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Introduction: Accurate image segmentation is crucial in medical imaging for
quantifying diseases, assessing prognosis, and evaluating treatment outcomes.
However, existingmethods often fall short in integrating global and local features
in a meaningful way, failing to give sufficient attention to abnormal regions and
boundary details in medical images. These limitations hinder the effectiveness of
segmentation techniques in clinical settings. To address these issues, we propose
a novel deep learning-based approach, MIPC-Net, designed for precise boundary
segmentation in medical images.

Methods: Our approach, inspired by radiologists’ working patterns, introduces
two distinct modules: 1. Mutual Inclusion of Position and Channel Attention
(MIPC) Module: To improve boundary segmentation precision, we present the
MIPC module. This module enhances the focus on channel information while
extracting position features and vice versa, effectively enhancing the
segmentation of boundaries in medical images. 2. Skip-Residue Module: To
optimize the restoration of medical images, we introduce Skip-Residue, a
global residual connection. This module improves the integration of the
encoder and decoder by filtering out irrelevant information and recovering
the most crucial information lost during the feature extraction process.

Results: We evaluate the performance of MIPC-Net on three publicly accessible
datasets: Synapse, ISIC2018-Task, and Segpc. The evaluation uses metrics such
as the Dice coefficient (DSC) and Hausdorff Distance (HD). Our ablation study
confirms that each module contributes to the overall improvement of
segmentation quality. Notably, with the integration of both modules, our
model outperforms state-of-the-art methods across all metrics. Specifically,
MIPC-Net achieves a 2.23 mm reduction in Hausdorff Distance on the
Synapse dataset, highlighting the model’s enhanced capability for precise
image boundary segmentation.

Conclusion: The introduction of the novel MIPC and Skip-Residue modules
significantly improves feature extraction accuracy, leading to better boundary
recognition in medical image segmentation tasks. Our approach demonstrates
substantial improvements over existing methods, as evidenced by the results on
benchmark datasets.
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1 Introduction

Medical image segmentation plays a pivotal role in quantifying
diseases, assessing prognosis, and evaluating treatment outcomes. It
describes crucial observations in images, such as the degree, size, and
location of lesions. However, manual segmentation by skilled
professionals is both time-consuming and tedious (Sun et al.,
2024). Therefore, with the advance of deep learning technologies,
automatic medical image segmentation has attracted growing
research interest.

Existing medical image segmentation methods usually follow
the practice of combining Convolutional Neural Networks
(CNNs) with Vision Transformer modules under the U-Net
structure (Ronneberger et al., 2015; Long et al., 2015;
Dosovitskiy et al., 2020). For example, various U-Net variants
have been proposed to improve medical image segmentation
performance. ResUnet (Diakogiannis et al., 2020), Unet++
(Zhou et al., 2018), and Unet3++ (Huang et al., 2020)
introduced residual connections and complex skip
connections, while Attention-Unet (Oktay et al., 2018)
integrated attention mechanisms into the U-Net architecture.
TransUNet (Chen et al., 2021) and Swin-Unet (Cao et al., 2022)
incorporated Transformer and Swin-Transformer (Liu et al.,
2021) modules, respectively, to capture global information.
However, medical image segmentation differs from generic
image segmentation tasks. In medical image segmentation,
data is characterized by small sample sizes and the need for
precise boundary delineation. Unlike generic image segmentation
models, which are required to cover all details of the image,
medical image segmentation demands special attention to
abnormal regions and boundary details in organ or
pathological images. Therefore, local image features need to be
combined with global features. To this end, attention
mechanisms focusing on both channel and position
information need to be introduced into the research.

In recent research, there has been a trend towards incorporating
both channel and position attention mechanisms into models. SA-
UNet (Guo et al., 2021) and AA-TransUNet (Yang and
Mehrkanoon, 2022) incorporated spatial and channel attention,
respectively, but lack comprehensive utilization of image features.
TransUNet++ (Jamali et al., 2023) and DS-TransUNet (Lin et al.,
2022) integrated Transformers into skip connections but have
limitations in overall architecture and feature integration. DA-
TransUNet (Sun et al., 2023) merges position and channel
attention but merely adapts a block from road segmentation,
lacking tailored feature extraction for medical images. In
TransUNet (Chen et al., 2024), a versatile framework is proposed
that allows the integration of the self-attention mechanism at
multiple stages of the model, while still focusing on exploring the
Transformer mechanism. In MVRM (Zuo et al., 2024),
MambaBlock is used to enhance feature extraction; however, the
improvement of the model’s boundary segmentation capability has
not been considered. These methods achieve improved performance
over previous medical image segmentation models. However, they
focus primarily on the overall segmentation overlap rather than
specifically enhancing the boundary details of the segmentation
results. Moreover, when extracting features from the perspective of
channel and position, these models only focus on repeated feature
extraction, potentially disrupting the original information without
considering how to restore the boundary details of the image.

Inspired by radiologists’ working patterns, this paper proposes a
simple and effective mutual inclusion mechanism for medical image
segmentation. Instead of simply stacking Transformer-related
modules, we introduce the Mutual Inclusion of Position and
Channel Attention (MIPC) module, which enhances the focus on
channel information when extracting position features and vice
versa. Figure 1 illustrates the superiority of our proposed mutual
inclusion of position and channel attention compared to existing
attention mechanisms. We propose two pairs of channel and
position combinations, each pair emphasizing either channel or

FIGURE 1
Comparison of attention mechanisms used in different medical image segmentation models: (A) only attention, (B) only channel or position
attention, (C) integration of position and channel attention, and (D) Mutual nclusion of position and channel attention proposed in this work, which
enhances the focus on channel information when extracting position features and vice versa.
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position information while mutually including the other. This
approach mimics the radiologists’ working patterns, where
mutual inclusion is practiced with varying emphasis. The
experimental results demonstrate that this method effectively
improves the model’s ability to accurately segment image
boundary. Furthermore, we focus on the restoration of medical
images by proposing the Global-Skip-Connections. This connection
introduces a Dual Attention mechanism to filter out invalid
information while utilizing a Skip-Residue to restore the most
effective information lost during the feature extraction process.

We evaluate our proposed methods on three publicly accessible
datasets: the Synapse dataset (Landman et al., 2015), the ISIC2018-
Task dataset (Codella et al., 2019; Tschandl et al., 2018), and the
Segpc dataset (Gupta et al., 2021). In addition to the Dice coefficient
(DSC) metrics, which deal with class imbalance problems, we adopt
the Hausdorff Distance (HD) to analyze the quality of the
segmentation results, as it is particularly convincing in evaluating
boundary region segmentations. The results show that the proposed
method achieves state-of-the-art performance on both DSC and HD
metrics. Notably, there was a 2.23 mm reduction over competing
models in the HD metric on the benchmark Synapse dataset,
strongly evidencing our model’s enhanced capability for precise
image boundary segmentation. This finding also indicates that
medical image segmentation benefits from the mutual inclusion
mechanism of position and channel attention.

The main contributions are as follows:
1) This paper proposes a novel model, MIPC-Net, which

incorporates a Mutual Inclusion attention mechanism for
position and channel information. This approach further
enhances the precision of boundary segmentation in
medical images.

2) This paper introduces the Skip-Residue, a global residual
connection that improves image restoration by enhancing
the integration of the encoder and decoder.

3) Experiments demonstrate that the proposed components
achieve consistent performance improvements.
Furthermore, our model achieves state-of-the-art
performance across all metrics on the public Synapse
(Landman et al., 2015), ISIC2018-Task (Codella et al.,
2019; Tschandl et al., 2018), and Segpc (Gupta et al.,
2021) datasets.

4) The rest of this article is organized as follows. Section 2
reviews the related works of automatic medical image
segmentation, and the description of our proposed MIPC-
Net is given in Section 3. Next, the comprehensive
experiments and visualization analyses are conducted in
Section 4. Finally, Section 5 makes a conclusion of
the whole work.

2 Related work

2.1 Model integration of U-structure

Research on U-Net architecture optimization has made
significant strides in recent years. Proper utilization of residual
learning and skip connections can enhance a model’s learning
capacity when constructing deep neural networks. The original

U-Net (Ronneberger et al., 2015) introduced skip connections to
improve feature fusion, but the potential of these connections was
not fully exploited. Subsequent works have aimed to address this
limitation. UNet++ (Zhou et al., 2018) incorporated a densely
connected network architecture to enrich skip connections and
improve model performance, but it did not explore the
integration of other optimization mechanisms. Building upon
this, UNet3++ (Huang et al., 2020) introduced hierarchical skip
connections to further enhance the model’s feature extraction
capability, focusing on enriching skip connections without
specifically optimizing feature transmission during the process.
Several works have sought to refine skip connections by
integrating attention mechanisms and Transformer components.
DAResUNet (Shi et al., 2020a) incorporated residual modules and
Dual Attention (DA) Blocks, but only optimized the first-layer skip
connection. DS-TransUNet (Lin et al., 2022) merged Transformer
mechanisms into the skip connections, but did not fully consider the
overall model structure. Similarly, IB-TransUNet (Li et al., 2023)
integrated a multi-resolution fusion mechanism into skip
connections without a holistic view of the model architecture. A
recent work, DA-TransUNet (Sun et al., 2023), optimized skip
connections using image feature positions and channels, but the
integration of these components into the overall model was
insufficient, leaving room for further improvement. While these
works have made valuable contributions, there is still a need for a
more comprehensive approach that optimizes skip connections and
enhances the overall integration of the model components. In this
paper, we propose a novel architecture that not only optimizes the
skip connections at multiple levels but also strengthens the overall
integration of the model components. Our approach leverages the
strengths of residual learning, attention mechanisms, and
Transformer modules to capture rich contextual information and
enhance feature fusion.

2.2 The utilization of attention modules

The attention mechanism has become a crucial component in
enhancing model performance by enabling focus on target features.
Since its introduction in the Bahdanau Attention paper (Bahdanau
et al., 2014) in 2014 for machine translation, the field of attention
mechanisms has witnessed continuous advancements and iterations.
In 2015, the introduction of attention mechanisms for image
generation significantly enhanced the quality of the produced
images (Gregor et al., 2015), while the application of visual
attention mechanisms to image description generation sparked
substantial interest in the image captioning domain (Xu et al.,
2015). The same year, the introduction of various attention
mechanism variants, such as global attention and local attention,
marked a significant advancement (Luong et al., 2015). The
evolution of attention mechanisms was further propelled forward
in 2017 with the proposal of sub-attention mechanisms (Vaswani
et al., 2017). In 2019, the pioneering introduction of dual attention
mechanisms was marked by the employment of dual attention
modules for scene segmentation, integrating both spatial and
channel attention mechanisms (Fu et al., 2019). The modular
DAN (Dual Attention Network) framework, combining visual
and textual attention, achieved significant outcomes in visual
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question-answering (VQA) tasks (Nam et al., 2017). The
introduction of the Dual Attention Matching (DAM) module
enhanced high-level event information modeling over extended
video durations, complemented by a global cross-check
mechanism for precise localization of visible and audible events
in videos (Wu et al., 2019). Furthermore, the application of dual
attention mechanisms in medical image segmentation has shown
promising results, but the strategies for optimizing feature
extraction through position and channel attention mechanisms
require further investigation (Shi et al., 2020b). Despite the
significant progress in attention mechanisms, there remain
limitations in their application to medical image segmentation
tasks. Mutual Inclusion has been explored in other fields, but its
application in the fusion of attention modules has not been
previously investigated (Hosseinzadeh and Wang, 2021; Zhang
et al., 2015). In this paper, we propose a novel Mutually Inclusion
of Position and Channel (MIPC) Block, which aims to enhance the
segmentation performance of the model by mutually including
position and channel attention modules and incorporating the
concept of residue. Our approach seeks to leverage the
complementary nature of position and channel information,
enabling the model to capture more comprehensive and
discriminative features for medical image segmentation.

3 Methods

In the following section, we introduce the MIPC-Net
architecture, as depicted in Figure 2. We begin by providing an
overview of the overall structure. Subsequently, we present its key
components in the following sequence: Mutual Inclusion of Position

and Channel (Section 3.2), the encoder (Section 3.3), Global-Skip-
Connections (Section 3.4), and the decoder (Section 3.5).

3.1 Overview of MIPC-Net

Figure 2 illustrates the detailed configuration of our MIPC-Net
model, which is a medical image segmentation model capable of
capturing image-specific channel and position information and
incorporates improved skip connections.

Our model consists of three main components: the encoder, the
decoder, and the Global-Skip-Connections. Notably, the encoder
integrates traditional convolutional neural network (CNN) and
Transformer mechanisms, while using MIPC-Block to enhance
the encoding capability (Section 3.3). The decoder relies on
deconvolution to restore the features to the original feature map
size (Section 3.5). Global-Skip-Connections employ DA-Block to
purify the features of skip connection transmission. Furthermore,
they use the Global-Skip to further enhance the integrity of the
encoder and decoder (Section 3.4). MIPC-Net, comprised of three
integral components, exhibits superior performance in image
segmentation.

Given the constraints highlighted by traditional models, it is
evident that while the conventional U-Net architecture excels in
capturing image features, it lacks effective methods for preserving
and extracting global features.

On the other hand, Transformers exhibit remarkable proficiency
in preserving and extracting global features through self-attention
mechanisms (Chen et al., 2021). However, they are inherently
limited to unidirectional positional attention, overlooking the
utilization of image-special position and channel. To address

FIGURE 2
The illustration of the proposed MIPC-Net is depicted. For input medical images, they are fed into the encoder equipped with Transformer
mechanisms and MIPC-Block. Subsequently, the features are restored to the original feature maps through the Global-Skip-Connections and the
decoder. This process yields the final image prediction results.
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these limitations, we have integrated the Mutual Inclusion of
Position and Channel Block (MIPC-Block) and leveraged Global-
Skip-Connections to enhance the integrity of the encoder and
decoder, thereby improving medical image segmentation
performance.

In medical image segmentation tasks, current models usually use
attention mechanisms to enhance the segmentation capabilities of
the model. For example,: TransUNet uses ViT, and Swin-Unet uses
Swin-Transformer. These approaches fail to adapt attention
mechanisms to the specific features of the image, hence unable to
extract deep image-related information. To solve this problem, our
proposedMIPC-Block enhances the segmentation capabilities of the
model by leveraging image-specific features related to position and
channel. It effectively combines these two features in a mutually
inclusive manner to extract deeper image-related features, achieving
subdivided extraction of image features and more fully
mining features.

As illustrated in Figure 3, the MIPC-Block architecture
seamlessly integrates image-specific channel and positional
features, enriched by the application of residual concepts.
The amalgamation of channel and positional features
empowers the MIPC-Block with profound insights into the
image, surpassing the capabilities of conventional
attention modules.

The MIPC-Block architecture consists of three parts: PART A,
PART B, and PART C. PART A and PART C serve as crucial feature
extraction modules, ingeniously integrating both position and
channel information of image features. The tight coupling of
positional and channel information further enhances the feature
extraction capability of the module. In Part A, our module
undergoes a channel-wise average pooling layer (ChannelPool) to
compress the feature map. Subsequently, it passes through fully
connected layers to learn the correlations between different channels
in the features. Following this, a sigmoid function is applied to
constrain the values between 0 and 1, yielding channel correlations.
Multiplying these correlations with the features obtained through
the Position Attention Module (PAM) results in information where
the position is the primary focus and channels act as auxiliary.
Conversely, in Part C, features are first subjected to MaxPool and
AvgPool operations (PositionPool) along the spatial dimensions.
The resulting features from these two pooling operations are
concatenated, and through fully connected layers, correlations
between different spatial dimensions in the features are learned.
Similar to Part A, a sigmoid function constrains the values between
0 and 1. Multiplying these spatial correlations with the features
obtained through the Channel Attention Module (CAM) produces
information where channels are the main focus, and spatial
dimensions serve as auxiliary. Part B employs a residual

FIGURE 3
The proposed Position and Channel Mutual Inclusion Block (MIPC-Block) integrates positional, channel, and residual mechanisms. In Part A,
attention is directed toward channels during the extraction of positional features, while in Part C, the reverse is applied.
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approach to minimize the loss of valuable original information
introduced by the convolution and attention modules.

MIPC-Net offers several key advantages in medical image
segmentation. Firstly, it integrates position and channel
information through the novel Mutual Inclusion of Position and
Channel (MIPC) block, enhancing feature extraction by leveraging
mutually inclusive attention mechanisms. This approach enables
deeper extraction of image-specific features, thereby improving
segmentation accuracy. Additionally, the model employs Global-
Skip-Connections and DA-Blocks to purify and enhance the
integrity of feature transmission between the encoder and
decoder. Compared to traditional models such as U-Net, MIPC-
Net excels in capturing and preserving global features, overcoming
the limitations of conventional architectures. Finally, by adapting to
the unique characteristics of medical images, MIPC-Net effectively
extracts image-specific information, enhancing its segmentation
capability, particularly in boundary segmentation.

3.2 Mutual inclusion of position and channel

Part A (Position-Dominant Extraction with Channel): As
illustrated in Figure 3, the extraction of channel information
from the input features is facilitated by ChannelPool.
Subsequently, a series of fully connected layers is employed to
capture inter-channel correlations, yielding Equation 1.
Concurrently, another set of input features undergoes processing
by the Position Attention Module (PAM) to extract position
information features, resulting in Equation 2. Following sigmoid
processing of β1, it is multiplied element by element with β2 to
obtain Equation 3. In contrast to Part C, where channel-wise
modulation is utilized for distributing feature maps from the
spatial module, this process generates feature maps with spatial
and channel emphasis.

β1 � FC ChannelPool Input( )( ), (1)
β2 � PAM Input( ), (2)
β � Sigmoid β1( ) · β2, (3)

PART B (Residual Part): As shown in the figure, Part A and Part
B inputs undergo a convolutional operation to obtain Equation 4
and Equation 5, respectively. Subsequently, the two are element-wise
multiplied and then passed through another convolutional layer to

yield Equation 6. It extracts and refines features from both inputs,
thereby refining the original features.

ω1 � Conv PartA′s Input( ), (4)
ω2 � Conv PartC′s Input( ), (5)

ω � Conv ω1 · ω2( ), (6)

PART C (Channel-Dominant Extraction with Position): As
shown in Figure 3, the input features undergo PositionPool along
the spatial dimension to effectively extract spatial information while
eliminating noise and irrelevant details in the image. Subsequently,
the feature maps are further processed by convolution to capture
spatial correlations, resulting in Equation 7. Simultaneously, another
set of input features is processed by the Channel Attention Module
(CAM) to extract channel features, denoted as Equation 8. The
channel attention module is employed to extract detailed channel
features from the image. After sigmoid processing of α1, it is
element-wise multiplied by α2 to obtain the output Equation 9.
Unlike Part A, where the feature maps extracted by the spatial
module are weighted by the channel attention module, effectively
integrating image-specific spatial and channel features, generating
feature maps with channel emphasis and spatial emphasis.

α1 � Conv PositionPool Input( )( ), (7)
α2 � CAM Input( ), (8)
α � Sigmoid α1( ) · α2, (9)

Finally, the outputs of Parts A, B, and C are summed along the
channel dimension and then passed through a residual network (see
Figure 4) to obtain the Equation 10.

Output � Residual α + β + ω( ), (10)

The Mutual Inclusion of Position and Channel block (MIPC-
Block) mutually includes the image features’ position and channel,
capturing deeper features associated with image features compared
to standard attention modules.

3.3 Encoder

As shown in Figure 2, the encoder consists of four key
components: convolution blocks, MIPC-Block, an embedding
layer, and transformer layers.

FIGURE 4
The specific structure of the last Residual module in MIPC-Block.
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It is particularly significant that the MIPC-Block is introduced
just before the transformer layers. The purpose is to subject the
convolutional features to specialized image processing, enhancing
the transformer’s feature extraction capabilities with respect to the
image’s content. The Transformer architecture excels at capturing
global information. Integrating the MIPC-Block enhances its ability
to maintain and extract global features specifically from images,
enriching the Transformer’s image processing capabilities. This
approach effectively combines image-specific channel and
positional features with global features.

It begins with three U-Net convolutional blocks. Each block
consists of a series of convolutions, normalization, and
activation, designed to progressively refine input features,
halve their size, and double their dimensions, thereby
achieving efficient feature extraction. The MIPC-Block then
purifies these features, emphasizing image-specific details for
deeper analysis. An embedding layer adjusts feature
dimensions for transformer layers, which address CNN
limitations by capturing global information. Finally, the
transformer’s output is recombined and directed through skip
connections to the decoder, ensuring comprehensive information
retention and enhancing segmentation performance in a
streamlined process.

By incorporating convolutional neural networks, transformer
architecture, and Mutual Inclusion of Position and Channel, the
encoder configuration ultimately attains robust feature extraction
capabilities, resulting in synergistic strength.

3.4 Global-Skip-Connections

Within the framework of the U-shaped encoder-decoder
architecture, skip connections are utilized to alleviate semantic
discrepancies between encoder and decoder components.
However, the optimization of skip connections remains an
area in need of improvement. Primarily, there exist challenges
such as loss of feature fidelity during transmission and
insufficient overall integrity between the encoder and decoder.
To address these issues, we employed two strategies: purifying the
features transmitted via skip connections and augmenting skip
connections with global information. These approaches facilitate
the decoder in accurately restoring the original feature map,
thereby significantly enhancing the model’s segmentation
capabilities. Here we call the entire skip connection part
Global Mutual Inclusion Of Position With Channel-Skip-
Connections (Gloabl-Skip-Connections). It is divided into two
parts: DA-Skip-Connections and Skip-Residue.

3.4.1 DA-Skip-Connections
Analogous to the conventional U-structured models

(Ronneberger et al., 2015; Shi et al., 2020a), our approach utilizes
traditional skip connections to diminish the semantic disparity
between the encoder and decoder. We have incorporated Dual
Attention Blocks (DA-Blocks) within all three skip connections
to further narrow this gap, as illustrated in Figure 5. This
enhancement stems from our observation that features conveyed
through skip connections frequently harbor redundancies, which
DA-Blocks are adept at filtering out, thereby refining the feature
transmission process.

Integrating Dual Attention Blocks (DA-Blocks) into skip
connections empowers the model to meticulously refine features
relayed from the encoder, through the lens of image-specific
positional and channel-based considerations. This process
facilitates the extraction of more pertinent information while
minimizing redundancy. Such an enhancement bolsters the
model’s robustness and significantly reduces the likelihood of
overfitting, thereby contributing to superior performance and
enhanced generalization capabilities.

3.4.2 Skip-Residue
Our approach differs from other U-Net models through the fine-

tuning of decoder features and their strategic integration into the
skip connections, as illustrated in Figure 2. The purple lines in the
figure represent our added Skip-Residue, a skip connection that
combines our custom MIPC-Block with the concept of capturing
global information. This approach is motivated by the realization
that, although encoder features are extensively leveraged via skip
connections, decoder features often remain underexploited. By
purifying decoder features before their integration into skip
connectionsâ€“thereby enhancing the restoration process of the
original feature mapâ€“we facilitate a more profound utilization
of decoder features.

Purifying features within the decoder, after three stages of
upsampling, using Mutual Inclusion of Position and Channel
(MIPC-Blocks) — oriented specifically towards image-relevant
channels and positions — significantly elevates the quality of
information. Subsequent transmission of these enhanced features
to the skip connections, followed by their integration into the
decoder, ensures the comprehensive utilization of decoder
features. Incorporating the Skip-Residue module only in the top-
level skip connection, rather than in every layer or other skip
connections, allows for the effective utilization of the model’s
overall framework. This approach maximizes the extraction of
valuable information while avoiding the potential negative effects
of overemphasizing image features. This methodology effectively

FIGURE 5
Architecture of dual attention block (DA-Block).
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minimizes redundancy between encoder and decoder, enriches
feature depth, mitigates overfitting risks, and augments the
modelâ€™s image segmentation and generalization capabilities.

3.5 Decoder

As depicted in Figure 2, the diagram’s right section represents
the decoder. The decoder’s fundamental task is to leverage features
sourced from the encoder and those transmitted via skip
connections. Through processes including upsampling, it
endeavors to accurately reconstruct the original feature map.

The decoder architecture is structured around three pivotal
elements: feature fusion, the segmentation head, and a series of
three upsampling convolution blocks. Initially, feature fusion
operates by amalgamating feature maps received through skip
connections with current feature maps, thereby equipping the
decoder to accurately reconstitute the original feature
map. Subsequently, the segmentation head undertakes the task of
adjusting the final output feature map back to its original
dimensions. The final element comprises three upsampling
convolution blocks, methodically increasing the size of the input
feature map at each stage to adeptly reinstate the image’s resolution.

Owing to the synergistic operation of these three components,
the decoder showcases formidable decoding prowess. It adeptly
harnesses features conveyed via skip connections as well as those
derived from intermediate layers, enabling a proficient
reconstruction of the original feature map.

4 Experiment

4.1 Datasets

In the Dataset section of our paper, we chose to conduct
experiments on two distinct datasets: Synapse (Landman et al.,
2015), ISIC 2018 (Codella et al., 2019; Tschandl et al., 2018) and
Segpc (Gupta et al., 2021) for the following reasons:

Firstly, the Synapse dataset is among the most frequently utilized
benchmark datasets in medical image segmentation, featuring
segmentation tasks for eight different organs. This variety not
only challenges but also demonstrates the generalization
capabilities of our model across diverse anatomical structures.

Secondly, the selection encompasses both a 3D multi-class
segmentation challenge (Synapse) and a 2D single-class
segmentation task (ISIC 2018; Segpc). This combination allows
us to evaluate our model’s segmentation abilities from different
perspectives, effectively showcasing its versatility and robustness in
handling both complex three-dimensional data and simpler two-
dimensional images.

This strategic choice of datasets underscores our commitment to
validating the model’s performance across a range of segmentation
tasks, highlighting its potential for widespread application in
medical image analysis.

4.1.1 Synapse
Under Institutional Review Board (IRB) supervision,

50 abdomen CT scans of were randomly selected from a

combination of an ongoing colorectal cancer chemotherapy trial,
and a retrospective ventral hernia study. After data processing, the
Synapse dataset consists of 30−ΔΔCT scan images of eight abdominal
organs (Landman et al., 2015. Including left kidney, right kidney,
aorta, spleen, gallbladder, liver, pancreas and stomach, A total of
3779 axial contrast-enhanced abdominal clinical CT images were
obtained. In-plane resolution varies from 0.54 × 0.54 mm2 to
0.98 × 0.98 mm2, while slice thickness ranges from 2.5 to 5.0 mm.

4.1.2 ISIC-2018-task
ISIC-2018-dataset used in the 2018 ISIC Challenge addresses the

challenges of skin diseases (Codella et al., 2019; Tschandl et al.,
2018). It comprises a total of 2,512 images, with a file format of JPG.
Where the ground truth data of the mask image is generated by
several techniques and has been reviewed and curated by a
specialized dermatologist. The images of lesions were obtained
using various dermatoscopic techniques from different
anatomical sites (excluding mucous membranes and nails). These
images are sourced from historical samples of patients undergoing
skin cancer screening at multiple institutions. Each lesion image
contains only a primary lesion.

4.1.3 Segpc
This challenge targets robust segmentation of cells and is the first

stage in building such tools for plasma cell cancers known as
multiple myeloma (MM), a blood cancer. Provides images of
stained colors normalized. The Segpc dataset (Gupta et al., 2021)
contains a total of 298 images. Images are derived from microscope
and camera shots.

4.2 Implementation settings

4.2.1 Baselines
In order to innovate in the field of medical image segmentation,

we conducted benchmark testing of our proposed model against a
series of well-regarded baselines, including U-Net, UNet++,
Residual U-Net, Att-UNet, TransUNet, and MultiResUNet.
U-Net has been a foundational model in the medical image
segmentation domain (Ronneberger et al., 2015). UNet++
enriches the skip connections (Zhou et al., 2018). Residual U-Net
integrates a single residual module into the U-Net model
(Diakogiannis et al., 2020), while MultiResUNet incorporates
multiple residual modules (Ibtehaz and Rahman, 2020). Att-UNet
utilizes attention mechanisms to improve the weight of feature maps
(Oktay et al., 2018). Finally, TransUNet integrates the Transformer
architecture, establishing a new benchmark in segmentation
accuracy (Chen et al., 2021). Through comprehensive
comparisons with these renowned baselines, our objective is to
highlight the unique advantages and wide-ranging potential
applications of our proposed model. Additionally, we
benchmarked our model against advanced models.
UCTransNet allocates attention modules in the traditional U-Net
model for skip connections (Wang et al., 2022a), while MISSFormer
moves attention module allocation into a Transformer module-
based U-shaped structure (Huang et al., 2022). TransNorm
integrates Transformer modules into the encoder and skips
standard U-Net connections (Azad et al., 2022). A novel
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Transformer module was designed, and a model named MT-UNet
was constructed with it (Wang et al., 2022b). Swin-UNet further
enhances segmentation by extensively applying Swin-transformer
modules (Cao et al., 2022). DA-TransUNet enhances model
segmentation capabilities by using image feature location
contracts (Sun et al., 2023). Through extensive comparisons with
current state-of-the-art solutions, we aim to showcase its
outstanding segmentation performance.

4.2.2 Implementation details
We implemented MIPC-Net using the PyTorch framework and

trained it on a single NVIDIA RTX 3090 GPU (Paszke et al., 2019).
The Transformer module we use employs the pre-trained model
“R50-ViT”. The input resolution and patch size set to 224 × 224 and
16, respectively. We trained the model using the SGD optimizer,
setting the learning rate to 0.01, momentum of 0.9, and weight decay
of 1e-4. The default batch size was set to 24. The loss function
employed for dataset is defined as follows:

Loss � 1
2
× Cross − Entropy Loss + 1

2
× DiceLoss

4.2.3 Model evaluation
When evaluating the performance of MIPC-Net, we utilize a

comprehensive set of metrics, including Dice Coefficient (DSC), and
Hausdorff Distance (HD). These metrics are industry standards for
computer vision andmedical image segmentation and allow a multi-
faceted assessment of a model’s accuracy, precision, and robustness.

AC(Accuracy): Accuracy is a widely usedmetric that assesses the
overall correctness of a model’s predictions. It calculates the
proportion of correctly predicted samples over the total number
of samples. Accuracy gives a general idea of how well the model is
performing across all classes.

AC � TP + TN

TP + TN + FP + FN

PR (Precision): Precision focuses on the accuracy of the positive
predictions made by the model. Precision is the ratio of correctly
predicted positive observations to the total predicted positives. High
precision indicates that the model is good at not misclassifying
negative instances as positive.

PR � TP

TP + FP

SP (Specificity): Specificity measures the accuracy of negative
predictions made by the model. Specificity is the ratio of correctly
predicted negatives to the total predicted negatives. A high
specificity suggests that the model is effective at correctly
identifying true negatives.

SP � TN

TN + FP

In summary, Accuracy provides an overall view of model
performance, Precision emphasizes positive predictions’ accuracy,
and Specificity assesses the accuracy of negative predictions.

The Dice coefficient (also known as SÃ¸rensen-Dice coefficient,
F1-score, DSC) is a measure of model performance in image
segmentation tasks and is particularly useful for dealing with

class imbalance problems. It measures the degree of overlap
between prediction results and ground-truth segmentation
results, and is particularly effective when dealing with object
segmentation with unclear boundaries. The Dice coefficient is
commonly used in image segmentation tasks as a measure of the
accuracy of the model in the target area.

Dice P, T( ) � |P1 ∩ T1|
|P1| + |T1|5Dice � 2|T ∩ P|

|F| + |P|
Hausdorff distance (HD) is a distance metric used to measure

the similarity between two sets and is often used to evaluate the
performance of models in image segmentation tasks. It is
particularly useful in the field of medical image segmentation,
where it can quantify the difference between predicted and true
segmentations, and is particularly convincing in evaluating
boundary region segmentations. The calculation of the Hausdorff
distance captures the maximum difference between the true and
predicted segmentation results.

H A, B( ) � max max
a∈A

min
b∈B

‖a − b‖,max
b∈B

min
a∈A

‖b − a‖{ }

We use Dice and HD in the Synapse dataset, use the AC, PR, SP,
Dice in the ISIC-2018-Task and Segpc datasets.

4.3 Comparison to the state-of-the-
art methods

Our MIPC-Net has achieved promising results on the Synapse,
ISIC 2018-Task, and Segpc datasets, showcasing its versatility and
effectiveness across a range of medical image segmentation tasks. On
the Synapse dataset, MIPC-Net excels in complex multi-organ 3D
segmentation, significantly improving segmentation accuracy and
boundary delineation compared to state-of-the-art models.
Similarly, on the ISIC 2018-Task dataset, our model effectively
handles the challenges of skin lesion segmentation,
outperforming existing transformer-based models in multiple
metrics such as Accuracy, Precision, and Specificity. Additionally,
MIPC-Net demonstrates its ability to tackle simpler binary lesion
segmentation tasks on the Segpc dataset, where it consistently
achieves superior performance in accurately separating
overlapping cells and dealing with low contrast. These results
highlight the robustness and generalizability of MIPC-Net,
making it a powerful solution for both complex and simpler
segmentation tasks in medical segmentation.

4.3.1 Synapse
To evaluate the performance of our proposed MIPC-Net model,

we conducted extensive experiments on the widely-used Synapse
multi-organ segmentation dataset (Landman et al., 2015). We
compared MIPC-Net with 12 state-of-the-art (SOTA) methods,
including both CNN-based and transformer-based approaches,
such as U-Net (Ronneberger et al., 2015), Res-Unet
(Diakogiannis et al., 2020), TransUNet (Chen et al., 2021),
U-Net++ (Zhou et al., 2018), Att-Unet (Oktay et al., 2018),
TransNorm (Azad et al., 2022), UCTransNet (Wang et al.,
2022a), MultiResUNet (Ibtehaz and Rahman, 2020), Swin-Unet
(Cao et al., 2022), MT-UNet (Wang et al., 2022b), and DA-
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TransUNet (Sun et al., 2023). The experimental results are presented
in Table 1.

As shown in Table 1, MIPC-Net achieves the highest average Dice
Similarity Coefficient (DSC) of 80.00% and the lowest average
Hausdorff Distance (HD) of 19.32 mm among all the compared
methods. This demonstrates the superior performance of MIPC-Net
in both overall segmentation accuracy and boundary delineation
precision. Compared to the popular transformer-based model
TransUNet (Chen et al., 2021), MIPC-Net significantly improves the
DSC by 2.52% and reduces the HD by 12.37 mm, highlighting the
effectiveness of our proposed mutual inclusion mechanism and global
integration strategy.

Moreover, MIPC-Net consistently outperforms TransUNet in terms
of DSC for all eight individual organs, with improvements ranging from

0.07% to 4.12%. Notably, MIPC-Net achieves substantial DSC
improvements of 3.29%, 3.35%, 3.59%, 4.12%, and 3.93% for the
gallbladder, right kidney, pancreas, spleen, and stomach, respectively.
These organs are known to be particularly challenging to segment due to
their variable shapes, sizes, and locations, as well as their low contrast
with surrounding tissues. The significant performance gains achieved by
MIPC-Net demonstrate its strong capability in handling these difficult
cases and accurately delineating organ boundaries.

Figure 6 provides a visual comparison of the DSC and HD values
achieved by MIPC-Net and several other advanced models on the
Synapse dataset. It is evident that MIPC-Net achieves the highest
DSC and the lowest HD among all the compared models, further
confirming its state-of-the-art performance in multi-organ
segmentation.

TABLE 1 The experimental results on the Synapse dataset include the average Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) for each organ,
as well as the individual DSC for each organ.

mDSC mHD DSC of a single organ

Model Year DSC↑ HD↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

U-Net
(Ronneberger
et al., 2015)

2015 76.85% 39.70 89.07 69.72 77.77 68.6 93.43 53.98 86.67 75.58

U-Net++
(Zhou et al.,
2018)

2018 76.91% 36.93 88.19 68.89 81.76 75.27 93.01 58.20 83.44 70.52

Residual U-Net
(Diakogiannis
et al., 2020)

2018 76.95% 38.44 87.06 66.05 83.43 76.83 93.99 51.86 85.25 70.13

Att-Unet
(Oktay et al.,
2018)

2018 77.77% 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75

MultiResUNet
(Ibtehaz and
Rahman, 2020)

2020 77.42% 36.84 87.73 65.67 82.08 70.43 93.49 60.09 85.23 75.66

TransUNet
(Chen et al.,
2021)

2021 77.48% 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

UCTransNet
(Wang et al.,
2022a)

2022 78.23% 26.75 84.25 64.65 82.35 77.65 94.36 58.18 84.74 79.66

TransNorm
(Azad et al.,
2022)

2022 78.40% 30.25 86.23 65.1 82.18 78.63 94.22 55.34 89.50 76.01

MT-UNet
(Wang et al.,
2022b)

2022 78.59% 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

swin-unet (Cao
et al., 2022)

2022 79.13% 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

DA-
TransUNet
(Sun et al.,
2023)

2023 79.80% 23.48 86.54 65.27 81.70 80.45 94.57 61.62 88.53 79.73

MIPC-
Net(Ours)

80.00% 19.32 87.30 66.43 83.24 80.37 94.48 59.45 89.20 79.55

The bold values indicate the best performance among all the methods compared in each respective evaluation metric. For each row in a table, the bold number represents the method that

achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.
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To gain deeper insights into the boundary delineation
performance of MIPC-Net, we also evaluated the HD metric for
each individual organ, as shown in Table 2. MIPC-Net achieves the
lowest HD for five out of eight organs, including the aorta,
gallbladder, right kidney, pancreas, and stomach. Particularly,
MIPC-Net significantly reduces the HD by 6.31 and 2.73 mm for
the aorta compared to TransUNet and DA-TransUNet, respectively.
These results highlight the superior boundary segmentation
capability of MIPC-Net, which can be attributed to the effective
integration of position and channel information through our
proposed mutual inclusion mechanism.

It is worth noting that while MIPC-Net achieves state-of-the-
art performance, its computational efficiency is comparable to
that of TransUNet. The image segmentation time of MIPC-Net is
38.51 m, only slightly higher than TransUNet’s 33.58 m. This
indicates that the superior performance of MIPC-Net does not
come at the cost of significantly increased computational
overhead, making it a practical solution for real-world clinical
applications.

Figure 7 presents a qualitative comparison of the segmentation
results produced by TransUNet and MIPC-Net on the Synapse
dataset. The regions highlighted by orange borders clearly
demonstrate that MIPC-Net generates more accurate and precise
segmentations compared to TransUNet, especially in challenging
areas such as organ boundaries and small structures. The visual
results further validate the effectiveness of our proposed approach in
capturing fine-grained details and producing high-quality
segmentation masks.

The experimental results clearly demonstrate that MIPC-Net
outperforms existing models, in both segmentation accuracy and
boundary delineation, particularly for challenging organs.

4.3.2 ISIC 2018-task dataset
To further validate the generalizability of MIPC-Net, we

conducted experiments on the ISIC 2018 dataset (Codella et al.,
2019; Tschandl et al., 2018) for skin lesion segmentation. This
dataset presents unique challenges, such as varying lesion sizes,
shapes, and color variations.

Table 3 compares MIPC-Net with several state-of-the-art
models on the ISIC 2018 dataset. MIPC-Net achieves the highest
Accuracy (AC) of 0.9560, Precision (PR) of 0.9279, and Specificity
(SP) of 0.9831, demonstrating its superior performance in accurately
segmenting skin lesions. Notably, MIPC-Net significantly
outperforms the transformer-based model TransUNet, with
improvements of 0.0108 in AC, 0.0453 in PR, 0.0178 in SP, and
0.0376 in Dice index. These improvements can be attributed to the
effectiveness of our proposed mutual inclusion mechanism and
global integration strategy in capturing both local and global
contextual information.

Interestingly, while MIPC-Net achieves the highest AC, PR, and
SP, its Dice index of 0.8875 is slightly lower than that of UCTransNet
(0.8898). This suggests a potential trade-off between precision and
recall, which could be further investigated in future work.

Figure 8 qualitatively compares the segmentation results of
TransUNet and MIPC-Net on the ISIC 2018 dataset. MIPC-Net
generates more precise and accurate segmentations, especially in

TABLE 2 The Hausdorff Distance (HD) for each organ in the Synapse dataset experimental results.

Model Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

TransUNet 14.94 mm 15.81 mm 59.92 mm 45.76 mm 37.86 mm 17.34 mm 43.33 mm 18.56 mm

swin-unet 8.64 mm 27.98 mm 41.83 mm 34.00 mm 22.17 mm 12.43 mm 9.90 mm 15.45 mm

DA-TransUNet 11.37 mm 27.93 mm 30.76 mm 48.93 mm 20.26 mm 12.29 mm 12.91 mm 23.37 mm

MIPC-Net(Ours) 8.63 mm 15.74 mm 41.65 mm 27.12 mm 22.33 mm 11.58 mm 12.09 mm 15.39 mm

The bold values indicate the best performance among all the methods compared in each respective evaluation metric. For each row in a table, the bold number represents the method that

achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.

FIGURE 6
Line chart of DSC and HD values of several advanced models in the Synapse dataset.
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challenging cases with irregular lesion boundaries and low contrast.
The visual results further validate the superiority of our approach in
capturing fine-grained details and producing high-quality
segmentation masks for skin lesions.

4.3.3 Segpc dataset
We further assessed the performance of MIPC-Net on the Segpc

dataset (Gupta et al., 2021) for cell segmentation in microscopy
images. This dataset presents challenges such as overlapping cells,

FIGURE 7
Segmentation results of TransUNet and MIPC-Net on the Synapse dataset.
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variable cell sizes and shapes, and low contrast between cells and
background.

Table 4 compares MIPC-Net with state-of-the-art models on the
Segpc dataset. MIPC-Net consistently outperforms all compared
methods, achieving the highest Accuracy (AC) of 0.9817, Precision
(PR) of 0.9079, Specificity (SP) of 0.9898, and Dice index of 0.8675.
Compared to TransUNet, MIPC-Net significantly improves
performance across all metrics, with improvements of 0.0146 in

AC, 0.0481 in PR, 0.0016 in SP, and 0.067 in Dice index. These
substantial improvements demonstrate the effectiveness of our
approach in accurately separating overlapping cells and dealing
with low contrast.

Notably, MIPC-Net achieves a significantly higher Dice index
(0.8675) compared to all other methods, indicating a good balance
between precision and recall when segmenting cells, which is crucial
for accurate cell analysis and quantification.

TABLE 3 Experimental results on the ISIC2018-Task dataset.

Method AC PR SP Dice

U-Net (Ronneberger et al., 2015) 0.9446 0.8746 0.9671 0.8674

Att-UNet (Oktay et al., 2018) 0.9516 0.9075 0.9766 0.8820

U-Net++ (Zhou et al., 2018) 0.9517 0.9067 0.9764 0.8822

MultiResUNet (Ibtehaz and Rahman, 2020) 0.9473 0.8765 0.9704 0.8694

Residual U-Net (Diakogiannis et al., 2020) 0.9468 0.8753 0.9688 0.8689

TransUNet (Chen et al., 2021) 0.9452 0.8823 0.9653 0.8499

UCTransNet (Wang et al., 2022a) 0.9546 0.9100 0.9770 0.8898

MISSFormer (Huang et al., 2022) 0.9453 0.8964 0.9742 0.8657

MIPC-Net(ours) 0.9560 0.9279 0.9831 0.8875

The bold values indicate the best performance among all the methods compared in each respective evaluation metric. For each row in a table, the bold number represents the method that

achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.

FIGURE 8
Segmentation results of TransUNet and MIPC-Net on the ISIC2018-Task dataset.

TABLE 4 Experimental results on the Segpc dataset.

Method AC PR SP Dice

Residual U-Net (Diakogiannis et al., 2020) 0.9733 0.8917 0.9871 0.8479

MultiResUNet (Ibtehaz and Rahman, 2020) 0.9753 0.8391 0.9834 0.8613

TransUNet (Chen et al., 2021) 0.9671 0.8598 0.9882 0.8005

MISSFormer (Huang et al., 2022) 0.9663 0.8152 0.9823 0.8082

DA-TransUNet (Sun et al., 2023) 0.9713 0.8789 0.9845 0.8366

MIPC-Net(ours) 0.9817 0.9079 0.9898 0.8675

The bold values indicate the best performance among all the methods compared in each respective evaluation metric. For each row in a table, the bold number represents the method that

achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.
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Figure 9 visually compares the segmentation results of
TransUNet and MIPC-Net on the Segpc dataset. MIPC-Net
generates more accurate and precise segmentations, successfully
separating individual cells and capturing their fine boundaries,
even in dense cell clusters.

The strong performance of MIPC-Net on the ISIC 2018 and
Segpc datasets, along with its state-of-the-art results on the Synapse
dataset, highlights the versatility and generalizability of our
approach across different medical image segmentation tasks and
modalities.

4.4 Ablation study

To gain a deeper understanding of the effectiveness of the key
components in our proposed MIPC-Net model, we conducted a
comprehensive ablation study on the Synapse dataset. The study
focused on three main aspects: the effects of mutual inclusion of
position and channel, the impact of different configurations within
the MIPC-Block, and the influence of the Skip-Residue in skip
connections.

4.4.1 The effects of mutual inclusion of position
and channel

As shown in Table 5, MIPC-Net, which incorporates the mutual
inclusion mechanism, outperforms PC-Net by 0.91% in terms of
DSC and achieves a reduction of 4.02 mm in HD. This improvement
can be attributed to the effective integration of position and channel
information through the mutual inclusion mechanism. By allowing
the position and channel attention modules to interact and mutually
guide each other, MIPC-Net is able to capture more comprehensive
and discriminative features, leading to more accurate and precise
segmentations. In contrast, simply using position and channel
information independently, as in PC-Net, fails to fully exploit the
potential synergies between these two types of information, resulting
in suboptimal performance.

4.4.2 The effects of how to mix MIPC-Block
internal mechanisms

Table 6 presents the results of different configurations within the
MIPC-Block. The optimal configuration, where position attention (PAM)
is used as the primary focus and channel attention (ChannelPool) as the
auxiliary focus in Part A, and channel attention (CAM) is used as the
primary focus and position attention (PositionPool) as the auxiliary focus
in Part C, achieves the best performance with a DSC of 80.00% and an
HD of 19.32 mm. This suggests that a balance between position and
channel attention is crucial for achieving the best segmentation results. By
employing different primary attention modules in Part A and Part C, the
MIPC-Block is able to capture complementary information from both
position and channel perspectives, leading tomore comprehensive feature
extraction. Furthermore, the results demonstrate that using PAM and
CAM as the primary attention modules consistently outperforms using
ChannelPool and PositionPool as the primary modules, indicating that
the self-attention mechanisms employed in PAM and CAM are more

FIGURE 9
Segmentation results of TransUNet and MIPC-Net on the Segpc dataset.

TABLE 5 Effects of mutual inclusion of position and channel.

Mutual inclusion DSC↑ HD↓

PC-Net 79.09 23.34

MIPC-Net √ 80.00 19.32

The bold values indicate the best performance among all the methods compared in each

respective evaluation metric. For each row in a table, the bold number represents the

method that achieves the highest score or lowest error on that particular metric,

demonstrating its superior performance relative to the other approaches.

TABLE 6 Effects of how to mix MIPC-Block internal mechanisms.

Part.A primary Part.A auxiliary Part.C primary Part.A auxiliary DSC↑ HD↓

MIPC-Net PAM ChannelPool CAM PositionPool 80.00 19.32

MIPC-Net PAM ChannelPool PositionPool CAM 78.87 21.55

MIPC-Net ChannelPool PAM CAM PositionPool 79.10 26.38

MIPC-Net ChannelPool PAM PositionPool CAM 79.11 24.27

The bold values indicate the best performance among all the methods compared in each respective evaluation metric. For each row in a table, the bold number represents the method that

achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.
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effective in capturing long-range dependencies and global contextual
information.

4.4.3 The effect of the Skip-Residue in skip
connections

Table 7 shows the impact of the Skip-Residue module on the
overall performance of MIPC-Net. Adding the Skip-Residue module
to the first skip connection layer alone achieves the best
performance, with a DSC of 80.00% and an HD of 19.32mm,
outperforming the baseline MIPC-Net without any Skip-Residue
by 0.72% in terms of DSC and reducing the HD by 5.95 mm. This
suggests that the Skip-Residue module is most effective when
applied to the shallower skip connection layers, particularly the
first layer, as it captures more low-level and spatial information
crucial for accurate boundary delineation. The Skip-Residue module
provides a direct path for the propagation of high-resolution spatial
information from the encoder to the decoder, helping to preserve
fine-grained details and improve localization accuracy. However,
applying the Skip-Residue module to all skip connection layers leads
to a significant performance drop, indicating that excessive use of
the module can be counterproductive.

In conclusion, the ablation study demonstrates the importance
of the mutual inclusion mechanism, the careful design of attention
mechanisms within the MIPC-Block, and the strategic placement of
the Skip-Residue module in skip connections. These components
work together to capture comprehensive and discriminative
features, leading to improved segmentation accuracy and precise
boundary delineation in medical images.

4.5 Discussion

In this study, we found that the Mutual Inclusion of image-
specific channels and positions can provide significant assistance for
medical image segmentation tasks. The proposed MIPC-Block,
based on the Mutual Inclusion mechanism, combined with Skip-
Residue, further enhances the overall integration of the encoder and
decoder. Our proposition has been validated through experiments
on datasets, with the HD metric showing improvement to 2.23 mm
compared to competing models on the Synapse dataset,
demonstrating strong boundary segmentation capabilities.

Analyzing the ablation experiments validates the effectiveness of
our proposed MIPC Block and Skip-Residue. Firstly, according to
the experimental results presented in Tables 5, 6, we conclude that
Mutual Inclusion of image feature positions and channels yields
better performance compared to simple usage. Additionally, as
demonstrated by the results in Table 7, the Skip-Residue module
enhances the overall integrity of the encoder-decoder. We conclude
that reducing the loss of effective features is of paramount
importance when deeply exploring features.

Despite these advantages, our model has some limitations. Firstly,
the introduction of MIPC-Block and DA-Blocks leads to an increase
in computational complexity. This added cost may pose a barrier for
real-time or resource-constrained applications. Furthermore, this
approach combines feature positions and channels attention with
the Vision Transformer in a parallel manner, without achieving deep
integration between them, indicating potential areas for further
research and enhancement. At the same time, exploring ways to
enhance performance while reducing computational complexity is
also an important direction to consider.

5 Conclusion

In conclusion, the proposed MIPC-Net represents a significant
advancement in medical image segmentation, offering a powerful tool
for precise boundary delineation. Inspired by radiologists’ working
patterns, our model integrates the Mutual Inclusion of Position and
Channel Attention (MIPC) module and the Skip-Residue, a global
residual connection, to effectively combine global and local features
while focusing on abnormal regions and boundary details. The
effectiveness of MIPC-Net is validated through extensive experiments
on three publicly accessible datasets, outperforming state-of-the-art
methods across all metrics and notably reducing the Hausdorff
Distance by 2.23 mm on the Synapse dataset. The mutual inclusion
mechanism and the Skip-Residue contribute to the model’s
superior performance by allowing for a more comprehensive
utilization of image features and enhancing the restoration of medical
images. The improved precision in boundary segmentation has the
potential to significantly impact clinical practice, leading to more
accurate diagnosis, treatment planning, and ultimately better patient
care. Future work may focus on extending the application of MIPC-Net

TABLE 7 Effects of the Skip-Residue in skip connections.

Skip-residue

1st 2nd 3rd DA-Skip-Connections Encoder with MIPC DSC↑ HD↓

MIPC-Net √ √ 79.28 25.27

MIPC-Net √ √ √ 80.00 19.32

MIPC-Net √ √ √ 79.90 21.82

MIPC-Net √ √ √ 78.64 27.78

MIPC-Net √ √ √ √ √ 78.25 28.06

MIPC-Net 77.48 31.69

The bold values indicate the best performance among all the methods compared in each respective evaluation metric. For each row in a table, the bold number represents the method that

achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.
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to other medical imaging modalities, exploring its potential in tasks
beyond segmentation, and incorporating domain-specific knowledge and
multi-modal data to further enhance the model’s performance and
robustness.

In future work, we will further explore the integration of image-
specific position and channel attention mechanisms with the self-
attention mechanism of Transformers, aiming to enhance the
model’s ability to more effectively capture both local and global
contextual information while improving the extraction of image-
related features. Additionally, we will focus on optimizing the
model’s efficiency, striving to reduce computational complexity
while enhancing its overall performance.
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