/AS nanofiber membrane was
prepared by electrospinning technology. As shown in Figure 1B1,
PCL-PEG nanofiber exhibit smooth surface and fibrous
morphology, which is suitable for substrate (Figure 1B1).
Figure 1B2 displays the SEM images of PCL-PEG/CS nanofiber,
flattening and overlap of nanofiber can be observed, which could be
assigned to the presence of chitosan. The SEM images of is PCL-
PEG/AST nanofiber reveals the smooth fibrous morphology
(Figure 1B3). As illustrated in Figure 1B4, the morphology of the
PCL-PEG/CS/AST nanofiber fiber does not change, indicating that
the addition of CS and AST displayed no effect on the morphology
of the nanofiber.

The chemical structure and different types of chemical bonds of
composites were investigated by FTIR spectroscopy. As shown in
Figure 2A, the characteristic peaks at 2,941 cm−1 and 2,864 cm−1

correspond to the C-H asymmetric and symmetric stretching of the
carbonyl group, the characteristic peak at 1726 cm−1 is attributed to
the stretching movement of C=O, and the characteristic peaks near
1,242 cm−1 and 1,178 cm−1 prove the formation of COC asymmetric
and symmetric stretching, respectively (Deng et al., 2021). Hydrogen
bond interactions may occur in PCL-PEG copolymers (Yu et al.,
2014), and the peak at 3,370 cm−1 confirmed the presence of O-H in
the mixture. After the introduction of CS and AST, it is found that
the spectrum changes little. However, in the nanofibers containing
CS and AST, the peak strength near 1726 cm−1 is reduced,
illustrating the difference in the amount of C=O in the mixture
(Deng et al., 2021), which also indicates that CS and AST are
successfully imported. No differences among PCL-PEG (d) and
PCL-PEG/CS/AST (a), PCL-PEG/AST (b), and PCL-PEG/CS (c)
blends were detected in Figure 2A, which may be due to the low
contents of CS and AST in polymer matrix. All FTIR test results
prove the successful preparation of PCL-PEG/CS/AST
nanofiber membrane.

XPS was applied to further characterize the surface elemental
states of PCL-PEG/CS/AST nanofiber (Figures 2B–F). The presence
of C, N, and O elements can be clearly calrified in the full spectrum
of PCL-PEG/CS/AST. In the fine spectrum of C 1s, it is located at
284.0, 285.4, 288.0 eV, which is corresponded to C-C/C=C, C-C/
C-H, hydrocarbons and C=O (Al-Ani et al., 2018; Manakhov et al.,
2019; Liu et al., 2020; Yingjun et al., 2023). The fine spectrum d of N
1s can be deconvolved into 398.6 and 399.2 eV, which could be
assigned to the presence of N-C and NH2 (Wang and Liu, 2013;

TABLE 1 The sequences of the primers of osteogenic genes.

Gene Forward primer Reverse primer

ALP CCACTATGTCTGGAACCGCA GGAGAGCGAAGGGTCAGTC

Osteocalcin GACCATCTTTCTGCTCACTCTGC ACCTTATTGCCCTCCTGCTTG

GAPDH AGGAGAGTTTCCTCGTCC TGAGGTCAATGAAAGGGGTCG

FIGURE 1
(A) Preparation process diagram of PCL-PEG/CS/AST nanofiber;
(B1) SEM image of the prepared PCL-PEG nanofiber membrane; (B2)
SEM image of the prepared PCL-PEG/CS nanofiber membrane; (B3)
SEM image of the prepared PCL-PEG/AST nanofiber membrane;
(B4) SEM image of the prepared PCL-PEG/CS/AST
nanofiber membrane.
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Petrović et al., 2022). In the fine spectrum of O 1s, the peaks
displayed at 531.2 and 532.6 eV, which is related to C=O and
N-C=O in the N-acetylated-glucosamine units (Wang and Liu, 2013;
Yingjun et al., 2023). In the full spectrum of PCL-PEG/CS/AST
nanofiber and the fine spectrum of P 2p, there are no obvious
characteristic peaks related to P was found, which also confirm the
trace content of AST in PCL-PEG/CS/AST nanofiber. All XPS test
results indicate the successful preparation of PCL-PEG/CS/AST
nanofiber membrane.

The mechanical property of PCL-PEG/CS/AST nanofiber
membrane was also clarified. As shown in Figure 3, the stress,
elongation at break, elastic modulus, and toughness of PCL-PEG/
CS/AST nanofiber membrane reach 2.50MPa, 2,242.33%, 0.92MPa,
and 3.33 kJ/m3, respectively, proving its favorable mechanical
performance. Furthermore, the long-term stability of PCL-PEG/

CS/AST nanofiber membrane can be predicted. According to the
previous work, Polymer dispersity index (PDI), Zeta potential was
applied to verify the long-term stability with satisfactory result in
25°C for 14 days (Wang et al., 2021). Chitosan exhibited the superior
stability in varied conditions (high-temperature, high-salt, and long-
term storage at 4°C) (Li et al., 2024). Thus, we believe PCL-PEG/CS/
AST nanofibers also present the favorable long-term stability.

3.1 Cell viability

In Figure 4A, the proliferation rate of BMSCs on the
surface of PCL-PEG/CS nanofiber membrance (0.46 ± 0.01)
and PCL-PEG/CS/AST nanofiber membrane (0.55 ± 0.03)
was significantly promoted compared with that of the former

FIGURE 2
(A) FTIR spectra of (A) PCL-PEG/CS/AST nanofibers, (B) PCL-PEG/AST nanofibers, (C) PCL-PEG/CS nanofibers and (D) PCL-PEG nanofibers. (B). Full
XPS survey of prepared PCL-PEG/CS/AST nanofibers. The fine XPS spectra of the PCL-PEG/CS/AST nanofibers, (C) C1s, (D) N1s, (E) O 1s, and (F) P
2p regions.

FIGURE 3
(A) Stress–strain curves, histograms of (B) stress, strain, (C)modulus and toughness of PCL-PEG/CS/AST, PCL-PEG/CS, PCL-PEG/AST and PCL-PEG
nanofiber membrance.
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2 groups (0.35 ± 0.01, 0.41 ± 0.01, respectively) after inoculation
for 3 days (P < 0.05). The result of cell viability test after inoculation
for 7 days revealed a similar trend that the proliferation rate of BMSCs
on the surface of PCL-PEG/CS nanofiber membrance (0.81 ± 0.01)
and PCL-PEG/CS/AST nanofiber membrance (0.92 ± 0.01) was
significantly promoted compared with that of the former 2 groups
(0.68 ± 0.02, 0.73 ± 0.01, respectively).

In Figures 4B–D, Live BMSCs were dyed green with calcein-AM,
dead BMSCs were dyed red with propidium iodide, and few dead
BMSCs were observed under the fluorescence microscope in all four
groups, the result of live-dead cell staining showed the same trend,
the number of living cells (1,589.00 ± 83.50) was the highest on the
surface of PCL-PEG/CS/AST nanofiber membrance. The number of

living cells on the surface of PCL-PEG/CS nanofiber membrance
(1,297.33 ± 78.40) was significantly greater than the former 2 groups
(597.33 ± 30.37, 1,098.00 ± 86.09, respectively) (P < 0.05).

Similarly, Cai et al. has constructed a kind of chitosan derivative
scaffold, which could promote proliferation and osteogenic
differentiation of MSCs via reducing intracellular reactive oxygen
species (ROS) (Wang et al., 2020). Another related article has found
that chitosan could promote proliferation of tonsil-derived
mesenchymal stem cells (TMSCs) via up-regulating cyclin D1 in
the G1 phase of the cell cycle (Lee K. E. et al., 2021). In addition,
Martín-López et al. reported that different concentration of chitosan
could affect the polymer surface topography, which has a direct
effect on the growth of cell behavior (Martín-López et al., 2013).

FIGURE 4
(A) The proliferation rate of BMSCs on the surface of each biofilm after inoculation for 3 and 7 days. (B) The counts of Living BMSCs on the surface of
each biofilm after inoculation for 3 and 7 days. (C) The images of living BMSCs and dead BMSCs on the surface of each biofilm after inoculation for 3 days.
(D) The images of living BMSCs and dead BMSCs on the surface of each biofilm after inoculation for 7 days. (E) ALP activity of BMSCs on each biofilm after
14 days of osteogenic induction. (F) ALP expression of BMSCs on each biofilm after osteogenic induction for 14 days. (G)OCN expression of BMSCs
on each biofilm after osteogenic induction for 14 days. *P < 0.05; **P < 0.01; ***P < 0.005; ns, no significant.
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3.2 Osteogenic differentiation of
BMSCs in vitro

Alkaline phosphatase (ALP) is a kind of exoenzyme of
osteoblast, and its expression activity is a very obvious
characteristic of osteoblast differentiation and maturation. As
shown in Figure 4E, BMSCs on the surface of PCL-PEG/CS/
AST nanofiber membrane had a significantly higher level of
ALP activity (139.95 ± 1.27) than other 3 groups (94.11 ± 0.48,
129.20 ± 0.33 and 119.47 ± 1.57, respectively) after 14 days of
osteogenic induction (P < 0.05). As shown in Figures 3F, G, the
expression level of osteogenic genes in BMSCs on four kinds of
nanofiber membrane, including ALP and Osteocalcin (OCN) were
detected via qRT‒PCR analysis. Generally, Osteocalcin (OCN) is
specifically expressed in osteoblasts and is the most abundant non-
collagenous protein in bone, which possess the function of
regulating hormone of bone metabolism. The result of ALP
gene expression in BMSCs on the surface of PCL-PEG/CS/AST
nanofiber membrane (4.13 ± 0.50) had the highest level when
compared to the former 3 groups (1.01 ± 0.15, 2.21 ± 0.08 and
1.98 ± 0.09 respectively) (P < 0.05), which showed a similar trend
as the result of ALP activity. In addition, the expression level of
OCN gene in BMSCs on the surface of PCL-PEG/AST (1.58 ± 0.13)
and PCL-PEG/CS/AST nanofiber membrane (2.12 ± 0.15) was
significantly higher than those on the surface of PCL-PEG and
PCL-PEG/CS nanofiber membrane (1.02 ± 0.24, 1.35 ±
0.02 respectively) (P < 0.05). Chen et al. obtained similar
results; they constructed a kind of ALN-loaded hydrogel
scaffold and found that the sustained AST release could indeed
promote the expression levels of osteogenic-related genes in
BMSCs (Tang et al., 2022). Shi et al. had verified that AST
served as an optimal osteo-inductive factor to promote
osteogenesis within a certain concentration range in vitro (Shi
et al., 2009; Chang et al., 2022). In addition, Yoon Shin Park et al.
reported that chitosan could enhanced the ability of TMSCs to
osteoblasts via enhancing its metabolic rate (Lee K. E. et al., 2021),
however, significant upregulation of osteogenic genes may cause
several side-effects. One notable consequence is the potential for
abnormal hyperplasia of HGT, which is one of the common
pathogenies of shoulder impingement syndrome in clinic.
What’s more, altered bone metabolism, due to osteogenic gene
overexpression, may disrupt the delicate balance between bone
resorption and formation, which may cause ossification in
surrounding soft tissue, such as supraspinatus, infraspinatus
and so on.

4 Conclusion

In this work, PCL-PEG/CS/AST nanofiber was fabricated via
electrospinning technology, exhibiting fibrousmorphology, superior
biocompatibility and mechanical performance. Furthermore, PCL-
PEG/CS/AST nanofiber could promote proliferation and osteogenic
differentiation of bone mesenchymal stem cells (BMSCs) in vitro.
This work provided an innovative way for promoting the union of
HGT avulsion fracture with a promising vision of protecting
public health.
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