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Single-cell protein analysis has emerged as a powerful tool for understanding
cellular heterogeneity and deciphering the complex mechanisms governing
cellular function and fate. This review provides a comprehensive examination
of the latest methodologies, including sophisticated cell isolation techniques
(Fluorescence-Activated Cell Sorting (FACS), Magnetic-Activated Cell Sorting
(MACS), Laser Capture Microdissection (LCM), manual cell picking, and
microfluidics) and advanced approaches for protein profiling and protein-
protein interaction analysis. The unique strengths, limitations, and
opportunities of each method are discussed, along with their contributions to
unraveling gene regulatory networks, cellular states, and disease mechanisms.
The importance of data analysis and computational methods in extracting
meaningful biological insights from the complex data generated by these
technologies is also highlighted. By discussing recent progress, technological
innovations, and potential future directions, this review emphasizes the critical
role of single-cell protein analysis in advancing life science research and its
promising applications in precision medicine, biomarker discovery, and targeted
therapeutics. Deciphering cellular complexity at the single-cell level holds
immense potential for transforming our understanding of biological processes
and ultimately improving human health.
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1 Introduction

Proteins, intracellular andmembrane-bound, form the fundamental structural elements
of cells and are organized into intricate molecular assemblies facilitating vital cellular
processes like transcription, translation, metabolism, growth, adhesion, and signal
transduction (Jelokhani-Niaraki, 2022). Consequently, quantifying protein expression
levels and analyzing protein-protein interactions (PPIs) are essential for understanding
cellular function and regulatory mechanisms. Deciphering these interactions can provide
valuable insights into how cells respond to external stimuli, maintain homeostasis, and
make fate decisions.

Conventional techniques like Western blotting and RT-PCR quantify collective
responses of entire cell populations, assuming that the mean accurately reflects
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individual cell behavior. However, this assumption overlooks
potentially significant variations within subpopulations, which
can play pivotal roles in dictating overall population behavior
(Hughes et al., 2014; Huang et al., 2023). Cellular processes
exhibit inherent heterogeneity, evident in phenomena like stem
cell differentiation, development, oncogenesis, immune responses,
and neurodegenerative diseases (Mattiazzi Usaj et al., 2021; Liu et al.,
2021; Budnik et al., 2018; Ryu et al., 2019a). As well, cells in complex
organs, such as the liver, exhibit discrete metabolic and functional
roles based on their specific localization (He et al., 2023). The tumor
microenvironment (TME) also exemplifies this complexity, with
intricate interactions between cancer cells and diverse non-
malignant cells, each exhibiting unique behaviors under
pathological conditions (Mayer et al., 2023).

To capture cellular diversity, researchers have emphasized
developing methodologies for isolating and analyzing individual
cells from complex biological samples (Bhagwat et al., 2018; Müller
and Nebe-von-Caron, 2010; Pekle et al., 2019; Luan et al., 2020;
Grigorev et al., 2023). Single-cell genomic, transcript, and proteomic
analyses offer unprecedented insights into genomic variability, gene
expression dynamics, and protein expression patterns (Reimegård
et al., 2021; Shao et al., 2018). While single-cell RNA sequencing
(scRNA-seq) revolutionized our understanding of cell population
heterogeneity and gene expression (Reimegård et al., 2021), its
limitations, including stochastic expression, mRNA half-life
variability, amplification biases, and the inability to capture post-
transcriptional modifications, necessitate integrating proteomics for
comprehensive understanding (Larsson et al., 2019; Schwanhäusser
et al., 2011; Ziegenhain et al., 2017). Protein-protein interactions
(PPIs) are fundamental to cellular processes, their presence and
strength can vary at the single-cell level. This variability is observed
not only across different cell types and tissues but also within
populations of genetically identical cells. Measuring PPIs at the
single-cell level allows us to capture this heterogeneity and provides
insights into how interactions may differ in response to factors like
treatment or disease states. For instance, in a study on osimertinib-
treated lung cancer models, significant cell-to-cell variation was
found in PPIs such as Cyclin E and CDK2, FGFR1 and PIK3R1, and
AKT1 and SRC. These interactions can be crucial for understanding
how cancer cells respond to treatment and how resistance may
develop, emphasizing the importance of single-cell resolution in
identifying key interactomic events (Zhang et al., 2024). Single-cell
protein analysis, on the other hand, can provide a more direct
readout of cellular function, capturing post-translational
modifications and protein-protein interactions that are crucial for
regulating cellular behavior (Ryu et al., 2019a; Liu L. et al., 2020;
Avin et al., 2017).

Recent studies have revealed only modest correlations between
mRNA and protein levels (Edfors et al., 2016; Popovic et al., 2018; Liu
et al., 2016), underscoring the idea that mRNA expression poorly
predicts protein abundance. Proteins exhibit greater stability, and
have higher concentrations than mRNAs which minimize random
fluctuations. These traits allow proteins to playmore immediate roles in
sustaining cellular functions compared to transcripts (Liu L. et al., 2020;
Liu et al., 2016; Frei et al., 2016). The generally longer half-lives and
higher amounts of proteins alsomake them less susceptible to stochastic
variations, allowing for more accurate quantification and analysis at the
single-cell level (Popovic et al., 2018).

To comprehensively understand complex cell populations,
researchers have developed analytical tools for quantitative and
specific single-cell protein detection (Budnik et al., 2018; Ryu
et al., 2019a; Bhagwat et al., 2018; Reimegård et al., 2021; Frei
et al., 2016; Schulz et al., 2018; Stoeckius et al., 2017; Mimitou et al.,
2021; Peterson et al., 2017; Bendall et al., 2012; Lun et al., 2019; Zhu
et al., 2019). Operating with or without labels to minimize
interference with cellular processes, these tools enable unraveling
regulatory circuits, pathways, and mechanisms governing cellular
behavior. Single-cell protein analysis has already yielded substantial
contributions to our understanding of immune cell heterogeneity,
stem cell differentiation, and tumor progression, paving the way for
improved diagnostics, targeted therapies, and personalized medicine
approaches (Mattiazzi Usaj et al., 2021; Liu et al., 2021; Satija and
Shalek, 2014; Giesen et al., 2014).

The advancement of single-cell protein analysis technologies has
been accompanied by the development of sophisticated data analysis
and computational methods to extract meaningful biological
insights from the vast amounts of complex data generated. These
methods include data pre-processing, univariate and multivariate
analysis, and advanced techniques such as machine learning, which
have significantly improved the efficiency and accuracy of single-cell
proteomics data analysis (Xie et al., 2020; Liu and Yang, 2021; Liu
et al., 2019). As single-cell protein analysis technologies continue to
evolve, the development of standardized data analysis pipelines and
the integration of multi-omic data will be crucial for obtaining a
comprehensive understanding of cellular heterogeneity and
function, ultimately advancing our ability to decipher the
complexity of biological systems.

This comprehensive review outlines advancements in single-cell
separation techniques and single-cell protein analysis. The protein
analysis section is further divided into two subtopics: (a) protein
expression level analysis and (b) protein-protein interaction
analysis. We summarize progress in isolation techniques,
including filtration, fluorescence-activated cell sorting (FACS),
magnetic-activated cell sorting (MACS), laser capture
microdissection (LCM), manual picking, and microfluidics.
Furthermore, we discuss breakthroughs in single-cell protein
detection and PPI analysis, evaluating system performance in
terms of multiplexity, analyte types, throughput, sensitivity, and
specificity. We also highlight the importance of data analysis and
computational methods in single-cell proteomics and discuss the
future directions and potential applications of these technologies in
deciphering cellular complexity. While significant progress has been
made, challenges related to sensitivity, specificity, and throughput
still remain. By comparing advantages and limitations, we provide
insights into potential future directions, fostering advancements in
this rapidly evolving field and deepening our comprehension of
cellular biology and its biomedical applications. Addressing these
challenges will be crucial for realizing the full potential of single-cell
protein analysis and its widespread adoption in basic and
translational research.

1.1 Cell isolation

Isolating and accurately identifying target cells is a crucial
prerequisite for single-cell analysis. The efficacy of single-cell
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isolation technologies is predominantly evaluated based on three
critical parameters: efficiency, defined as the capacity to isolate a
specific number of target cells within a given time frame; separation
purity, referring to the proportion of target cells isolated relative to
non-target cells post-separation; and recovery rate, indicating the
quantity of target cells successfully retrieved post-separation
compared to the initial count present in the sample (Hu et al.,
2016; Gross et al., 2015). The selection of an appropriate isolation
method is essential for reliable single-cell analyses, particularly when
studying rare cell populations or investigating cellular heterogeneity,
as distinct techniques exhibit varying effectiveness across these
parameters.

Contemporary cell separation technologies can be broadly
classified into two main categories based on their isolation
properties. The first category encompasses techniques that rely
on the physical attributes of cells, such as morphology, size,
density, and deformability. This category includes methodologies
like density gradient centrifugation, which separates cells based on
their buoyant density; size-based filtration, which employs
membranes with specific pore sizes to isolate cells of interest;
manual cell picking, which involves the direct selection of
individual cells using micropipettes; and a part of microfluidics-
based capture, which utilizes the unique flow properties of cells in
microchannels for isolation (Gross et al., 2015; Malter, 2016; Liu and
Singh, 2013; Huang et al., 2008; Cha et al., 2022). A key advantage of
these techniques is the ability to isolate cells in a label-free manner,
without the need for internal or external markers, minimizing
potential interference with cellular processes and preserving the
native state of the cells (Gross et al., 2015).

The second category relies on the biological properties of cells,
employing affinity-based methods. These methods, including
fluorescence-activated cell sorting (FACS), magnetic-activated cell
sorting (MACS), and laser capture microdissection (LCM), utilize
the presence of specific surface proteins and their affinity for
corresponding antibodies or probes (Potashnikova et al., 2018;

Miltenyi et al., 1990; Vandewoestyne and Deforce, 2010). FACS
utilizes fluorescently labeled antibodies to mark cells of interest,
enabling their sorting according to fluorescence intensity. MACS
uses antibody-coated magnetic beads to separate target cells from a
heterogeneous population by use of an external magnetic field.
While, LCM employs a laser to selectively isolate cells from
tissue sections. These techniques offer high specificity and purity,
enabling the isolation of rare cell populations based on their unique
biological markers and specific morphology (Gross et al., 2015).

In this section, we briefly summarize the foundational
principles, inherent advantages, limitations, and potential
applications of the most prevalent cell separation methodologies
(Table 1). Each technique’s unique attributes contribute to its
suitability for specific research contexts, empathizing the
importance of carefully evaluating the requirements of the study
and accordingly selecting the most appropriate method. By
understanding the strengths and weaknesses of each approach,
researchers can optimize their experimental designs and ensure
the reliable isolation of target cells for downstream single-
cell analysis.

1.2 Fluorescence activated cell
sorting (FACS)

Fluorescence-Activated Cell Sorting (FACS), an advanced flow
cytometry technique with sorting capabilities, and it is widely
recognized as the most sophisticated and accessible method for
identifying, categorizing, and isolating specific cell types from
heterogeneous cell populations (Sharon et al., 2013; An and
Chen, 2018; Herzenberg et al., 2002). This versatile technique
differentiates cells based on a multitude of parameters, including
size, granularity, and fluorescence intensity patterns arising from
labeling with specific fluorescent markers. FACS enables concurrent
quantitative and qualitative multi-parametric analysis of individual

TABLE 1 Overview of single cell isolation techniques.

Technology Name Basic principle Advantages Limitations Applications Efficiency Purity

Density gradient
centrifugation and Size-
based filtration

Leveraging cell
morphology, size,
density, and
deformability

Label-free, easy to operate May have limited
effectiveness for specific
cell types

General cell separation
needsetc.

Low to
Medium

Medium
to High

Fluorescence-activated cell
sorting (FACS) and
Magnetic-activated cell
sorting (MACS)

Based on the affinity
between cell surface
proteins and antibodies

High specificity, yields
high-purity cell samples

Costly, requires specific
markers

Specific applications
requiring high purity, such
as research and
therapeutic use

High High

Laser-capture
microdissection (LCM)

Precisely isolating
target cells from solid
tissue samples

High precision, suitable
for detailed analysis of
specific cells

High equipment cost Isolation from solid tissue Low to
Medium

High

Manual cell picking/
micromanipulation

Manual selection or
manipulation of
individual cells

High precision, suitable
for detailed analysis of
specific cells

Low efficiency, labor-
intensive

Manipulation of live cells Low to
Medium

High

Micro- and Nanowell
Arrays and Droplet
Microfluidics

Manipulating liquid at
microscale through
microfluidics
technology to capture
and analyze single cells

High-throughput
analysis, suitable for
large-scale cell analysis
and single-cell secretion
detection

Complex technology,
requires skilled operators

Single-cell isolation,
single-cell level
biomolecular analysis,
single-cell secretion
detection

Medium to
High

Medium
to High
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live or fixed cells at impressive throughput rates, rendering it an
essential tool for single-cell isolation and characterization.

The FACS process begins with the preparation of a single-cell
suspension, wherein target cells are labeled with fluorescent
markers. Fluorophore-conjugated monoclonal antibodies, which
recognize specific cell surface markers, are the primary choice of
fluorescent probes utilized in this technique (Pan and Wan, 2020).
As cells traverse through the cytometer’s fluidic system, they are
hydrodynamically focused into a single-file stream and individually
exposed to one or more laser beams. The interaction of the laser light
with the cells generates fluorescence signals, which are collected by
dedicated detectors (Adan et al., 2017). The forward scatter (FSC)
and side scatter (SSC) signals provide information about the cell’s
relative size and granularity, respectively, while the fluorescence
detectors identify and characterize cells based on their predefined
fluorescence signatures (Adan et al., 2017).

The sorting mechanism of FACS relies on an electrostatic
deflection system. After laser excitation, the cell stream is
fragmented into individual droplets, with each droplet
encapsulating a single cell. Droplets can be formed by using
high-frequency (cycles/second, Hz) vibration of the nozzle at an
optimal amplitude. Based on the detected fluorescence and scatter
signals, the droplets containing the desired single cells are assigned
an electrical charge—either positive or negative by an electrical
charging ring placed just at the point where the stream breaks into
droplets. Next, as the droplets pass through an electric field, the

charged droplets are deflected into designated collection tubes or
well plates for downstream analysis or culture, while the uncharged
droplets are directed into a waste container (Figure 1A) (Rambault
et al., 2021). State-of-the-art FACS systems, such as the FACS-
Aria™ III, boast an impressive throughput rate of up to
100,000 droplets per second, enabling the analysis of
approximately 70,000 events per second (Gross et al., 2015).
Moreover, FACS has proven adept at sorting individual cells
from complex mixtures containing thousands of cells, utilizing
up to 18 distinct surface markers for precise identification and
separation (Hu et al., 2016). Additionally, an advanced FACS system
developed by Dr. Li’s group has demonstrated over 90% recovery
efficiency and more than 80% cell viability (Dong et al., 2017).

One of the key advantages of FACS over other cell sorting
techniques is its capability to analyze and sort cells simultaneously
based on multiple parameters, encompassing both surface and
intracellular markers (Bennett et al., 2016). This multi-parametric
capability enables highly specific cell isolation and characterization,
allowing researchers to identify and isolate rare cell populations with
unique phenotypic profiles (Maes et al., 2020).

After single cell isolation, subsequent analysis is necessary. The
high throughput and purity of FACS make it an invaluable tool in
various applications, including immunophenotyping (An and Chen,
2018; Pan and Wan, 2020), cell cycle analysis (Potashnikova et al.,
2018), subpopulation analysis (Antoniadi et al., 2022), cancer
diagnosis (Sharon et al., 2013), and the isolation of rare cell

FIGURE 1
Overview of single-cell isolation technologies. (A) Schematic of fluorescence-activated cell sorting. As cells coated with fluorescent antibodies
traverse through the cytometer, they are individually illuminated by a laser beam, enabling fluorescence detectors to identify and sort cells based on
predefined characteristics. (B) Schematic of magnetic-activated cell sorting. When a heterogeneous cell mixture is exposed to an external magnetic field,
desired cells labeled withmagnetic beads becomemagnetically responsive. (C) Schematic of laser capturemicrodissection. The technique utilizes a
laser to cut the tissue and let the cells adhere to the melted membrane. (D) Schematic of manual cell picking. The cells of interest are retrieved under a
microscope by glass capillary transferred to microwells for further analysis. (E) Schematic of microfluidic used for single cell isolation. Upper: microwell
Arrays for Single-Cell isolation; Lower: discrete aqueous droplets formation in droplet microfluidics.
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populations for downstream single-cell analyses, such as single-cell
RNA sequencing and single-cell proteomics (Zhu et al., 2019).

Despite its unparalleled versatility, FACS has certain limitations.
The technique requires a relatively large initial cell number, typically
in the range of 10^4 to 10^6 cells, which can hinder the isolation of
individual cells from rare subpopulations (Gross et al., 2015; Shields
et al., 2015). Moreover, the high-speed fluidic system and the
potential for shear stress during sorting may compromise the
viability and functional integrity of sorted cells, particularly for
fragile cell types (Gross et al., 2015). To mitigate these issues,
researchers have developed gentle sorting techniques, such as
low-pressure sorting and the use of cell-friendly collection
buffers, to improve cell viability and recovery (Teteris et al.,
2012). Furthermore, recent advancements in microfluidics-based
cell sorting technologies have enabled the isolation of single cells
from rare populations with minimal sample requirements and
reduced shear stress (Stavrakis et al., 2019).

1.3 Magnetic-activated cell sorting (MACS)

Magnetic-Activated Cell Sorting (MACS) is another widely
employed technique for the passive separation of cell
populations, leveraging their cluster of specific extracellular
markers to isolate specific cell types (Rambault et al., 2021; Shen
et al., 2021). MACS has demonstrated the capability to achieve
isolation of particular cell groups with a purity exceeding 90%,
ideally even higher than 95% (Miltenyi et al., 1990; Desikan et al.,
2022) and high recovery rate of more than 90% (Willasch et al.,
2010). The principle underlying MACS involves the use of magnetic
beads conjugated with targeting molecules such as antibodies,
enzymes, lectins, or streptavidin. These conjugated beads are
designed to selectively target surface molecules primarily on live
cells, thereby enabling the efficient isolation of the desired cell
population.

MACS offers two modes of separation: positive and negative. In
positive separation, the heterogeneous cell mixture is incubated with
magnetic beads coated with antibodies specific to the surface
markers of the target cells (Pan and Wan, 2020). When exposed
to an external magnetic field, the labeled cells become magnetically
responsive and are retained within the field, while unlabeled cells can
be easily removed through a washing process (Figure 1B). This
approach is particularly useful when the target cell population is rare
or when a high purity of the isolated cells is required (Nemescu et al.,
2020). In contrast, negative separation is employed when targeting
cell-specific substances are unavailable or when the aim is to deplete
a specific cell population from the sample. In this mode, the
unwanted cells are labeled with more than one antibody-
conjugated magnetic beads and subsequently separated from the
mixture, thereby isolating the unlabeled target cells in the solution
(Pan and Wan, 2020).

Compared to FACS, which can separate cells based on the
expression of multiple specific molecules simultaneously, MACS
has a more limited capacity, sorting cells solely into positive and
negative populations based on a single surface marker.
Consequently, the purity level achievable with MACS is typically
lower than that of FACS (Zeb et al., 2019). However, MACS offers
several advantages, including its relative simplicity, cost-

effectiveness, and the ability to process large sample volumes
quickly. Additionally, MACS is generally gentler on the cells than
FACS and results in lower cell loss, as it does not require high-
pressure fluidic systems, making it more suitable for isolating fragile
cell types (Sutermaster and Darling, 2019). To enhance the
performance of MACS, an advanced method known as integrated
Dielectrophoretic-Magnetic Activated Cell Sorter (iDMACS) was
developed in 2009 (Kim and Soh, 2009). This innovative approach
combines dielectrophoretic forces and magnetic particles. In
iDMACS, cells are first labeled with magnetic beads and then
subjected to a dielectrophoretic force, which helps to further
separate the labeled and unlabeled cells based on their distinct
dielectric properties. This additional separation step improves the
purity of the isolated cell population (Kim and Soh, 2009). Recently,
a novel purification method of human iPSC-derived cells at large
scale by combining the miR-switch andMACS (miR-switch-MACS)
was developed in 2022. This method achieved over 99% purity of
chromogranin A-positive cells following puromycin selection to
eliminate untransfected cells, surpassing the commonly used 95%
purity threshold (Tsujisaka et al., 2022).

MACS enables efficient enrichment of target cell populations
based on their unique surface markers, rendering it a valuable tool
for a wide range of biological and medical research applications
where high-purity cell samples are indispensable (Nemescu et al.,
2020; Li et al., 2023). Its ability to process large sample volumes
rapidly and its relative simplicity make it an attractive choice for
many cell isolation tasks. Moreover, MACS can be used in
conjunction with other cell separation techniques, such as FACS
or density gradient centrifugation, to achieve even higher purity and
specificity (Berteli et al., 2017). As the field of single-cell analysis
advances, the innovation of new magnetic separation technologies
and the fusion of MACS with microfluidic platforms show potential
in applications of this robust cell isolation technique (Wang X. et al.,
2019). Wang et al., combined Microfluidic chip with magnetic-
activated cell sorting technology. Compared with EpCAM
dependent traditional CTCs isolation system like CytoQuest™
CR system, their antigen-independent platform maintained a
high detection sensitivity while achieving higher CTC counts
consistent with clinical observations.

1.4 Laser capture microdissection (LCM)

Laser Capture Microdissection (LCM) is an advanced
technology for the precise isolation of pure cell populations or
individual cells from solid tissue samples mounted on a
microscope slide, as established by Emmert-Buck et al. (1996).
This technique enables the targeted capture of cells of interest
from heterogeneous tissue sections, allowing for subsequent
molecular analyses such as PCR (Kandathil et al., 2013),
microarrays (Wang et al., 2010), and proteomics (Dilillo et al., 2017).

The procedure for LCM begins with the visualization of target
cells under a microscope. The tissue sample is typically prepared as a
thin section and mounted on a special microscope slide. The
operator then identifies the cells of interest and marks the section
to be excised on the display by outlining it with a line. Subsequently,
a laser follows this path to cut the tissue, isolating the desired cell or
compartment (Figure 1C). The laser cutting procedure remains
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consistent across various LCM systems, but there are different
methods for retrieving the dissected tissue, including contact-
based extraction (Vandewoestyne et al., 2013), gravity-assisted
microdissection (Gross et al., 2015), and laser pressure
catapulting (Vogel et al., 2007). Contact-based extraction involves
utilizing a thermoplastic film placed in contact with the tissue
section. When activated by the laser, the film melts onto the
targeted cells, enabling their separation from the surrounding
tissue. In gravity-assisted microdissection, the laser cuts the
tissue, and the dissected cells fall into a collection tube due to
gravity. Conversely, laser pressure catapulting employs a focused
laser pulse to propel the cut tissue into a collection device positioned
above the sample. Typically, fixed cells—most commonly used in
LCM—are subjected to a single downstream analysis. However,
different downstream applications require distinct recovery
protocols (such as variations in lysis solvents, extraction reagents,
and treatment conditions) to obtain DNA, RNA, proteins, or
metabolites (Guo et al., 2023).

Laser Capture Microdissection (LCM) offers several significant
advantages. One of the most notable is its ability to maintain both
precision and versatility when working with both fixed and live
samples (Espina et al., 2007). LCM enables the accurate separation of
even small numbers of cells, as well as single-cell isolation with high
purity. With recent advancements in optical resolution, LCM can
now also isolate cell organelles (Satori et al., 2012). This feature
allows researchers to study cells in their native tissue environment,
preserving the spatial relationships and potential interactions
between different cell types. Additionally, LCM minimizes
damage to adjacent cells following the initial dissection, ensuring
that the collected cells are not contaminated by unwanted material.
LSM, when combined with other techniques, has become more
widely used in single-cell protein analysis. Gordon and Gousset
demonstrated the integration of Laser Capture Microdissection
(LCM) with mass spectrometry (MS) to identify low-abundance
proteins in complex samples, achieving high protein extraction
efficiency and excellent sample quality (Gordon and Gousset,
2021). However, LCM has some limitations, including a high
operational barrier due to the need for specialized equipment
and trained personnel, relatively low throughput compared to
other cell isolation methods, and potential UV-induced damage
to DNA or RNA during operation (Espina et al., 2007).

To overcome these limitations, recent advancements in LCM
technology have focused on improving the speed, automation, and
gentleness of the cell capture process. For example, the development
of infrared (IR) LCM systems has enabled the use of longer
wavelengths of light, reducing the risk of UV-induced damage to
biomolecules (Vandewoestyne et al., 2013). Moreover, the
integration of LCM with other technologies, such as microfluidics
and single-cell sequencing, has expanded its applications and
enhanced its throughput (Zhang et al., 2022).

Integration with immunohistological staining enhances LCM as
a robust tool for analyzing solid samples at the single-cell level. By
employing specific antibodies to mark cells of interest, researchers
can visualize and isolate these specific cell types based on their
protein expression profiles. This capability renders LCM an
invaluable tool for diverse research efforts that necessitate the
isolation of specific cells for subsequent molecular analysis, such
as studies on tumor heterogeneity, neurodegenerative disorders, and

developmental biology (Vandewoestyne and Deforce, 2010; Fink
et al., 2006; Decarlo et al., 2011).

1.5 Manual cell picking/micromanipulation

Manual cell picking, also known as micromanipulation,
represents a straightforward, convenient, and effective approach
for isolating single cells. Micromanipulation systems typically
involve the use of an inverted microscope in conjunction with
movable ultrathin glass capillaries controlled by motorized
micromanipulation stages (Figure 1D). The cell sample is usually
suspended in a dish or well-plate, allowing for direct visualization
and precise isolation of individual live or fixed cells. The operator
can observe and photograph the cells under the microscope,
facilitating isolation based on morphological characteristics or
fluorescent labeling.

A primary advantage of manual cell picking is its capability to
isolate cells in a live state, preserving their viability and functionality
for subsequent applications like single-cell sequencing, clonal
expansion, or functional assays (Hu et al., 2016). This feature sets
it apart from techniques like LCM, which primarily isolate single
cells from sections of fixed tissue. Manual cell picking enables
researchers to select and extract specific cells of interest based on
their morphology, behavior, or response to stimuli, providing a
powerful tool for studying cellular heterogeneity and elucidating the
roles of individual cells within a population (Malter, 2016; Fröhlich
and König, 2000; Li et al., 2011).

1.6 Microfluidics

Microfluidics is a rapidly growing field of science and
engineering that focuses on the manipulation and control of
fluids at the microscale level. This technology enables the
development of highly miniaturized platforms, often referred to
as “lab-on-a-chip” devices, capable of handling biological samples in
extremely small volumes, typically in the nanoliter range. The
miniaturization offered by microfluidics provides several
advantages in the study of biological systems, particularly in the
realm of single-cell analysis and manipulation (Grigorev et al., 2023;
Sims and Allbritton, 2007; Lecault et al., 2012; Liu D. et al., 2022).

Microfluidic systems offer a significant advantage in generating
localized high protein concentrations. By confining cells and their
secreted proteins within small volumes, requirement for
amplification techniques to detect low-abundance proteins is not
that necessary with microfluidic devices, enabling more precise
quantification of biomolecules derived from single cells (Liu and
Singh, 2013). This feature is particularly valuable in the study of rare
cell types, such as hematopoietic stem cells and circulating tumor
cells (CTCs), where sample availability is often limited (Yao et al.,
2014). Furthermore, the integration of microfluidic cell isolation and
detection strategies enables extensive parallelization, allowing for the
quantitative analysis of hundreds to thousands of single cells
simultaneously (Yu et al., 2014).

Microfluidic technologies encompass a diverse array of
principles and techniques for single-cell isolation (Figure 1E). It
is suitable for both live and fixed cells, with a recovery rate exceeding
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90% and a purity greater than 90% for single-cell isolation. However,
these values may vary depending on the experimental conditions
(Yeo et al., 2016; Liu et al., 2018;Wang K. et al., 2019; Pritchard et al.,
2019). Two of the most prominent approaches are microwell arrays
and droplet microfluidics.

1.6.1 Microwell arrays for single-cell isolation
Microwell-shaped microfluidic devices are widely used for

single-cell capture. These devices feature arrays of thousands of
nanoliter-scale compartments that effectively trap individual cells,
enabling high-throughput analysis and subsequent detection of
cellular or secreted biomolecular signals within the confined
microwells (Zhao et al., 2023). The detection of these signals can
be achieved through surface-modified glass coverslips or nanobeads.
The optimization of single-cell purity can be achieved by adjusting
the microwell size according to the given sample. These systems can
simultaneously process a large number of cells in parallel, making
them suitable for applications such as studying antibody specificity,
isotype, and affinity secreted from thousands of B cells (Story et al.,
2008). While microwells offer the advantage of straightforward
operation and fabrication, one potential limitation is the uneven
distribution of reagents. To address this, several efforts have been
made to achieve a more uniform flow field distribution (Chen et al.,
2024; Hu et al., 2018).

1.6.2 Droplet microfluidics for single-cell isolation
Droplet microfluidics, introduced in the early 2000s, has

emerged as a promising technique for the isolation of single cells
(Ou et al., 2021). This approach utilizes oil-filled channels to
generate and contain discrete aqueous droplets, enabling efficient
cell isolation. In droplet generation, Gallium electrodes integrated
within a microfluidic chip is commonly used to release a droplet as
required with high specific spatial or temporal resolution (Berlanda
et al., 2021). Femtoliter droplets of different viscous solutions could
be produced by deforming an aqueous–oil interface inside a
microchannel using a pulsed electric field (Shojaeian et al., 2019).
Another approach employed two Laplace pressure barriers to
generate droplets by first filling a reservoir before pinching off
droplets into a main channel (Totlani et al., 2020). After droplet
generation, fluorescence-activated droplet sorting is a well-
established technique and can be found in many microfluidic
devices. Besides, passive and active droplet sorting methods have
also advanced in recent years. For example, Pan et al. showed that
the interfacial tension changes with the pH, when specific
surfactants are chosen, which allows for passive and label-free
sorting based on pH (Pan et al., 2019). Passive high-throughput
size-based sorting of hydrogel droplets was realized by inertial forces
resulting in cross-streamline migration (Li et al., 2018).

The use of microfluidic droplets offers several notable
advantages. First, it significantly reduces sample and reagent
consumption, as the droplet volume typically ranges from
femtoliter to nanoliters (Jiang et al., 2023). Secondly, the
monodisperse nature and large spacing between microdroplets
minimize cross-contamination, which is particularly important
when working with cells. Thirdly, this technique allows for high
throughput, enabling the isolation of several thousand single cells
per second (Edd et al., 2008). Additionally, droplet microfluidics
provides precise control and high reproducibility. These droplets

also serve as convenient micro reaction compartments for
subsequent analysis.

After single cell isolation, microfluidics has found wide
application in cell analysis, such as small molecule detection (Sun
et al., 2019), protease activity analysis (Stucki et al., 2021), gene
function studies (van Tatenhove-Pel et al., 2020), and more
(Table 2). For small molecule detection, Raman scattering
(SERS)-microfluidic droplet platform is commonly used. Xu’s
group applied this platform to enable the label-free simultaneous
analysis of multiplexed metabolites, like pyruvate, adenosine
triphosphate and lactate, at the single-cell level (Sun et al., 2019).
Microfluidic droplet technology has broad applicational prospects in
single-cell protein analysis, especially for secreted proteins, because
of its relatively small size. Dynamic detection and analysis of specific
proteins in single cells is still challenging by conventional flow
cytometry. Yu et al. reported a microfluidic approach for the
detection of MMP9 enzyme activity in individual tumor cell
droplets using a flow-focusing capillary microfluidic device (Wu
et al., 2021). Wimmers et al. presented a microfluidic single-cell
droplet system for the immunofluorescence detection of type I
interferon (IFN) production in human plasmacytoid dendritic
cells (pDCs) (Wimmers et al., 2018). Its ability to handle large
numbers of single cells in a highly controlled and reproducible
manner has rendered it an indispensable technique for high-
throughput single-cell manipulation and analysis in the field of
biomedicine.

In summary, microfluidics provides a robust tool for the precise
manipulation, analysis, and investigation of cellular heterogeneity at
the individual cell level. The miniaturization, high throughput
capacity, and precise control provided by microfluidic
technologies empower the generation of single-cell data,
facilitating the acquisition of valuable biological insights into
diverse cellular systems (Satija and Shalek, 2014; Zhao et al.,
2014). As the field of microfluidics progresses and merges with
other single-cell analysis techniques, it is poised to play a crucial role
in furthering our comprehension of cellular heterogeneity and its
implications in diverse biological processes.

2 Measurement of protein expression
level at single cell resolution

2.1 Fluorescence or image-based
measurements of endogenous protein levels

Endogenous gene tagging with fluorescent proteins or
fluorophore-conjugated antibody labeling techniques have
enabled highly sensitive quantification of endogenous protein
levels. The fluorescence intensity obtained from these methods
directly correlates with the quantity of protein molecules present,
thereby enabling the assessment of relative protein abundance.

Fluorescence labeling of target proteins combined with FACS is
considered the gold-standard approach for profiling proteins at the
single-cell level (Hu et al., 2016). This method involves staining
single cells with fluorescent-labeled antibodies or tagging them with
a fluorescent protein, which are then detected as they pass through
the flow chamber during FACS analysis. The fluorophores are
excited by a laser, and the emitted fluorescence is subsequently
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measured. Through meticulous system calibration using protein-
coated beads, the fluorescent intensities can be translated into single-
cell protein expression levels (Adan et al., 2017).

FACS facilitates high-throughput detection (~104 cells/s) and
simultaneous measurement of ~20 multiplexing membrane and
intracellular protein parameters (Liu L. et al., 2020). However, this
technique has some limitations. Dynamic cell monitoring over time
poses a challenge, and the multiplexing capacity is constrained by
spectral overlap, potentially impacting the accuracy of protein
measurements. In the multi-colour detection system, each
excitation laser, including green (532 nm), blue (488 nm) and
violet (407 nm) ranges and red (633 nm), is configured with
multiple detectors (for the green laser, fluorochromes PE, TRPE,
Cy5PE, Cy5.5PE and Cy7PE could be applied and separated). If
additional fluorochromes become available that have distinct
emission spectra after excitation by the green laser, the detection
capacity could be increased even further. Furthermore, physical
stressors experienced by cells during FACS procedures could
influence their status. A critical aspect is the requirement for a
large number of cells (1 × 10^6/mL) in conventional flow
cytometry sample preparation (Xie and Ding, 2022).

To address these challenges, flow cytometers incorporating
microfluidics have been proposed as a solution (Liu et al., 2011;
Wu et al., 2012; Su et al., 2011). Wu et al. introduced a microfluidic
platform that integrates cell preparation and multi-color flow
cytometry components. This on-chip system offers multiplexed
and orthogonal data for profiling signaling pathways across
various cell types, including primary cells (Wu et al., 2012). The
integration of microfluidics with flow cytometry enables the analysis
of smaller sample sizes, reduces the risk of sample contamination,
and allows for the precise control of the cellular microenvironment
during analysis. Besides, a recent study showed a workflow for
generating double emulsions and performing multicolor cell sorting
using a commercial FACS instrument. This workflow achieves a
double emulsion detection rate exceeding 90%, enabling
multicellular encapsulation and high-throughput immune cell
activation sorting for the first time (Ding et al., 2024).

Despite these challenges, FACS remains a powerful tool for
single-cell protein analysis, offering high throughput and
multiplexing capabilities. Researchers continue to explore and
develop new techniques that address these limitations, aiming to
enable more comprehensive and accurate analysis of protein
dynamics and interactions at the single-cell level.

2.2 Single-cell Western blotting (scWB)

Single-cell Western blotting (scWB) is another innovative
technique that combines microfluidics and conventional Western
blotting to analyze protein expression at a single-cell resolution
(Hughes et al., 2014). It overcomes the issue of cross-reactivity by
introducing a step of electrophoretic separation before antibody
probing (Figure 2A). The scWestern analysis utilizes a microscope
slide coated with a thin photoactive polyacrylamide gel. This gel is
micropatterned with an array of thousands of microwells, allowing
for the simultaneous analysis of 103–104 single cells/chip. Simply
stated, the scWestern approach integrates all the essential steps of
Western blotting into a dense array format. In this technique, single
cells are placed into the microwells and lysed in situ. The proteins
from the lysed cells are then separated by gel electrophoresis within
each microwell. Following electrophoresis, the proteins are
immobilized onto the PA gel through photoinitiated blotting.
Finally, fluorescent-labeled antibodies are used for protein
detection within each microwell.

scWB has emerged as a promising tool for investigating protein
expression in individual cells, offering valuable insights into cellular
heterogeneity and dynamics at a higher resolution (Rosàs-Canyelles
et al., 2020; Kim et al., 2021; Grist et al., 2020). scWB enables
detection of more than 10 proteins, including both membrane and
intracellular proteins, in each cell during 4 h. The sensitivity of the
scWB method is comparable to that of flow cytometry (FC).
However, scWB encounters challenges in quantifying secreted
proteins, low-abundance proteins, and small molecular weight
proteins (Duncombe et al., 2016). To address these limitations,
several new methods have been suggested and developed. For
example, the integration of scWB with ultrasensitive detection
methods, such as single-molecule fluorescence microscopy or
mass spectrometry, has the potential to improve the sensitivity
and dynamic range of protein measurements (Yen et al., 2014;
Lomeli et al., 2021).

2.3 DNA reporter-based measurements of
endogenous protein levels

In addition to using fluorescent antibodies for protein
expression measurement, employing DNA amplification and
reporters offers improved accuracy and higher sensitivity. With

TABLE 2 Applications of microfluidic studies.

Application Key finding Reference

Single cell secreted exosomes They developed a platform to profile five phenotypic exosomes from over 1,000 single cells simultaneously. Song et al. (2022)

Single-cell proteomics Combining chip-based sample handling with DIA-MS using project-specific mass spectral libraries, they profile
on average ~1,500 protein groups across 20 single mammalian cells.

Gebreyesus et al.
(2022)

Single-cell isolation They use thermal bubble micropump technology to drive the fluid flow, and single-cell isolation is achieved by
matching the flow resistance of the flow channel.

Xu et al. (2023)

Intracellular Proteins in Single
Cells

They developed a microfluidic method to profile protein expression in individual cells by performing single-cell
intracellular protein immunoassay in picoliter paired droplets.

Liu et al. (2022b)

purification of lung cancer cells They developed a spiral microfluidic device that can rapidly isolate cancer cells and improve their purity through
fluid dynamics.

Tsou et al. (2020)
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protein signal outputs encoded by various DNA sequences, the
multiplexing capacity is virtually unlimited when utilizing DNA
reporters. Several approaches have emerged to enable simultaneous
measurement of both mRNA and protein at the single-cell level
(Reimegård et al., 2021; Stoeckius et al., 2017; Peterson et al., 2017;
Mimitou et al., 2019).

One such approach is Single-Cell Protein and RNA Co-profiling
(SPARC) (Reimegård et al., 2021), proposed by Dr. Gallant’s group
in 2021. SPARC enables the simultaneous measurement of overall
mRNA levels and targeted 89 intracellular proteins in individual
cells (Figure 2B). Single cells were sorted on a BD FACS ARIAIII
into a 96-well plate and lysed for protein analysis. Protein
quantification is accomplished through multiplex, homogeneous
protein extension assay (PEA), which is an affinity-based
detection technique employing pairs of antibodies linked with
oligonucleotides (Reimegård et al., 2021). In PEA, each antibody
pair is designed to recognize a specific protein target, and when both
antibodies bind to the same protein, the oligonucleotides are
brought into close proximity, allowing for their extension and
amplification. The resulting DNA amplicons are then quantified
using next-generation sequencing or qPCR, providing a digital
readout of protein abundance (Darmanis et al., 2016).

CITE-seq, pioneered by Stoeckius et al., is another well-
established method in single-cell analysis (Stoeckius et al., 2017).

This innovative technique utilizes a digital, sequencing-based
platform to quantify single-cell protein expression levels. It
involves conjugating antibodies to oligonucleotides, incorporating
a unique barcode for antibody identification and facilitating PCR
amplification (Figure 2C). The antibody-oligo complexes are then
applied to single-cell suspensions. After incubation, a washing step
removes unbound antibodies before proceeding to single-cell RNA
sequencing (scRNA-seq). CITE-seq primarily allows for the analysis
of cell surface proteins, providing valuable information about cell
type, state, and function. Recently, Liu et al., extended co-indexing of
transcriptomes and epitopes (CITE) to the spatial dimension and
demonstrated high-plex protein and whole transcriptome co-
mapping to measure 273 proteins and transcriptome in human
tissues with 10–50 μm Spatial resolution (Liu et al., 2023). The
simultaneous measurement of mRNA and surface proteins enables a
more comprehensive characterization of cellular heterogeneity and
can reveal novel cell subpopulations and their functional properties.

The integration of DNA reporters with single-cell protein
analysis has greatly expanded the multiplexing capacity and
sensitivity of these techniques. The ability to encode protein
signals with unique DNA sequences allows for the simultaneous
measurement of hundreds to thousands of proteins in individual
cells, overcoming the limitations of spectral overlap encountered in
fluorescence-based methods (Table 3). Furthermore, the

FIGURE 2
Overview of single-cell protein analysis technologies. (A) Schematic of Single Cell Western blotting. Single cells are placed onto the microwells and
lysed in situ. The proteins from the lysed cells are then separated by gel electrophoresis within eachmicrowell. Following electrophoresis, the proteins are
immobilized onto the PA gel through photoinitiated blotting. Finally, fluorescent-labeled antibodies are used for protein detection within eachmicrowell.
(B) Schematic of Single-Cell Protein And RNA Co-profiling (SPARC). Single cells are isolated and lysed. Following oligo-dT mRNA hybridization, the
protein-containing supernatant is removed for subsequent multiplex proximity extension analysis (PEA) and the mRNA is processed using a modified
Smart-seq2 approach. (C) Illustration of the DNA-barcoded antibodies used in CITE-seq. (D) Schematic of Mass Cytometry. After incubation with metal-
labeled oligonucleotides for RNA detection and antibodies for protein detection, tissues are subjected to laser ablation and mass-cytometric
measurement of the metal abundances. The metal abundances per laser shot (in pixels) are then assembled into a high-dimension image. (E) Schematic
of the Proximity Ligation Imaging Cytometry assay. (F) Schematics of in situ protein capture from single cells. Cells are sparsely immobilized on the
coverslip surface. The cells are subsequently lysed, and the proteins released are captured by the antibody surface, where single-molecule imaging is
performed. (G) Schematic of the single-cell capture trap.
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amplification of DNA reporters through PCR or sequencing enables
the detection of low-abundance proteins that may be missed by
other techniques (Reimegård et al., 2021).

2.4 Chemiluminescence and visible color-
based measurements of endogenous
protein levels

Chemiluminescence (CL) is known for its simple and cost-
effective optical systems, as it does not require an external light
source. This characteristic circumvents issues related to stray light
and the instability of light sources, ultimately resulting in low
backgrounds and high sensitivity.

The Enzyme-linked immunospot assay (ELISPOT) is a powerful
technique developed in the 1980s for quantitatively detecting
individual cells that secrete a specific protein of interest
(Alexander et al., 2013). This method, based on an immuno-
sandwich assay, is valuable for enumerating cell subsets with
distinct secretory functions and for monitoring cellular responses
to external stimuli or drugs (DiPiazza et al., 2016; Barabas et al.,
2017). In ELISPOT, cells are cultured on a surface coated with
antibodies that target the protein of interest. The secreted protein is
then captured by the immobilized antibodies. A second, enzyme-
conjugated antibody is then added, which binds to the captured
protein. Upon addition of a substrate, the enzyme catalyzes a
reaction that produces a visible spot on the membrane, with each
spot representing an individual secreting cell.

The ELISPOT assay is well-known for its high sensitivity in
detecting secreted proteins, with a detection limit of approximately
six spots per 100,000 cells (Moodie et al., 2010). It enables high-
throughput detection (~106 cells/run) and simultaneous
measurement of 1-3 secreted proteins. It has been particularly
useful in studying immune responses, such as the detection of
cytokine-secreting T cells or antibody-secreting B cells, and in
assessing the impact of various interventions on cell function
(Leehan and Koelsch, 2015). The ability to quantify the
frequency of secreting cells and the relative amount of protein
secreted by each cell makes ELISPOT a valuable tool for
understanding the heterogeneity of cellular responses.

Recent advancements in ELISPOT technology have focused on
improving its multiplexing capabilities and compatibility with other
single-cell analysis techniques. For instance, FluoroSpot, a type of
fluorescent ELISPOT, allows for the concurrent detection of
multiple secreted proteins by utilizing fluorescent dyes instead of
enzymes for signal generation (Axelsson, 2022). Additionally, the
integration of ELISPOT with microfluidic devices has allowed for
the isolation and analysis of individual secreting cells, providing a
more comprehensive profile of their functional properties (Huang
et al., 2012).

2.5 Mass spectrometry-based
measurements of endogenous protein levels

Recent advances in mass spectrometry (MS) have made single-
cell MS one of the most powerful approaches to obtain the protein
profile of a single cell (Slavov, 2021; Petelski et al., 2021). Mass
spectrometry-based methods can generally be divided into two main
categories: targeted and untargeted approaches.

2.5.1 For targeted proteins
Targeted MS approaches involve the specific detection and

quantification of pre-selected proteins or peptides within a
sample. This method is useful when researchers are interested in
analyzing a particular set of proteins or biomarkers within a
single cell.

Mass Cytometry, also known as CyTOF (Cytometry by Time-of-
Flight), represents an innovative fusion of flow cytometry (FC) and
mass spectrometry (MS), offering an alternative approach for the
identification and quantification of target proteins (Table 4).
Applying this technology to tissues or cells on slides, termed
imaging mass cytometry (IMC), allows for visualization of
normal and diseased tissues in situ (Tracey et al., 2021). This
method facilitates high-dimensional, single-cell analysis of cell
type and state (Giesen et al., 2014). In principle, mass cytometry
closely resembles flow cytometry, where cells are labeled with
antibodies conjugated with metal isotopes and subsequently
analyzed via mass spectrometry. The use of specific isotopes
circumvents issues related to spectral overlap, enabling

TABLE 3 Applications of dna reporter-based measurement of protein level insingle cells.

Application Key findings Reference

Spatial CITE-seq They extended co-indexing of transcriptomes and epitopes (CITE) to the spatial
dimension.

Liu et al. (2023)

Identification of senescent cell subpopulations by
CITE-seq

Based on the presence of proteins on the cell surface by using single-cell CITE-seq, they
identified two distinct IR-induced senescent cell populations.

Abdelmohsen et al.
(2024)

Dynamic gene expression networks in B cell development
and transformation

They coupled the surface marker on B-cells by using CITE-Seq with single-cell RNAseq to
identify differentially expressed gene networks across B cell development.

Lee et al. (2021)

ASAP-seq ASAP-seq is a unique approach that enables the concomitant detection of protein
abundance alongside transposase-accessible chromatin and mtDNA in thousands of

single cells.

Mimitou et al. (2021)

DBiT-seq They presented deterministic barcoding in tissue for spatial omics sequencing (DBiT-seq)
for co-mapping of mRNAs and proteins in a formaldehyde-fixed tissue slide via next-

generation sequencing (NGS).

Liu et al. (2020b)
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simultaneous, multiplexed detection of target proteins (Zhang
et al., 2020).

The workflow of mass cytometry includes the following steps:
(1) cells are labeled with antibodies attached to distinct metal
isotopes; (2) these labeled cells are introduced into the mass
cytometer, where they are vaporized and ionized; (3) the metal
ions are separated according to their mass-to-charge ratio; and (4)
the quantity of each metal ion is measured, indicating the expression
level of the associated protein (Olsen et al., 2019).

Mass cytometry has been broadly adopted and applied to many
biological problems (Schulz et al., 2018; Lun et al., 2019;
Krishnaswamy et al., 2014; Ajami et al., 2018). Friebel et al.
successfully applied this technique, designed two CyTOF panels
together, measuring 74 parameters at the single-cell level (Friebel
et al., 2020) (Figure 2D). This innovative approach expands the
capacity for comprehensive protein analysis within tissues,
providing a valuable tool for studying complex biological
systems (insert).

In terms of throughput, mass cytometry allows for the
measurement of approximately ~1,000 cells per second, which is
inferior to the throughput achievable with fluorescent-labeled
analysis approaches (Liu L. et al., 2020). Additionally, when
compared to quantum-efficient fluorophores, mass reporters
demonstrate lower sensitivities, posing challenges in the accurate
measurement of low-abundance proteins in single cells. However,
the high dimensionality and minimal spectral overlap of mass
cytometry make it a powerful tool for dissecting the complexity
of cellular systems and identifying rare cell subpopulations (Levine
et al., 2021).

2.5.2 For untargeted proteins
Recent advancements in liquid chromatography-mass

spectrometry (LC-MS)-based proteomics methods have addressed
significant challenges related to sensitivity and throughput, making
single-cell mass spectrometry (scMS) more feasible. This approach
has become increasingly utilized to gain valuable insights into
cellular heterogeneity (Budnik et al., 2018; Zhu et al., 2019;
Lombard-Banek et al., 2019; Cheung et al., 2021; Schoof et al.,
2021). One of the main advantages of scMS is its ability to provide an
unbiased, global view of the cellular proteome. Unlike targeted
approaches that rely on antibodies, scMS can detect and quantify
thousands of proteins without prior knowledge of their identity or

function. This untargeted nature of scMS enables the discovery of
novel proteins and pathways that may be missed by other methods
(Lombard-Banek et al., 2019).

Current scMS approaches can quantify approximately
1,000 proteins per cell and analyze over a hundred cells per day
of instrument time (Schoof et al., 2021). Despite having a lower
throughput than some other single-cell protein analysis methods,
the comprehensive coverage and capability to detect post-
translational modifications make scMS a valuable tool for
understanding cellular heterogeneity at the proteome level (Liu L.
et al., 2020).

3 Techniques for analyzing protein-
protein interaction at single cell
resolution

3.1 Proximity-based assay

The Proximity Ligation Assay (PLA) represents a relatively
novel method for studying protein-protein interactions (PPIs)
with high specificity, applicable in both cells and tissue sections
(Söderberg et al., 2006). In the assay, a pair of oligonucleotide-
labeled antibodies is used to recognize two target proteins. When the
two proteins are in close proximity (less than 30–40 nm apart) due to
their interaction, the oligonucleotides are ligated, subsequently
extended, and amplified to generate sequence products. Detection
is accomplished by adding complementary fluorescently labeled
oligonucleotides or by measuring the output of DNA
sequencing using qPCR.

Dr. Abramson’s group has integrated the PLA assay with
imaging flow cytometry (IFC) and developed Proximity Ligation
Imaging Cytometry (FLIC) (Avin et al., 2017). This integration
enables multiparametric fluorescent and localization analysis of
cellular events, including the examination of PPIs and post-
translational modifications (PTMs), as well as the assessment of
subcellular signal distribution within cells (Figure 2E). FLIC
combines the specificity of PLA with the high-throughput and
multiplexing capabilities of IFC, allowing for the simultaneous
analysis of multiple PPIs and cellular parameters in thousands of
individual cells. Vistain et al. developed Prox-seq, a method that
enables the detection of intracellular and membrane proteins,

TABLE 4 Applications of cytof studies.

Application Key findings Reference

Chronic myeloid leukemia Combination of BCR-ABL1 inhibition and activation of TP53 promotes anti-leukemic activity
and inhibits leukemic stem cells

Carter et al.
(2020)

Characterization of the Multiple Myeloma Immune
Microenvironment

Patients with multiple myeloma showed CD4+ T/CD8+ T ratios decrease along with cancer
development by CyTOF.

Yao et al. (2022)

Single-Cell Mapping of Human Brain Cancer The leukocyte landscape of brain tumors was mapped using high-dimensional single-cell
profiling.

Friebel et al.
(2020)

Immune cellular profiling CyTOF analysis of peripheral blood mononuclear cells showed a significantly higher percentage
of Th17 cells in active tuberculosis.

Kim et al. (2023)

Hypothalamic circuitry CyTOF revealed extensive changes to immune cell distribution and functional responses in
peripheral blood during hyperarousal.

Li et al. (2020)
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protein complexes, and mRNAs in thousands of single cells. Prox-
seq combines single-cell RNA sequencing (scRNA-seq) with the
proximity ligation assay (PLA). It utilizes pairs of DNA-conjugated
antibodies that, when brought into close proximity, facilitate the
ligation of DNA oligonucleotides (oligomers) on the antibodies.
This ligation generates a PLA product that can be detected through
next-generation sequencing. The method allows for the
simultaneous measurement of up to 741 protein complexes
across 8,700 single peripheral blood mononuclear cells (Vistain
et al., 2022).

To investigate PPIs directly with high spatiotemporal resolution,
genetically encoded biosensors based on Förster Resonance Energy
Transfer (FRET) or Bioluminescence Resonance Energy Transfer
(BRET) can be employed. These resonance energy transfer (RET)
techniques offer the ability to record single-cell kinetics with
millisecond resolution, facilitating the identification of protein
complexes and the study of cell-to-cell heterogeneity (van Unen
et al., 2016). Recently, Hoshino et al. designed γB2-FRET probes by
fusing FRET donor and acceptor fluorescent proteins to a single
γB2 molecule, successfully visualizing γB2 homophilic interactions
in cultured hippocampal neurons (Hoshino et al., 2023). By utilizing
these biosensors, researchers can visualize dynamic changes in PPIs
in real-time, providing valuable insights into the molecular
mechanisms underlying various cellular processes.

3.2 Co-immunoprecipitation (co-IP)
based assays

The Single-molecule pull-down (SiMPull) technique provides a
method to directly capture native protein complexes from cell
lysates, facilitating the identification of complex composition and
PPIs at the single-molecule level (Jain et al., 2012). SiMPull involves
immobilizing an antibody against a target protein on a glass surface,
followed by the application of cell lysates containing the protein
complexes. The captured complexes are then visualized using
fluorescently labeled antibodies against the interacting partners,
allowing for the direct observation of PPIs and the determination
of their stoichiometry.

Expanding on this concept, various techniques have been
suggested to investigate PPIs at the single-cell level (Ryu et al.,
2019a; Zhao et al., 2023; Wang et al., 2018; Wedeking et al., 2015;
Stolpner and Dickinson, 2022). Dr. Ha’s group developed an assay
that involves lysing bacterial cells in situ and capturing the released
proteins on an imaging surface coated with antibodies. This
approach allows for the unambiguous assignment of captured
proteins to their originating cells (Wang et al., 2018). The
developed platform is compatible with high-throughput protein
analysis and PPI analysis at the single-cell level through single-
molecule imaging (Figure 2F). The ability to link protein
interactions to specific cells enables the investigation of cell-to-
cell variability in complex formation and function, providing
insights into the mechanisms underlying cellular heterogeneity.

For mammalian cells, micro-patterned surfaces have been
utilized to capture target cells and proteins. Yoon et al.
implemented a method that involved in situ co-IP for individual
cancer cells (Ryu et al., 2019a). This process included capturing
single cells using a microfluidic device and inducing in situ lysis of

the cells while immunoprecipitating EGFRs (the proteins of interest)
to the surface. Subsequently, fluorescently labeled downstream
interactors of EGFRs were directly added to stimulate protein-
protein interactions, which were then visualized using a single-
molecule fluorescence microscope. This innovative approach offers
insights into the dynamics of protein interactions at the single-cell
level, providing valuable information on signaling pathways and
heterogeneity in cancer cells (Figure 2G).

The integration of co-IP with microfluidic devices and single-
molecule imaging has greatly enhanced the sensitivity and
resolution of PPI analysis at the single-cell level. By capturing
protein complexes directly from individual cells, these techniques
overcome the limitations of bulk co-IP experiments, which average
out the heterogeneity in protein interactions across a population of
cells. Moreover, the ability to visualize individual protein complexes
allows for the quantitative analysis of their composition,
stoichiometry, and dynamics, providing a more detailed
understanding of their functional roles in cellular processes.

4 Data analysis

The advent of advanced single-cell protein analysis techniques,
such as flow cytometry and mass spectrometry (MS), has
revolutionized our ability to study cellular heterogeneity and
protein dynamics at the individual cell level. These methods
generate vast amounts of complex data, necessitating the
development of sophisticated data analysis and computational
approaches to extract meaningful biological insights.

In flow cytometry, data pre-processing typically involves gating,
which entails selecting cells of interest by plotting the data in
univariate histograms or bivariate (density) plots and defining an
area of interest (Aghaeepour et al., 2013; Malek et al., 2015;
Montante and Brinkman, 2019). While manual gating is
convenient, it can be time-consuming, subjective, and prone to
bias. To address these limitations, numerous semi-automated and
automated gating methods have been developed, along with
machine learning algorithms such as RchyOptimyx (Aghaeepour
et al., 2012) and FloReMi (Van Gassen et al., 2016) that utilize these
gating methods to identify cell types exhibiting significant
differences between groups or for survival analysis. Following
gating, data compensation and transformation are crucial steps to
ensure accurate analysis (Tinnevelt et al., 2021). Modeling the
distribution of single cells is typically performed using clustering
(Aghaeepour et al., 2013), principal component analysis (PCA) (Ma
et al., 2017), or t-distributed stochastic neighbor embedding (t-SNE)
(Amir el et al., 2013).

Single-cell Mass Spectrometry (MS) stands as another potent
technique for studying single-cell profiles due to its high sensitivity,
broad detection range, and molecular identification capabilities.
However, the raw data acquired from single-cell MS experiments
are large and complex, necessitating systematic data analysis
approaches (Liu and Yang, 2021). Unlike conventional MS
proteomics, data analysis methods in current single-cell
proteomics studies lack standardization. There is no widely
agreed-upon, consistent analysis pipeline across different
researchers and laboratories. The typical workflow for single-cell
proteomics data analysis includes data pre-processing, univariate
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analysis, multivariate analysis, and advanced data analysis
techniques (Liu and Yang, 2021). Data pre-processing involves
noise and background signal removal, ion intensity normalization
(Yin et al., 2018), and selection of proteins commonly detected in the
majority of single cells (Pluskal et al., 2010). Univariate analysis,
such as t-tests and analysis of variance (ANOVA), is used to reveal
changes in cellular proteins corresponding to specific biological
processes. Multivariate analysis, including unsupervised methods
like PCA (Fang et al., 2020) and t-SNE (Wang R. et al., 2019), and
supervised methods such as partial least squares discriminant
analysis (PLS-DA) (Sun and Yang, 2019) and orthogonal
projections to latent structures discriminant analysis (OPLS-DA)
(Walker et al., 2013), are employed to reduce data dimensionality
and identify patterns in protein expression.

Recent advancements in machine learning (ML) have introduced
new data analysis methods for single-cell identification, proteomics,
demonstrating high classification accuracy in distinguishing cell types
(Xie et al., 2020), special omics, and enabling the extraction of trace-level
signals from high-resolution mass spectra (Liu et al., 2019). Image-
Based cell identification can bring significant insight to biomedical
sciences. Deep learning algorithms could enable cell classification and
isolation based on human-vision uninterpretable features within a
complex cell population without labeling (Tang et al., 2023).
Machine learning workflow developed by Xie et al., was trained to
classify single cells according to their mass spectra based on cell groups
of interest (GOI). The trained models achieved >80% classification
accuracy (Xie et al., 2020). MEISTER, a mass spectrometry (MS)
framework, integrates deep-learning-based reconstruction, three-
dimensional (3D) molecular distributions and cell-specific mass
spectra to 3D brain-wide single-cell biochemical mapping (Xie
et al., 2024).

5 Applications and future directions

One of the key applications of single-cell protein analysis is the
study of cellular heterogeneity in various contexts. For example,
mass cytometry has been used to explore immune cell heterogeneity
(Newell et al., 2012), while single-cell Western blotting (Sinkala
et al., 2017), microfluidic single-cell imaging (Ryu et al., 2019b), and
mass cytometry (Levine et al., 2015) have been employed to
investigate cancer cell heterogeneity. These studies have revealed
the presence of distinct cell subpopulations and provided insights
into cell-cell interactions in complex biological samples, such as
breast cancer tissues (Giesen et al., 2014).

In addition to studying cellular heterogeneity, single-cell
proteomic technologies have proven to be valuable tools for
investigating intracellular protein-protein interactions (PPIs) and
signaling networks. By profiling a large number of proteins in
individual cells, researchers can conduct pairwise protein
expression correlation analysis to study protein activating and
inhibitory interactions. Techniques such as microfluidic single-
cell single-molecule imaging (Wedeking et al., 2015), proximity
ligation assay (PLA) (Avin et al., 2017), and FRET assays (van
Unen et al., 2016) have been successfully applied to elucidate PPIs
and signaling pathways at the single-cell level.

Despite the remarkable progress made in single-cell protein
analysis, there are still challenges to overcome in order to fully

understand the complex and dynamic nature of the single-cell
proteome. To address these challenges, the development of next-
generation single-cell analytical techniques is crucial across multiple
areas. One key area of focus is the enhancement of detection
sensitivity, which will enable the identification and quantification
of low-abundance and less stable proteins. Advancements in droplet
microfluidic diagnostic techniques, such as the integration of the
“picoliter single-cell reaction flask” principle, have shown promise in
screening single cells for secreted molecules, including antibodies,
cytokines, enzymes, and metabolites (Lan et al., 2023). Another
important direction is the investigation of subcellular compartments
and the precise analysis of proteins corresponding to specific
organelles. Improved single-cell Western blotting methods, such
as subcellular Western blotting techniques, have demonstrated the
ability to separately assay proteins in the cytoplasm and nucleus of
individual cells (Yamauchi and Herr, 2017).

To achieve a comprehensive understanding of single-cell states
and functions, the development of complementary methods that
integrate multiple types of data is essential. For example, combining
high-throughput techniques for the simultaneous detection of
mRNA and intracellular proteins can provide a more complete
picture of the molecular regulatory networks within individual cells
(Reimegård et al., 2021). Flow cytometry-based FISH (Flow-FISH)
has been used to simultaneously measure transcript levels and
protein expression in single cells, offering deeper insights into the
regulation of gene transcription and translation (Van Hoof
et al., 2014).

The application of machine learning (ML) techniques to single-
cell protein analysis has the potential to revolutionize data analysis
and interpretation. ML methods have significantly improved the
efficiency of single-cell proteomics data analysis, enabling the
identification of patterns and relationships that may be difficult
to detect manually (Xie et al., 2020). As ML algorithms continue to
evolve and become more sophisticated, their broader application in
single-cell protein analysis is expected to facilitate the discovery of
novel biomarkers, therapeutic targets, and disease mechanisms.

While the commercialization and clinical translation of single-
cell protein analysis technologies have begun, there are still
significant barriers to their widespread adoption in clinical and
industrial settings. These technologies often require extensive
expertise and hands-on time, and their repeatability may not yet
meet the stringent requirements for industrial applications. To
overcome these challenges, the development of more user-
friendly and robust systems is essential. This can be achieved
through device automation and further optimization, enabling
researchers and practitioners to implement these methods across
a wide range of applications.

6 Discussion

The rapid development of single-cell protein analysis has
revolutionized our ability to study the protein composition,
expression levels, and functions of individual cells (Liu et al.,
2021; Ryu et al., 2019a; Reimegård et al., 2021; Shao et al., 2018;
Peterson et al., 2017; Maes et al., 2020; Sims and Allbritton, 2007; Xie
and Ding, 2022; Pereira et al., 2022; Lohani et al., 2023; Yu et al.,
2022; Hoover et al., 2023; Mund et al., 2022). By analyzing
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membrane proteins, cellular proteins, and secreted proteins,
researchers can gain a more comprehensive understanding of cell
states, functional changes, and cellular heterogeneity (Budnik et al.,
2018; Giesen et al., 2014; Sharon et al., 2013; Rosàs-Canyelles et al.,
2020; Crouch et al., 2024). This review provides a comprehensive
summary of the advancements in single-cell protein analysis
technologies over the past two decades, discussing various
methods and techniques, and comparing their approaches for
single-cell isolation based on factors such as purity, throughput,
and efficiency.

Despite recent developments, current single-cell protein analysis
techniques still have limitations that need to be addressed (Liu L.
et al., 2020; Hu et al., 2016; Bennett et al., 2023). Improvements are
needed in accuracy, reproducibility, and the ability to detect low-
abundance proteins (Hughes et al., 2014; Hu et al., 2016; Gross et al.,
2015; Lugli et al., 2017). The limitedmultiplexing capacity of existing
methods hinders the comprehensive proteomic detection of over
10,000 proteins within a single cell. Additionally, most techniques
cannot simultaneously detect membrane-bound, cytoplasmic, and
secreted proteins, restricting our understanding of cell protein
composition. Furthermore, current methods for analyzing PPIs
are semi-quantitative and limited to known protein pairs,
hindering the exploration of novel protein interactions.

The complexity and dynamic nature of proteins present a
significant challenge in achieving high throughput, accuracy,
multiplexing, and sensitivity simultaneously in single-cell
proteomic analysis. Researchers must balance the need for
detecting low abundance proteins with the desire to analyze a
large number of cells efficiently. Future advancements in
technology and methodology are expected to address these
challenges, enhancing the capabilities of single-cell proteomic
analysis and enabling more comprehensive insights into cellular
heterogeneity and function. The integration of single-cell protein
analysis with other omics technologies, such as single-cell
transcriptomics and metabolomics, will provide a more holistic
view of cellular processes and uncover novel regulatory
mechanisms (Reimegård et al., 2021; Frei et al., 2016; Stoeckius
et al., 2017; Peterson et al., 2017). The application of machine
learning techniques to single-cell protein analysis will
revolutionize data analysis and interpretation, facilitating the
discovery of novel biomarkers, therapeutic targets, and disease
mechanisms.

With ongoing technological advancements, single-cell protein
analysis is expected to have significant applications in clinical
diagnostics, cancer therapy, and drug development. Studying
protein expression and PPIs in individual tumor cells can
improve our understanding of tumor heterogeneity and drug
resistance mechanisms, providing a basis for personalized
therapy. Single-cell protein analysis can also aid in screening

novel drug targets and assessing the impact of drugs on cell
function, accelerating the drug development process (Barabas
et al., 2017; Heath et al., 2016; Fitzgerald and Leonard, 2017). As
technology advances, collaboration among researchers from
different disciplines will be crucial to drive further progress in
single-cell proteomics, ultimately leading to a deeper
understanding of cellular heterogeneity and its implications for
human health and disease.
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