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Introduction: Wastewater-based surveillance (WBS) is an emerging tool for
monitoring the spread of infectious diseases, such as SARS-CoV-2, in
community settings. Environmental factors, including water quality parameters
and seasonal variations, may influence the prevalence of viral particles in
wastewater. This study aims to explore the relationships between these
factors and the incidence of SARS-CoV-2 across 28 monitoring sites,
spanning different seasons and water strata.

Methods: Samples were collected from 28 sites, accounting for seasonal and
spatial (surface and intermediate water layers) variations. Key physicochemical
parameters, heavy metals, and minerals were measured, and viral presence was
detected using RT-qPCR. After data preprocessing, correlation analyses identified
19 relevant environmental parameters. Unsupervised learning algorithms,
including K-means and K-medoid clustering, were employed to categorize
the data into four distinct clusters, revealing patterns of viral positivity and
environmental conditions.

Results: Cluster analysis indicated that seasonal variations and water quality
characteristics significantly influenced SARS-CoV-2 positivity rates. The four
clusters demonstrated distinct associations between environmental factors
and viral prevalence, with certain clusters correlating with higher viral loads in
specific seasons. The clustering patterns varied across sample sites, reflecting the
diverse environmental conditions and their influence on viral detection.

Discussion: The findings underscore the critical role of environmental factors,
such as water quality and seasonality, in shaping the dynamics of SARS-CoV-
2 prevalence in wastewater. These insights provide a deeper understanding of the
complex interplay between environmental contexts and disease spread. By
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utilizing WBS and advanced data analysis techniques, this study offers a robust
framework for future research aimed at enhancing public health surveillance and
interventions.
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1 Introduction

Wastewater-based surveillance has emerged as a powerful tool
for monitoring public health and environmental contamination,
playing a pivotal role in the early detection and management of
various waterborne diseases and pollutants. This approach, rooted in
the analysis of physicochemical parameters within wastewater, has
gained importance due to its ability to provide real-time, cost-
effective, and community-wide insights into the presence of
contaminants. In an era, characterized by the continuous
generation of massive amounts of data, harnessing the potential
of data-driven approaches has become imperative in wastewater
surveillance to enhance its accuracy and efficiency (Wigginton et al.,
2015; Mathew and Kanmani, 2020; Srikanth et al., 2019).

The World Health Organization (WHO) emphasizes the
importance of effective wastewater management and surveillance
in preventing waterborne diseases, such as cholera and typhoid,
which continue to pose a significant threat to global public health
(World Health Organization, 2019). Traditionally, wastewater
surveillance relied on periodic sampling and laboratory testing of
water samples, a time-consuming and resource-intensive process.
However, recent advancements in sensor technologies and data
analysis methods have revolutionized the field by enabling
continuous monitoring and analysis of physicochemical
parameters in real-time (Newhart et al., 2019).

Physicochemical parameters, including pH, dissolved oxygen,
turbidity, and the concentration of specific chemicals, provide
critical information about the quality of wastewater. These
parameters serve as indicators of potential contamination and
can help in the early detection of pollutants, pathogens, and
emerging chemical constituents, such as pharmaceuticals and
microplastics (Arora et al., 2021).By continuously collecting and
analyzing data from various wastewater treatment plants, data-
driven approaches can effectively detect abnormal patterns and
deviations, thus alerting authorities to potential issues before they
escalate into public health crises (Pan et al., 2022; Levin et al., 2024;
Moretti et al., 2024). Heavy metal content in wastewater plays a
pivotal role in wastewater surveillance by providing essential
insights into the overall water quality and potential
contamination risks. Monitoring heavy metal concentrations,
including elements like mercury (Hg), cadmium (Cd), lead (Pb),
selenium (Se), and arsenic (As), contributes to a comprehensive
assessment of environmental health and safety of that particular
region (Zeiner et al., 2007). These heavy metals are considered
priority pollutants due to their toxicity and persistence in aquatic
ecosystems (Tchounwou et al., 2012).

The integration of data-driven approaches in wastewater
surveillance leverages the power of machine learning, artificial
intelligence, and big data analytics. These technologies enable the

development of predictive models that can forecast contamination
events, optimize treatment processes, and guide effective policy
decisions. Such models learn from historical data, adapt to
changing conditions, and provide actionable insights that
empower decision-makers to respond proactively to emerging
challenges in wastewater management (Moretti et al., 2024; Sahu
et al., 2023; Van der Werf et al., 2023). High mutation rates lead to
analytical limitations, requiring frequent updates to primers and
probes used in RT-PCR assays. Moreover, wastewater samples
contain complex microbial communities that may hinder variant
identification accuracy. Other challenges include the need for
improved data resolution to differentiate among closely related
variants, which is vital for effective public health responses and
anticipating variant-driven case surges (Thakur et al., 2022; Gogoi
et al., 2024).

Machine learning (ML) and Deep Learning (DL) models have
been employed for time-series predictions and track COVID-19
outbreaks in multiple communities as well as pre-screening tool for
the identification of differences among the variant composition of
different wastewater samples (Ai et al., 2022; Férez et al., 2023).
Utilizing unsupervised ML algorithms, a quantifiable model for
characterizing peaks and gaps in multiple waves of COVID-19
across 120 countries not only reveals the complexity in
predicting growth or decline rates within each wave, but also
identifying common features among the clusters, offering
potential insights into anticipating future developments (Mahanta
and Narahari Sastry, 2022).

Extensive seroepidemiological and genomic investigations
for SARS-CoV-2 have been conducted across India,
encompassing smaller regions like Jorhat district of Assam in
the north east India. These studies provided evidence of a
significant number of positive cases in the area that are linked
to common Omicron and Delta variations (Naushin et al., 2021;
Wahengbam et al., 2023). These studies have delved into the
dynamics of COVID-19 progression within the Indian
population, employing transcriptomic data analysis. Further
studies also reveal serological surveys in the north eastern
region of India which involves ML approach to discern
infection statuses among Covaxin recipients (Kshattry et al.,
2022; Singh et al., 2022). These studies show the potential of
data-driven ML approaches for deciphering complex questions in
diverse epidemiological studies.

This study aims to investigate how data-driven approaches can
augment wastewater surveillance by correlating physicochemical
parameters and heavy metals content with incidences of viral
loads. This correlation study will indicate the early detection of
the new pandemic for a particular region. It seeks to improve the
early detection of contaminants and abnormal patterns, thereby
strengthening public health and environmental safety.
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2 Materials and methods

2.1 Wastewater sample collection

The North-East region of India is a captivating region consisting of
eight states, each brimming with unique cultural and geographical
richness and shares international borders with Bhutan, China,
Myanmar, and Bangladesh. Assam is the second largest state out of
these eight states and share borders with all others. The current study
was conducted in Jorhat district of Assamwhich has diverse indigenous
communities, residing within low-resource and low-income settings.
These communities heavily rely on medical facilities situated within
their respective localities. These facilities serve as lifelines, providing
essential healthcare support to those people. Wastewater samples have
been collected from 28 different sites stretched across Jorhat district,
representing three settings: healthcare, residential, and river bodies.
Sampling was carried out during both rainy and dry seasons, spanning
from September 2022 toMarch 2023. Twowater layers were considered
for sampling, the surface layer and the intermediate layer (30 cm depth)
which resulted into four spatiotemporal conditions: surface layer during
the rainy season (SR), intermediate layer during the rainy season (IR),
surface layer during the dry season (SD), and intermediate layer during
the dry season (ID). The samples were manually collected in
Polypropylene bottles (PP). Sampling took place during morning
hours to capture the viral peak load, and no rainfall was reported
within the 24 h prior to collection. Additionally, we measured various
physicochemical parameters, including temperature, pH, total dissolved

solids (TDS), salinity, and conductance, using a Systronics Water
Analyzer Model 371 during the sampling process (Férez et al., 2023;
Yadav and Chauhan, 2023) and the analysis of heavymetals was carried
out by using Atomic Absorption Spectroscopy (AAS) manufactured by
Analytikjena model Zeenit 700p. Sample preparation involves careful
collection, labelling, and homogenization of environmental samples,
with subsequent digestion using appropriate acids. Certified reference
standards are employed to create a calibration curve, establishing the
relationship between absorbance and known heavy metal
concentrations. Instrument setup encompasses optimizing AAS
parameters, including lamp current, wavelength, and slit width,
while regular alignment checks ensure instrument accuracy and
standard limit of quantification for the selected element is upto
1,000 mg/L. In the measurement procedure, the sample is aspirated
into the AAS instrument, and the absorbance is recorded at the specific
wavelength for each heavy metal of interest. We have selected mercury
(Hg), lead (Pb), cadmium (Cd), selenium (Se), and arsenic (As) for the
present study (Zeiner et al., 2007). The complete methodology, from
sample collection through processing to outcome representation, is
illustrated in Figure 1.

2.2 Wastewater sample processing

The wastewater samples were processed in a BSL2 environment
with strict adherence to personal protective equipment (PPE)
protocols to ensure the workers safety (Spurbeck et al., 2021).

FIGURE 1
Overview of the study methodology, detailing the process from sample collection, through various stages of data processing, to final outcome
representation. The diagram highlights key steps, including environmental sampling, laboratory analysis, data preprocessing, and clustering analysis for
interpreting the results.
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The sample processing steps consisted of Sample Homogenization
and Pasteurization, Sample Filtration, and Sample Concentration
using PEG-NaCl Method followed by viral extraction
(Supplementary Figure S1). These meticulous steps ensured the
proper processing and concentration of wastewater samples, while
stringent safety measures were in place throughout the procedure
(Smyth et al., 2022).

2.3 Viral RNA extraction and reverse
transcription polymerase quantitative
polymerase chain reaction (RT-qPCR)

The viral RNA extraction from wastewater samples was carried
out using the QIAamp® Viral RNA Mini Kit (250) from Qiagen,
Germany. The extraction process adhered strictly to the
manufacturers’ instructions, with a focus on obtaining SARS-
CoV-2 viral nucleic acid from the PEG pellets post-virus
concentration. In the 40 mL protocol, the RNA was eluted to a
final volume of 40 µL and stored at −20°C when immediate
processing was not possible, although every effort was made to
process the samples on the same day.

Subsequently, the extracted RNA samples underwent analysis
through reverse transcription-quantitative polymerase chain
reaction (RT-qPCR) conducted on the QuantStudio™ 5 real-time
PCR system by Applied Biosystems™ Inc., United States. The RT-
qPCR assay targeted specific genes, namely, ORF-1ab and N genes,
in a confirmatory test using the CoviPath™ COVID-19 RT-qPCR
Kit from Applied Biosystems™ Inc., United States. Each 25 µL PCR
reaction mixture consisted of 10 µL of the RNA extract, 6.25 µL of
CoviPath™ COVID-19 Assay Multiplex, 1.25 µL CoviPath™ 1 Step
Multiplex Master Mix (No ROX™), and the volume was adjusted to
25 µL using molecular grade water supplied by Sisco Research
Laboratories Pvt. Ltd. Negative controls utilized ultrapure
nuclease-free water, and for positive controls, CoviPath™
COVID-19 was employed, following the manufacturer’s dilution
guidelines.

The RT-qPCR reactions were carried out with an initial step at
53°C for 10 min, followed by 95°C for 2 min, and then cycled
40 times at 95°C for 3 s and 60°C for 30 s in the QuantStudio™ 5 real-
time PCR system. Notably, the interpretation of SARS-CoV-
2 positivity in this study underwent a revision, aligning with the
CoviPath protocol. A cycle threshold (Ct) value of 35 was adopted as
the criterion for positivity, ensuring a standardized and reliable
approach for the detection and characterization of SARS-CoV-
2 variants. This modification facilitates downstream Whole
Genome Sequencing (WGS) analysis, making the study a more
consistent and robust method for SARS-CoV-2 variant
identification (Spurbeck et al., 2021; Ravi et al., 2024).

2.4 Quantitative analysis through
machine learning

2.4.1 Correlation analysis of features
The water samples analysis and RT-qPCR tests generated

27 parameters out of which 24 parameters were distinct features
as independent parameters and 3 features as dependent variables

(ORF 1 ab, N gene, and RNaseP) in building the dataset for training
the ML models. During initial preprocessing it was found that 5 out
of the 24 features suffered from missing value and noisy value
problem. Due to the complexity of the problem as well as size of data,
imputation methods were refrained from being used and all these
5 features were not considered further. The remaining 19 features
were then subjected to find their correlation with the three
dependent variables and the final RT-qPCR outcome using
Sparman’s rank correlation analysis. This correlation will help to
find the monotonic relationship between each feature with the
dependent variables as well as with one another. This is a
prominent approach of feature engineering which helps to
identify the most relevant features for modelling. The value
ranges from −1 to 1, where −1 and 1 resembles a perfectly
negative and perfectly positive correlation respectively with
0 indicating no linear correlation.

2.4.2 Partitional clustering of sample sites
Clustering is a fundamental unsupervised machine learning

technique used to discover hidden structures or patterns within a
dataset. It involves grouping similar data points into clusters, where
the members within a cluster are more similar to each other than to
those outside the clusters. This is an iterative process which
continues to form a new set of clusters till the optimum result is
obtained. In the current study, K-means has been employed for
interpretation of the underlying data. The K-means clustering
method groups data points into clusters based on their similarity.
It partitions data into K clusters, aiming to minimize within-cluster
sum of squares. The algorithm starts with random cluster centroids
and iteratively assigns data points to the nearest centroid, then
updates the centroids based on the assigned points, repeating until
convergence. During the assignment, each point is assigned to the
nearest cluster mean with the least Euclidean distance such that,

S t( )
i � xp: xp-m

t( )
i

���� ����2 ≤ xp-m
t( )

j

���� ����2∀j, 1≤ j≤ k{ } (1)

Where the point xp is assigned to exactly one S(t).
The centroids are then recalculated and the observations are

reassigned to new clusters. This process is repeated till the algorithm
converges and reaches an optimal state.

m t( )
i � 1

S t( )
i

∣∣∣∣ ∣∣∣∣ ∑
xj∈S

t( )
i

xj (2)

K-means is widely used for data segmentation, pattern
recognition, and feature engineering in various fields (Ahmed
et al., 2021; Pearson, 1895).

2.4.3 Elbowmethod for optimal number of clusters
The Elbow Method is a widely used heuristic method for

determining the optimal number of clusters (K) in a K-means
clustering analysis. It involves performing the K-means clustering
algorithm on the dataset for a range of K values and evaluating
within-cluster sum of squares (WCSS) for each K. The WCSS is a
measure of the total variance within the clusters. The point at which
the reduction in WCSS starts to slow down, forming an “elbow” in
the plot, is considered the optimal K value (Arthur and Vassilvitskii,
2007). WCSS is computed by,
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WCSS � ∑
K

i�1
∑
x∈Ci

x − ci‖ ‖2 (3)

Where K is the number of clusters, Ci represent the i
th with ci as the

centroid of the ith cluster and x is any data point. As the number of
clusters increases, the WCSS will generally decrease, as each data
point will be closer to its cluster centroid. However, at a certain
point, the WCSS will start to plateau, as increasing the number of
clusters will no longer significantly reduce the distance between data
points and their cluster centroids. The elbow in the WCSS plot
indicates this point, and the optimal number of clusters is the value
of K at the elbow (Rdusseeun and Kaufman, 1987).

2.4.4 Performance metrics
A number of cluster validation metrics have been used in this

study to evaluate the performance and quality of the clusters
generated by the two clustering algorithms, K-means and
K-medoid clustering.

2.4.4.1 Silhouette score
This is the measure of how similar an object is to its own cluster

(cohesion) compared to other clusters (separation). Its value ranges
from −1 to 1, where higher values indicate better-defined clusters.

S i( ) � b i( ) − a i( )( )
max b i( ), a i( )( ) (4)

Where, S(i) is the silhouette score for data point i, a(i) is the average
distance between ith data point and other data points in the same
cluster, and b(i) is the minimum average distance, minimised across
clusters, between ith data point and the data points in a
different cluster.

2.4.4.2 Davies-Bouldin index (DBI)
DBI estimates the average similarity between each cluster and

the most comparable one. Lower numbers imply better grouping.

DBI C( ) � 1
K
∑
K

i�1
max
i≠j

Δ Ci( ) + Δ Cj( )
δCi, Cj

(5)

Where the intra-cluster distance is represented by Δ(Ci) and the
inter-cluster distance by δ (Ci, Cj).

2.4.4.3 Dunn index (DI)
DI is the measurement of the compactness of clusters and the

separation between them. Higher values are better, indicating better-
defined clusters.

DI � min δ Ci, Cj( )( )
max Δ Ci( )( ) (6)

Where, δ (Ci, Cj) represents the minimum intra-cluster distance
between clusters Ci and Cj, while Δ(Ci) is the diameter of cluster Ci.
Better clustering is indicated by a higher DI, which denotes tightly
packed, well-separated clusters.

2.4.4.4 Inertia
Inertia measures the overall compactness of clusters through

total squared distance between each data point and the cluster
centre. Tighter and better-defined clusters are indicated by lower

inertia levels and vice versa. Inertia is one of the key ideas in
evaluating the quality of clustering solutions which is frequently
used in conjunction with techniques like the Elbow Method to
establish the ideal number of clusters (Hastie et al., 2009; Xu and
Tian, 2015).

inertia � argmin∑k

i�1 ∑
x∈Si

x − μi
���� ����2 (7)

Where S is a set of observations with x as a data point and μ as the
mean. Any distance metric, including the cosine, Manhattan, and
Euclidean distances, may be used to compute the inter-cluster
distance. Usually, the greatest distance between any two locations
in the cluster is used to compute the intra-cluster distance.

These metrics assess the compactness, separation, and
general cohesiveness of the clustering findings and allow to
statistically assess the suitability and efficacy of the clustering
techniques while making it easier to choose the best algorithm for
the particular dataset. As the ground truth was not known, these
metrics would help in converging that the clusters formed were
correctly formed.

3 Results

3.1 Sample collection and analysis

For this study, 448 wastewater samples were collected from
28 different sites within Jorhat district of Assam, India
(Supplementary Figure S2) during different season
(Supplementary Table S1). Among these samples, 144 were
reported to be positive for SARS-CoV-2 with an illustrative
portrayal of the distribution of SARS-CoV-2 ORF 1ab, N, and
RNAseP genes, alongside the corresponding results indicating
positivity and negativity in wastewater samples (Supplementary
Figure S3). The analysis covered a range of physicochemical
parameters, including temperature, pH, turbidity (NTU), total
hardness as CaCO3, calcium (mg/L), magnesium as Mg, iron (Fe)
content (mg/L), sulphate (mg/L), chloride (mg/L), total
alkalinity, total dissolved solids (TDS) in ppm, total suspended
solids (TSS), salinity (ppt), and conductivity (µS). Additionally,
the study examined the presence of heavy metals such as Hg
(mercury), Cd (cadmium), Pb (lead), Se (selenium), and As
(arsenic) in the samples, providing a comprehensive overview
of the environmental conditions and the presence of SARS-CoV-
2 in the region.

3.2 Correlation analysis

The independent features considered in this study were
subjected to Spearman’s rank correlation with the dependent
parameters, i.e., N gene, ORF 1 ab, RNaseP and the RT-qPCR
result (positive and negative). In correlation with N gene, features
such total hardness, Magnesium content and total alkalinity had
high positive correlation (≈0.22) compared to temperature, pH,
calcium, and Cadmium (≈0.15). Whereas, turbidity, Iron and lead
showed a negative correlation (≈– 0.14) with N gene. For the ORF
1ab gene, temperature displayed higher positive correlation
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(≈– 0.27) compared to other features like pH, total hardness,
Calcium, Magnesium, total alkalinity, TSS and Selenium
(≈– 0.14). Whereas, Arsenic had a negative correlation of
≈ – 0.17. Similarly, in case of RNaseP gene it was seen that total
hardness and calcium had high positive correlations (≈0.27 and
≈0.25 respectively) as compared to other features like pH,
Magnesium, alkalinity and TSS. Whereas, features like Iron, Lead
and Arsenic contents had a negative correlation (≈– 0.12).
Considering the above correlation analysis, it can be seen that
most of the features are correlated with the dependent features
and will provide insights and contribute in dividing sample locations
into relevant clusters. Figure 2 depicts all these findings in the form
of heat maps with each dependent features as well as the final
outcome, i.e., positive and negative results of RT-qPCR.

3.3 Clustering of sample sites with k-means

The elbow curve (Equation 3) which plots the variance or WCSS
against the number of clusters is used to determine the optimal
cluster size for a given dataset. The idea is to find the “elbow” point
in the curve, which represents the point where increasing the
number of clusters ceases to significantly reduce the variance. In
the current study, the choice of four clusters was driven by the point
on the curve where further increasing the number of clusters
resulted in diminishing returns in terms of reducing variance
(Supplementary Figure S4) making them adequate to capture the
underlying patterns in the present dataset.

K-means clustering (Equations 1, 2) was then to the dataset of
this study which resulted in the formation of four distinct clusters

FIGURE 2
Heatmap represented Spearman’s rank correlation of all the physicochemical properties considered as independent features in this study. The
correlation plots are depicted for (A)N gene, (B)ORF1ab gene, (C) RNaseP gene and (D) for RT-qPCR results. The plot showing the presence of both + ve
and -ve correlation with the selected features.
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(Figure 3). Within this visualization, four unique clusters are
delineated by different colours, each serving as a visual indicator
of the distinct groupings within our dataset. To signify the
centroid, or the central point, of each cluster, we have marked
it with a red and green star (Rdusseeun and Kaufman, 1987;
Hastie et al., 2009).

3.4 Performance evaluation

The performance of the clustering algorithms used in this study
were measured with four metrics Silhouette coefficient, Davies-
Bouldin indicator, Inertia, and Dunn Indicator (Equations 4–7).
These metrics serve as valuable tools to evaluate the cohesion,
separation, and overall effectiveness of the clusters generated by
each algorithm, aiding us in making informed and data-driven
conclusions about the quality of our clustering solutions.

The Silhouette coefficient, which assesses cluster quality,
produced values of 0.38 for K-means indicating comparable
cluster cohesion and separation (Table 1). Likewise, the Davies-
Bouldin indicator, a measure of cluster compactness and separation,
returned values of 0.78 demonstrating closely aligned results. In our
study, we have chosen to focus on samples that overlap in both
algorithms, specifically selecting those data points for further
analysis. The contributions of the principal components in the
model’s prediction and identifying the patterns in the dataset has
been depicted through SHAP dependence plot in Figure 4.

3.5 Analysis of the clusters

With k-means clustering, the 448 samples were categorized into
four distinct clusters: cluster 0, cluster 1, cluster 2, and cluster 3.
Notably, our analysis revealed that the highest rate of viral positivity
was observed within cluster 2, whereas the lowest rate was found in
cluster 0 (Table 2). These findings offer valuable insights into the
distribution of SARS-CoV-2 within our sample population,
shedding light on potential patterns or associations that may be
of significance in the context of the study’s objectives.

Cluster 2, which exhibited the highest SARS-CoV-2 positivity
rate (47.14%), with a remarkable 84.84% during the rainy season.
Interestingly, we also noted that the intermediate layer of water
displayed a substantial positivity rate of 57.57%, whereas the surface
layer showed a slightly lower rate of 42.42%. Furthermore, this
cluster consisted of the samples which were collected from sources at
comparatively the higher average temperature (24.98°C) than other
clusters. Notably, we observed that turbidity, sulphate, total
alkalinity, and total dissolved solid (TDS) content were relatively
lower in this cluster when compared to the other clusters.
Conversely, factors such as iron, chloride, total suspended solid
(TSS), and conductivity were found to be higher in this cluster. The
combination of environmental factors within this cluster could
potentially contribute to the elevated viral positivity observed,
which may show relationship between environmental conditions
and leading to the SARS-CoV-2 prevalence in this cluster in our
study (Férez et al., 2023; Xu and Tian, 2015; Bishop, 2006; Kisand
et al., 2023; Vasickova et al., 2010; Osborne et al., 2022;
Weller, 2020).

In contrast, cluster 0, which exhibited the lowest positivity rate
(26.25%), a higher positivity rate of 78.57% during the dry season
which contrasts with cluster 2. Both cluster 2 and cluster 0 displayed
a similar pattern where the intermediate water layer had a higher
positivity rate at 61.90%, compared to 38.09% in the surface layer.
Cluster 0 notably had the highest turbidity content at 17.69 NTU
among all clusters, and it also showed higher levels of magnesium,
sulphate, total alkalinity, and TDS content in comparison to the
other clusters. However, iron, chloride, and TSS were comparatively
lower in cluster 0. This distinctive combination of water quality
parameters may contribute to the observed lower positivity rate
within this particular cluster (Férez et al., 2023; Bishop, 2006; Kisand
et al., 2023; Vasickova et al., 2010; Osborne et al., 2022;
Weller, 2020).

In the remaining two clusters, i.e., cluster 1 and cluster 3, the
SARS-CoV-2 positivity rates exhibited a relatively consistent range,
with values falling between 30.15% and 31.61%, respectively.
Notably, both clusters shared similar environmental conditions,
with samples temperatures ranging from 22.55°C to 23.77°C and
pH levels hovering between 7.09 and 6.97. Moreover, key water
quality parameters such as total hardness as CaCO3, magnesium,
iron, chloride, total alkalinity, TDS, salinity, and conductivity
demonstrated comparable values in both clusters. However, a
significant distinction emerged in the levels of sulphate and TSS,
with cluster 3 exhibiting higher concentrations of these elements in
the water when compared to cluster 1. These nuanced differences in
water quality factors may contribute to the slight variations observed
in SARS-CoV-2 positivity rates between cluster 1 and cluster 3.

FIGURE 3
The comprehensive plot of K-means clustering with distinct four
clusters and their centroids. The cluster we obtained with respect to
the two principal component PC1 and PC2 derived using principal
component analysis (PCA).

TABLE 1 Performance analysis of clustering algorithms. These analyses
were done to verify if the clusters were formed correctly. Silhouette
coefficient, Davies-Bouldin indicator.

Silhouette
coefficient

Davies-
bouldin
indicator

Inertia Dunn
indicator

0.38 0.78 3.3 × 106 1.30
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(Férez et al., 2023; Bishop, 2006; Kisand et al., 2023; Vasickova et al.,
2010; Osborne et al., 2022; Weller, 2020).

While analysing the physicochemical properties among the
clusters, it was seen that there were distinct variations across
each cluster (Supplementary Figures S5–S7). This observation
may suggest that these specific parameters could potentially exert
an influence on the pattern of SARS CoV-2 positivity. The diverse
clusters exhibited in the figures underscore the significance of these
parameters in understanding and potentially predicting the
occurrence and spread of the virus.

3.6 Introspection of overlapping
sample sites

In our analysis, we have observed that a few sample sites were
associated with multiple clusters, such as 0/3, 1/3, 0/2, 1/2, 2/3, 0/1/2,
and 0/2/3 for different samples of same site. After minute
examination, it was found that the combination of clusters 0 and
3 appeared most frequently (8 different sites) making it the most
prevalent two-cluster combination. Additionally, the combination
of clusters 0, 1, and 2 occurred 4 times, which is the most common
three-cluster combination in our observations (Table 3).

Further introspection of sites in the 0/3 cluster combination
revealed that out of the 8 sites, 6 of them (75%) are situated near
flowing water sources such as rivers and streams, while the
remaining 2 (25%) are near stagnant water sources (Table 4).
Similarly, for the sites associated with the 0/1/2 cluster
combination, it was found that all 4 of them (100%) are in close
proximity to medical colleges and hospitals (Supplementary Table
S2). On a positive note, this shows that the clusters formed out of the
sample sites also had similar patterns of data on similar geographical
positionings.

Further, we have observed that some of the sample sites
(17 out of 28) were associated with multiple clusters, such as
0/3, 1/3, 0/2, and 1/2 with seasonal variation. The sites which
were in cluster 0 and 1 during dry season shifted to cluster 2 and
3 during the rainy season. In this regard it was seen that the
physicochemical parameters of the sites showed variations with
the season. The sites which changed the cluster from 1 to 2 during
dry to rainy season had decline values in total hardness, TDS,
conductivity, Calcium, Magnesium whereas elevated values in
turbidity, TSS, Iron and Sulphate. Similarly for sites which
changed cluster from 0 to 2 had decline in values of hardness,
TDS, calcium, magnesium and elevated values in iron, chloride,
and TSS. For the sites which changes the clusters from 0 or 1 to
3 during dry to rainy season had decline values in most of the
parameters like total hardness, TDS, conductivity, calcium,
magnesium, sulphate, chloride but elevated values in iron and
TSS (Figure 5).

4 Discussion

The present study utilized unsupervised machine learning
algorithms to analyse a dataset comprising physicochemical
parameters, heavy metal content, and SARS-CoV-2 positivity
data from wastewater samples that has collected from
28 different sites in Jorhat district, Assam, India. To our present
understanding, this study stands as a pioneering endeavour within
the North Eastern region of India, marking the inaugural
exploration into the influence of environmental variables on
SARS-CoV-2 positivity through the application of a machine
learning framework. This methodological approach represents an
innovative step in comprehending the intricate interplay between
environmental dynamics and viral prevalence, offering novel

FIGURE 4
SHAP dependence plot of the features (in terms of PC1 and PC2) of the k-means clustering model.

TABLE 2 Cluster details with viral positivity from K- means algorithms.

Cluster Total samples Positive samples Rainy (%) Dry (%) Surface (%) Intermediate (%)

Cluster 0 160 42 (26.25%) 9 (21.43%) 33 (78.57%) 16 (38.09%) 26 (61.90%)

Cluster 1 63 19 (30.16%) 3 (15.79%) 16 (84.21%) 11 (57.89%) 8 (42.11%)

Cluster 2 70 33 (47.14%) 28 (84.84%) 5 (15.15%) 14 (42.86%) 19 (57.14%)

Cluster 3 136 43 (31.62%) 31 (72.09%) 12 (27.91%) 23 (53.49%) 20 (46.51%)

*Rainy, and dry are two different season and two water layers, the surface and the intermediate layer (30 cm depth).
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insights in this unexplored geographical domain (Cabral, 2010;
Rimoldi et al., 2020).

The clustering results indicated K-means algorithm has
effectively partitioned the data into four clusters, demonstrating
comparable cluster quality as assessed by the Silhouette coefficient
and Davies-Bouldin indicator. The clusters’ differential
characteristics elucidated potential associations between
environmental conditions and viral prevalence. Notably, Cluster
2 displayed the highest SARS-CoV-2 positivity rates, especially
during the rainy season and in the intermediate water layer. This
cluster demonstrated higher temperatures, lower turbidity, sulphate,
alkalinity, and total dissolved solids but higher concentrations of
iron, chloride, and total suspended solids, hinting at specific
environmental conditions favouring increased viral presence.
These observations resonate with prior research highlighting the
impact of temperature and water quality on viral persistence
(Mahanta and Narahari Sastry, 2022; Rimoldi et al., 2020;
Ahmed et al., 2020). Conversely, Cluster 0 exhibited the lowest
positivity rates and distinct water quality parameters, notably higher
turbidity and concentrations of certain minerals and ions. The
distinctiveness of these clusters underscores the potential
influence of environmental factors in shaping viral prevalence
patterns within wastewater.

We further focused our analysis on samples that overlapped in
during clustering, which resulted in the selection of 429 data points
for further study. Among these samples, 31.93% tested positive for

SARS-CoV-2, while the remaining 68.06% tested negative. Notably,
our analysis revealed varying rates of viral positivity across the four
clusters, with Cluster 2 exhibiting the highest rate of 47.14% during
the rainy season, and Cluster 0 displaying the lowest rate of 26.25%,
particularly during the dry season. Environmental factors, such as
temperature, turbidity, water layer, and specific water quality
parameters, were found to vary across the clusters, potentially
influencing the observed SARS-CoV-2 positivity rates. Our
findings suggest a potential link between environmental
conditions and the prevalence of SARS-CoV-2 in different
clusters. Additionally, we observed that certain sample sites were
consistently associated with specific cluster combinations, indicating
potential spatial patterns and associations. For instance, sample sites
near flowing water sources, medical colleges, and hospitals exhibited
distinct cluster combinations. But variations were also seen for the
sites based on the samples collected in two different seasons. The
spatial distribution analysis revealed intriguing associations between
cluster combinations and geographic positioning.

In our analysis, we’ve observed that certain locations are
associated with multiple clusters, such as 0/3, 1/3, 0/2, 1/2, 2/3,
0/1/2, and 0/2/3. After minute examination, we’ve identified that the
combination of clusters 0 and 3 appears most frequently, occurring
in 8 different locations, making it the most prevalent two-cluster
combination. Additionally, the combination of clusters 0, 1, and
2 occurs 4 times, which is the most common three-cluster
combination in our observations. The locations with the 0/
3 cluster combination, we found that out of 8 different
geographic locations, 6 (75%) are situated near flowing water
sources such as rivers and streams, while the remaining 2 (25%)
are near stagnant water sources. Similarly, for the geographic
locations associated with the 0/1/2 cluster combination, we found
that all four (100%) of these locations are in close proximity to
medical colleges and hospitals. Different areas may yield varied viral
loads due to population density and access to sanitation, potentially
skewing viral presence estimates if not uniformly distributed. Viral
load in wastewater can fluctuate seasonally or with rainfall,
potentially affecting concentration consistency and detection
sensitivity. Temperature, wastewater treatment processes, and
chemical pollutants impact viral RNA stability, potentially
leading to data inaccuracies in viral load measurement (Medema
et al., 2020; Albastaki et al., 2021).

This study’s findings align with existing literature emphasizing
the role of environmental conditions in modulating viral persistence
and transmission dynamics (Smyth et al., 2022; Rimoldi et al., 2020;
Wurtzer et al., 2020; Kitajima et al., 2020; Gogoi et al., 2024).

TABLE 3 Details of the sites and number of samples comprising 0/1/2 cluster combination.

Locations Cluster 0 Cluster 1 Cluster 2

Rainy Dry Rainy Dry Rainy Dry

Athuvoga bridge (H S) 0 2 0 6 8 0

JMCH Hospital Outlet (H S) 1 1 4 4 3 3

Tarajan Kakoty gaon (H S) 3 0 0 8 5 0

Teok Tea Estate (H S) 1 8 1 0 6 0

*HS, hospital site.

TABLE 4 Details of the sites and number of samples comprising 0/e cluster
combination.

Locations
Cluster 0 Cluster 3

Rainy Dry Rainy Dry

Kuhum stream (Rv S) 4 6 4 2

Kamarbandha (Rv S) 4 8 4 0

CID, CSIR-NEIST (R S) 0 6 8 2

Bhogdoi river (Rv S) 0 8 8 0

FRU, Teok (R S) 2 8 6 0

Baghmora (Rv S) 5 8 3 0

Jhanji, Jorhat-Sibsagar border (Rv S) 1 8 7 0

Nimatighat (Rv S) 0 8 8 0

* RvS, river site; RS, residential site.
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Understanding these associations aids in devising targeted
intervention strategies, especially in locations with higher viral
prevalence, and underscores the importance of considering
environmental factors in public health management strategies.
Further research is warranted to explore the complex
relationships between environmental conditions and viral
prevalence.

5 Conclusion

In summary, this study leveraged unsupervised machine
learning algorithms to analyze physicochemical parameters, heavy
metal content, and SARS-CoV-2 positivity data from wastewater
samples collected from 28 sites in Jorhat district, Assam, India. This
innovative approach marked the first exploration of the influence of
environmental variables on SARS-CoV-2 positivity in the North
Eastern region of India. The K-means clustering algorithm
effectively partitioned the data into four clusters, revealing
significant associations between environmental conditions and

viral prevalence. Notably, Cluster 2 exhibited the highest SARS-
CoV-2 positivity rates, particularly during the rainy season, and was
characterized by higher temperatures, lower turbidity, and increased
levels of iron and chloride. Conversely, Cluster 0, with higher
turbidity and certain mineral concentrations, showed the lowest
positivity rates, especially during the dry season.

The spatial distribution analysis underscored the potential
impact of geographic and seasonal variations on viral prevalence,
with sample sites near flowing water sources and medical
institutions consistently aligning with specific cluster
combinations. These findings align with existing literature on the
role of environmental conditions in viral persistence and
transmission dynamics.

In conclusion, our findings highlight the critical role of
environmental factors in shaping SARS-CoV-2 prevalence
patterns in wastewater. This study underscores the importance of
integrating environmental considerations into public health
surveillance and intervention strategies. By demonstrating the
utility of machine learning frameworks in epidemiological
studies, this research provides valuable insights for targeted

FIGURE 5
Variation in minerals and water quality parameters with season for changes in clusters. (A) variation in mineral content of sites for cluster change
from 0/1 to 2 (B) variation in mineral content of sites for cluster change from 0/1 to 3 (C) variation in water quality parameters of sites for cluster change
from 0/1 to 2 and (D) variation in water quality parameters of sites for cluster change from 0/1 to 3.
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public health interventions in areas with higher viral prevalence.
Further research is warranted to explore these relationships in
different geographic and environmental contexts.
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