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Deep learning is progressively emerging as a vital tool for image reconstruction in
light fieldmicroscopy. The present review provides a comprehensive examination
of the latest advancements in light field image reconstruction techniques based
on deep learning algorithms. First, the review briefly introduced the concept of
light field and deep learning techniques. Following that, the application of deep
learning in light field image reconstruction was discussed. Subsequently, we
classified deep learning-based light field microscopy reconstruction algorithms
into three types based on the contribution of deep learning, including fully deep
learning-based method, deep learning enhanced raw light field image with
numerical inversion volumetric reconstruction, and numerical inversion
volumetric reconstruction with deep learning enhanced resolution, and
comprehensively analyzed the features of each approach. Finally, we
discussed several challenges, including deep neural approaches for increasing
the accuracy of light field microscopy to predict temporal information, methods
for obtaining light field training data, strategies for data enhancement using
existing data, and the interpretability of deep neural networks.

KEYWORDS

deep learning, light field microscopy, light field imaging, high resolution, volumetric
reconstruction

1 Introduction

By simultaneously capturing combined signals from different depths of an entire
volume in a single-camera-frame, light field microscopy (LFM) enables rapid spatial
dynamic imaging (Levoy et al., 2006), and has developed into a valuable tool for
structural and functional imaging of biological specimens. LFM usually necessitates
computational volumetric reconstruction using traditional algorithms like refocusing
(Dansereau et al., 2015; Jayaweera et al., 2020) or three-dimensional (3D)
deconvolution (Broxton et al., 2013). However, conventional algorithms are limited by
low efficiency and poor resolution, thereby hindering them for broader application of LFM.
Therefore, the need to achieve high efficiency and high-resolution image reconstruction is
crucial for the advance of LFM.

In recent years, deep learning has been widely used for variant applications,
including image classification (Yu et al., 2022; Dosovitskiy, 2020; Foret et al., 2020),
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semantic segmentation (Wang et al., 2023; Srivastava and
Sharma, 2024; Erisen, 2024), generation (Kim et al., 2023;
Walton et al., 2022; Sadat et al., 2023), denoising (Zhou et al.,
2020), restoration (Wan et al., 2022), super-resolution (Johnson
et al., 2016; Ledig et al., 2017; Shi et al., 2016), depth estimation
(Alhashim, 2018; Zhuang et al., 2022; Tateno et al., 2018) and
image reconstruction (Drozdova et al., 2024; Zhang et al., 2024;
Godard et al., 2017; Li et al., 2017; Liang et al., 2021; Quan et al.,
2021; Schlemper et al., 2017). The use of deep learning algorithms

has also boosted LFM (LeCun et al., 2015; Vizcaino et al., 2021a;
Wang et al., 2021; Yi et al., 2023; Wagner et al., 2021). For
instance, deep learning-based LFM has been applied to resolve
the activity of motor neurons in Caenorhabditis elegans with
single-cell resolution (Wang et al., 2021), to extract the calcium
signal in the brains of 5-day-old transgenic zebrafish (Danio
rerio) larvae (Wagner et al., 2021), and to reconstruct the high-
speed 3D voltage imaging in sparsely labeled dopaminergic
neurons in the fruit fly brain (Lu et al., 2023).

FIGURE 1
Acquisition of light field. (A)Multi-sensor capture: capturing the light field simultaneously using multiple cameras, most of which are camera arrays.
[modified from (Lin et al., 2015)] (B) Time-sequential capture: capturing the light field using multiple exposures from a single camera, which is time-
consuming. [modified from (Taguchi et al., 2010)] (C)Multiplexed capture: The process ofmapping complex high-dimensional data into two-dimensional
(2D) images. [modified from (Fan et al., 2022)].
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This review first introduces light field acquisition methods, and
explores the applicability of these methods in light field
microimaging, then introduces the current application of deep
learning in image processing technology and explores the
feasibility of deep learning technology in light field microimaging
reconstruction, and finally outlines the recent progress of deep
learning-based reconstruction algorithms for LFM. This paper
aims to provide a comprehensive review of deep learning-based
LFM, focusing primarily on network architecture, reconstruction
resolution, and running time to reveal current shortcomings, and
future possibilities.

2 Light field and deep learning

2.1 Principle of light field imaging

In the field of 3D space, the light field serves as a comprehensive
representation of all light rays existing in 3D space from any given
point in any direction. The concept of the “Light Field” was first
introduced by Alexander Gershun (Gershun, 1939), who proposed
five-dimensional (5D) plenoptic function L(x, y, z, θ,φ) ∈ R5 to
describe the light field, utilizing spatial coordinates (x, y, z) and
angular coordinates (θ,φ) to specify each ray. In contrast, Levoy and
Hanrahan (Levoy and Hanrahan, 2023) presented four-dimensional
(4D) representation L(u, v, s, t) ∈ R4 for the light field,
conceptualizing it as comprised of oriented lines in free space.
This representation is efficient in reducing data redundancy and
simplifying the reconstruction of the plenoptic function. The
parameterization L(u, v, s, t) defines these lines based on their
interactions with two arbitrarily positioned planes, where the first
plane is denoted by (u, v) and the second plane by (s, t). All light
field microscopy discussed subsequently in this paper is 4D
light field.

Typically, there are three strategies to acquire light field
information (Wu et al., 2017), multi-sensor capture (Figure 1A),
time-sequential capture (Figure 1B), and multiplexed imaging
(Figure 1C). Theoretically, all these three strategies aim to
acquire light field information but the approaches they utilize to
record light field information are totally different. Specifically, multi-
sensor capture utilizes multiple cameras to concurrently capture
light field, predominantly employing camera arrays (Lin et al., 2015;
Huang et al., 2023; Gu et al., 2020; Xu et al., 2020). This approach can
yield high spatial resolution imaging while capturing real-time
information, but the total setup is complex and expensive. In
time-sequential capture, a single camera is utilized to capture
light field through a series of exposures. This method is known
for being time-consuming and cannot provide real-time
information (Li et al., 2014; Taguchi et al., 2010; Dansereau
et al., 2017; Liu et al., 2022). On the other hand, multiplexed
imaging involves the conversion of high-dimensional data into a
more simplified two-dimensional (2D) image (Prevedel et al., 2014;
Mignard-Debise, 2015; Kim et al., 2016; Vizcaino et al., 2021b; Orth
and Crozier, 2012; Yang and Yuste, 2017; Fan et al., 2022) using a
microlens array (MLA) positioned in the optical instrument’s
intermediate image plane. By adopting this approach, the entire
imaging system is significantly streamlined with easy operation.
Consequently, light field camera and LFM developed based on the

multiplexing principle are widely used in volumetric imaging.
Particularly, LFM has demonstrated strong imaging ability in in-
vivo imaging of heartbeat, blood flow, and neural activity, and has
allowed 3D visualization of the spatial and temporal evolution
patterns of the signals and the mechanisms behind
biological processes.

2.2 Light field image reconstruction benefits
from deep learning

Light field reconstruction can be seen as a transformation
between the raw light field image and the reconstructed
volumetric image. Classical reconstruction methods address such
transformations from a physical-optical perspective through display
modeling, which can be classified into two categories: mathematical
inversion and numerical inversion. Refocusing is a typical
mathematical inversion method in light field reconstruction (Ng
et al., 2005; Alain et al., 2019) and is based on an idealized
mathematical model, that essentially superimposes and shifts
sub-aperture images over the entire aperture range. During the
reconstruction process, the difference between the actual situation
and the mathematical model is magnified, and thus prone to image
noises, and artifacts. Numerical inversion employs iterative
reconstruction for various imaging modalities to introduce
external a priori information, thereby greatly enriching the
information available for reconstruction and improving the
quality of the final image. One widely used numerical inversion
method is Richardson-Lucy deconvolution which relies on the
microscope’s point spread function and Poisson noise statistics
assumption (Prevedel et al., 2014; Richardson, 1972). However,
the accuracy of these classical reconstruction methods is
restricted by the premises of their physical models. These
methods are unable to capture the full statistical complexity of
microscopic images, and thus can only reconstruct high-quality
results in specific cases. In contrast, data-driven procedures,
especially deep learning methods, rely on high-resolution data to
optimize the reconstruction procedure, thereby usually offering
better resolution than conventional algorithms. Consequently,
deep learning-based methods allow high-resolution light field
reconstruction. For instance, deep learning methods have enabled
high-resolution LFM in the reconstruction of fluorescently labeled
blood vessels in mouse brain slices (Vizcaino et al., 2021a), neuronal
signals and analysis of the calcium activity patterns, four-
dimensional dynamics of red blood cells and cardiomyocytes
(Wang et al., 2021), continuous 3D observation of dynamic
processes (Yi et al., 2023), and imaging of zebrafish (Oryzias
latipes) embryos and zebrafish (D. rerio) larvae (Wagner et al., 2021).

Briefly, deep learning networks are primarily composed of
various nonlinear parameterized processing modules that
iteratively convert an input x into the anticipated output y,
generally approximating it as ŷ. It is theoretically posited that a
neural network possessing an ample quantity of parameters and a
minimum of three layers can approximate virtually any function
within its domain (Hornik et al., 1989). This assertion is founded on
the universal approximation theorem in the field of networks, which
suggests that with a sufficiently complex architecture, including an
adequate number of parameters and layers, the network can flexibly
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adapt and represent a vast array of intricate functions. Such a
network structure enables the model to intricately capture the
underlying patterns and relationships present in the data,
facilitating the acquisition of high-level abstraction to effectively
model complex functions, and thus network can also be called a
universal function approximator (Figure 2A). The main principle of
learning is to make accurate updates to the parameter values θ. The
learning process has two main steps. The first step requires passing
the input value x of the module forward once in the network to get
the approximation value ŷ. The differentiable nature of each module
within a neural network allows for the computation of partial
derivatives for the parameters θ. This property enables the
determination of how changes in these parameters impact both
the output ŷ and intermediate values z throughout the network
architecture. By calculating the partial derivatives ∂ŷ

∂θ and ∂z
∂θ, it

becomes feasible to assess the sensitivity of the network’s
predictions and internal representations to variations in the
model’s parameters. This differentiation capability plays a
fundamental role in the optimization process, as it facilitates the
adjustment of parameter values to minimize the discrepancy
between the network outputs and the anticipated output.
Ultimately, the ability to compute these partial derivatives for the

parameters empowers the neural network to iteratively refine its
internal representations and enhance its predictive performance
through the optimization of its parameters. Therefore, the second
step utilizes the back-propagation algorithm (Rumelhart et al., 1986)
to iteratively update the initially set θ value by efficiently calculating
all the partial derivatives or gradients by the chain rule and passing
them backward once. Using the loss function l(y, ŷ), the difference
between the anticipated output y and the network output ŷ can be
measured. To minimize this loss, a commonly employed approach
involves the utilization of optimizers such as Adam (Kinga and
Adam, 2014) to adjust the parameter denoted as θ iteratively.

The trained network is the solver to compute volumetric images
from the raw light field data, and directly impacts the quality of the
reconstructed image. Typically, to ensure the network is fully
optimized, high-resolution 3D images of the target samples are
first acquired, which can be obtained from simulated data or
experimental methods, such as confocal microscopy (Vizcaino
et al., 2021a), selective plane illumination microscopy (SPIM)
(Wagner et al., 2021) and light-sheet microscopy (Zhao et al.,
2020). Using the wave optics model, these high-resolution
volumetric images are projected into 2D light field images. In the
network training process, the raw light field images serve as the

FIGURE 2
Universal function approximator and back-propagation were used to learn light field reconstruction. (A) Learning process of universal function
approximator. (B) Multilayer neural networks and back-propagation were used to learn LFM direct reconstruction. [modified from (Lu et al., 2023)].
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initial input denoted as x. The network then extracts relevant
features by image convolution with kernels, ultimately generating
a set of 3D image stacks represented as ŷ (Figure 2B). Lastly, a
suitable loss function must be chosen. The loss function is then
minimized and kernels are updated using the network iteratively.
This process continues until the network is gradually optimized to
the point where it can produce a 3D image that closely resembles the
ground truth from the synthetic light field.

3 Deep learning-based reconstruction
algorithms for light field microscopy

Deep learning-based LFM image reconstruction has
demonstrated superior resolution than conventional methods
(Wang et al., 2021; Yi et al., 2023; Wagner et al., 2021), which
allows researchers to observe finer structures, such as subcellular

organelles or molecular complexes with greater clarity. The
improved performance of deep learning-based methods originates
from its upsampling design in the network, which can compensate
for the reduced resolution of raw light field images when the
volumetric information is encoded onto the 2D sensor. To attain
high resolution and high efficiency, deep learning methods can also
be integrated with numerical inversion strategy. Based on the
combination of deep learning and numerical inversion methods,
the current deep learning-based LFM algorithms can be subdivided
into three categories: fully deep learning-based method (type I)
(Figure 3A), deep learning enhanced raw light field image with
numerical inversion volumetric reconstruction (type II) (Figure 3B),
and numerical inversion volumetric reconstruction with deep
learning enhanced volumetric data (type III) (Figure 3C).

Type I method completely uses deep learning to reconstruct
the raw light field image into a 3D volume. This network needs to
accomplish both volumetric reconstruction and resolution

FIGURE 3
Three types of light field microscopy reconstruction methods. (A) Fully deep learning-based method. (B) Deep learning enhanced raw light field
image with numerical inversion volumetric. (C) Numerical inversion volumetric reconstruction with deep learning enhanced volumetric data. [modified
from (Lu et al., 2023)].
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improvement tasks simultaneously. The Type II method initially
uses deep learning algorithms to elevate the resolution of the raw
light field image, succeeded by a gradual reconstruction of the
light field image through the utilization of numerical inversion
methods. Type III method refers to the use of the numerical
inversion method to iteratively reconstruct the light field image
into poor 3D volume, and then use the deep learning method to
transform the low-resolution volume into high-resolution
volume. Specifically, the performance of these three types of
methods varies depending on the structure of the variant. Type
I methods use an end-to-end network, which has the advantage of
being able to quickly reconstruct a volumetric image from a light
field image as long as the network is appropriately trained, but is
more difficult to train due to the complexity of the network.
Compared to Type I methods, Type II and Type III methods have
the advantage of better generalization, but the numerical inverse
volumetric reconstruction in them requires iterative computation,
resulting in less efficient reconstruction. The Type III method has
a wider range of applications than the Type I and Type II methods,

but the drawback is that false results that deviate too much from
the real situation may occur. Each of these three types of methods
has its own advantages and disadvantages, which need to be
considered and weighed when applying them. In the future,
type I methods may become the mainstream of real-time
reconstruction of LFM, type II methods may become the
mainstream of high-resolution reconstruction of LFM, and type
III methods will be applied to a variety of 3D reconstruction in
addition to LFM.

3.1 Type I: Fully deep learning-basedmethod

The fully deep learning-based method is the most commonly
used deep learning-based method for light field reconstruction
(Figure 4). This approach uses the light field image as the input
x for conventional deep learning, generating the predicted volume as
the output ŷ, while the target volume (ground truth) serves as the
desired output y (Figure 2B). The most advanced networks based on

FIGURE 4
Fully deep learning-based method of light field microscopy. (A) LFMNet architecture (left), and the imaging result (right). Scale bars, 500 μm (LF
image), 10 μm (Network and Ground truth). [modified from (Vizcaino et al., 2021a)] (B) VCD-Net architecture (left) and the imaging result (right). Scale
bars, 50 μm. [modified from (Wang et al., 2021)] (C) F-VCD architecture (left), and the imaging result (right). Scale bars, 20 μm. [modified from (Yi et al.,
2023)] (D) HyLFM-Net architecture (left) and the imaging result (right). Scale bars, 50 μm. [modified from (Wagner et al., 2021)].
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fully deep learning-based methods currently include LFMNet, VCD-
Net, F-VCD, and HyLFM-Net (Figures 4A–D).

In these networks, LFMNet (Vizcaino et al., 2021a) is the earliest
architecture, which adds an initial layer (Conv4d (Choy et al., 2019))
to the U-Net. This design produced a fully convolutional network
with the first layer traversing each microlens and capturing its
surrounding neighborhood. The resulting output is then
transformed into a channel number that is equal to the depths
that need to be reconstructed. Subsequently, the tensor enters the
U-Net for feature extraction and 3D reconstruction. The LFMNet
has been mainly validated on images of fluorescently labeled blood
vessels in mouse brain slices and achieved reconstruction resolution
(0.086 μm) that was comparable to confocal microscopy. Compared
to previous methods, LFMNet has significantly improved
reconstruction accuracy, such as Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity (SSIM), and reconstruction
speed (75,000 times faster than deconvolution).

Following LFMNet, VCD-Net (Wang et al., 2021) was proposed,
which adopts the cascaded convolutional layer design of the U-Net
architecture, but differs from LFMNet in that the initial layer is no
longer designed using Conv4d. Instead, the initial layer is
transformed using SubPixel up-scaling (Shi et al., 2016) and a
convolutional layer to reformat pixels in the input 2D light field
raw image into different views, generating multi-channel outputs
representing different depths. VCD-Net has performed single-cell
resolution and up to 200 Hz volumetric imaging on the neuronal
activity of moving C. elegans and the blood flow of beating zebrafish
hearts, and has obtained uniform average resolutions within the
range of the 1.1 μm in both the axial directions.

F-VCD (Yi et al., 2023) is proposed based on VCD-Net, so it
provides improved reconstruction resolution, accuracy, and
efficiency over VCD-Net. The F-VCD comprises two primary
modules: the “F-Denoise” module and the “F-Reconstruction”
module. The F-Denoise module introduces a viewing angle
attention branch into the traditional RCAN network (Chen et al.,
2021) to balance the influence of different viewing angles, to denoise
raw light field images in a weighted way, because light field images
from different viewing angles have different signal-to-noise ratio
(SNR). The F-Reconstruction module is based on VCD-Net but has
added three dilated convolution blocks to the original U-Net coding
blocks of VCD and replaced the normal convolution operation with
a residual block. This increases the number of input channels and
expands the lateral size of the extracted features. To prevent the loss
of subtle signals in the optimization process of deep networks,
adjustments have been made to the normalization layer and
activation function, replacing them with instance normalization
and LeakyRelu, respectively. The F-VCD has been mainly
validated on live-cell imaging and fixed-cell imaging. In live-cell
imaging, the F-VCD technique enabled the achievement of 3D
super-resolution imaging with a resolution of approximately
180 nm × 180 nm × 400 nm and was able to capture the rapid
motion and morphological changes of mitochondria within cells,
including mitochondrial fusion, fission, and dynamic tubulation, at
a rate of up to 50 Hz. In fixed-cell imaging, F-VCD significantly
improved the spatial resolution and contrast, and reduced axial
artifacts, enabling clear visualization of organelle structures such as
mitochondria and the endoplasmic reticulum. Specifically, F-VCD
improved the axial resolution from approximately 400 nm to

approximately 320 nm and achieved a 2-fold increase in lateral
and a 1.5-fold increase in axial resolution.

HyLFM-Net is different from the above methods. Instead of
using a U-Net, HyLFM-Net (Wagner et al., 2021) consists of a series
of residual blocks (Kaiming et al., 2016) and transposed
convolutions. It converts the multi-channel 2D image to the axial
spatial dimension after applying 2D residual blocks and transposed
convolutions, resulting in a 3D image. This 3D image undergoes
further processing through 3D residual blocks and is upsampled by
transposed convolutions to ultimately obtain the reconstructed 3D
volume. In the dynamic imaging of the 8-day-old zebrafish (O.
latipes) embryonic heart, HyLFM-Net successfully imaged the
dynamic of the zebrafish heart within a field of view of 350 ×
300 × 150 μm3 at a volume imaging speed of 40–100 Hz, with
significant improvements in spatial resolution and image quality,
and can achieve a 3D volume inference speed of 26.7 Hz on a
consumer-grade GPU, at least 1,000 times faster than
conventional LFD.

The utilization of entirely deep learning-based approaches holds
the potential to significantly reduce the presence of mosaic-like
artifacts in the vicinity of the focal plane, a prevalent occurrence in
LFD (Prevedel et al., 2014) and can accurately recover the signal
even when the SNR of the raw image is low (Vizcaino et al., 2021a;
Wang et al., 2021; Yi et al., 2023; Wagner et al., 2021). However, this
approach has some drawbacks because the network simultaneously
improves the resolution and spatial-angular of light field, which may
increase the training workload and lead to structure missing and
image artifacts. To improve this problem, it is necessary to improve
the adaptability of the network structure and loss function to achieve
satisfactory prediction results.

3.2 Type II: Deep learning enhanced raw
light field image with numerical inversion
volumetric reconstruction

Scanning LFM (sLFM) system (Morozov et al., 2002; Wu et al.,
2021) improves the raw light field image quality through physical
scanning to collect the 4D spatial-angular light distribution at near-
diffraction-limited. However, sLFM usually requires a certain
amount of time to scan the sample when acquiring the light
field, and this spatial resolution improvement comes at the
sacrifice of temporal resolution. To compensate for this
deficiency, VsLFM (Lu et al., 2023) optimizes the scanning
process using a deep learning model based on DAOSLIMIT (Wu
et al., 2021).

After the light field’s resolution is increased, VsLFM is a typical
network that is used for reconstruction. This process primarily uses
deep learning to improve the raw light field image’s resolution. The
subsequent reconstruction process necessitates the use of physical
iterations to convert sample images from various angular views into
volumetric images. To simulate the scanning process, VsLFM
utilizes a supervised learning network (Vs-Net) to extract,
interact, fuse and upsample spatial angle features. In network
training, phase-dependent low-resolution angular data is used to
learn physical priori relationships, and the high-resolution angular
measurements produced by the sLFM are used as anticipated output.
To rebuild 3D high-resolution volumes, iterative tomography is
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finally applied utilizing DAO on several angular views that are
acquired by Vs-Net (Figure 5A). The subsequent reconstruction
process requires the use of physical iterations to reconstruct the
sample images from different viewpoints into volumetric images
(Figure 5A). It is the improved resolution of the raw light field image
that makes the imaging effect of VsLFM higher than that of the fully
deep learning-based methods, especially in the localized details of
specific depths where the image quality of VsLFM is close to
ground truth.

VsLFM outperforms other methods such as LFM, VCD-Net,
and HyLFM-Net on maximum intensity projection (MIP)
images. VsLFM is able to obtain better resolution and contrast
and performs well on both cell membrane-labeled and
mitochondria-labeled samples (Figure 5B). In the numerical

simulation of the synthesized 3D tubulins structure, the SNR
of VsLFM in the spatial-angular domain is improved by about
15 dB and the SSIM is improved by 0.12. However, the increase in
resolution involves physical iterations that can lead to time-
consuming and poor reproducibility of the results. To address
this issue, VsLFM has improved HyLFM-Net into HyLFM-A-Net
to replace the physical iteration process with a deep neural
network, which reduces the reconstruction of the whole
process from 1,200 s to 11 s. The combination of Vs-Net and
HyLFM-A-Net results in a deep neural network for mapping LF
images to volumetric images. In contrast to the fully deep
learning-based method, this approach is equivalent to tuning
the network during the training process, so the complexity and
redundancy of the model are much higher.

FIGURE 5
Deep learning enhanced raw light field image with numerical inversion volumetric reconstruction. (A) VsLFM schematic diagram. (B) Enhanced
sections extracted from xy cross-sections at z = 1 μm of a static featuring membrane marking, captured using LFM, VCD-Net, HyLFM-Net, VsLFM, and
sLFM techniques individually. Scale bars, 10 μm. [a and b modified from (Lu et al., 2023)].
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3.3 Type III: Numerical inversion volumetric
reconstructionwith deep learning enhanced
volumetric data

It is widely acknowledged that conventional numerical iterative
algorithms are unable to produce satisfactory reconstructions due to
the presence of redundancy in the majority of light field datasets.
Consequently, researchers are faced with the challenge of fully
utilizing the redundancy (Dansereau et al., 2015; Jayaweera et al.,
2020; Mihara et al., 2016). Moreover, real optical physics has many
deviations from the model so the corresponding errors propagate
during the reconstruction process can cause image noise, blurring,
and artifacts. To obtain higher resolution light field reconstruction,
the results are usually further post-processed after reconstruction by
conventional iterative methods. It is on this premise that the deep
learning-based post-processing networks CARE (Weigert et al.,
2018) (Figure 6A), DFGAN and DFCAN (Qiao et al., 2021)
(Figure 6B), have also been applied to LFM.

CARE (Content-Aware Image Restoration) is a proposed method
for LFM that utilizes machine learning techniques to enhance the
quality of the acquired images. The primary objective of CARE is to
develop a residual version of U-Net and train the network with a loss
function mean square error (MSE). The CARE network can
significantly improve the accuracy of cell nucleus segmentation with
reduction in illumination dose, and has improved obvious
segmentation accuracy (SEG) score from 0.47 in the original image
to 0.65 in the CARE restored image. By leveraging machine-learned
image computation, CARE networks can significantly improve image
quality, making it easier to analyze biological samples.

After CARE was proposed, networks for single-image super-
resolution (SISR) have also been proposed, and the most

representative of these networks are DFCAN and DFGAN.
DFCAN consists of convolutional layers, and DFCAN is a
deeper DFCAN, which consists of convolutional layers,
residual groups, Fourier channel attention blocks, skip
connections, and activation functions such as GELU. The
DFGAN network is derived from a conditional generative
adversarial network (cGAN (Mirza, 2014)) framework applied
to the DFCAN network. The generative model G of DFGAN is
DFCAN, which mainly learns data distribution and image
transformation. The discriminative model D is constructed
based on the conventional CNN architecture, which consists
of a convolutional layer activated by LeakyReLU and a fully
connected layer activated by a sigmoid activation function.
DFCAN and DFGAN validated the structures of clathrin-
coated pits (CCPs), microtubules (MTs), and F-actin, and
achieved good super-resolution reconstruction performance.
Among them, in the case of 3-fold magnification, the quality
of the reconstructed images is very close to the real super-
resolution images, with the normalized root-mean-square
error (NRMSE) below 0.1 on average. In addition, for the
endoplasmic reticulum (ER) structure, due to the obvious
aggregation caused by chemical fixation, the authors adopted
real-time imaging and also obtained satisfactory
reconstruction results.

This type of network can also be applied in other microscopy in
fluorescent imaging, but it has certain drawbacks. For example, its
performance could be compromised when handling samples with
extremely complicated structures. In addition, widespread
application in practical experiments may be limited by high-
fidelity super-resolution information, especially when the network
is applied in sample that contains structure absent from the training

FIGURE 6
Numerical inversion volumetric reconstruction with deep learning enhanced volumetric data. (A) CARE architecture (left) and the imaging result
(right). Scale bars, 50 μm. [modified from (Weigert et al., 2018)] (B) DFCAN and DFGAN architecture (left), and the imaging result (right). Scale bars, 3 μm
(upper row), 1 μm (lower row). [modified from (Qiao et al., 2021)].
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set. Moreover, this network is not ideal for intensity-based
quantification, such as fluorescent substance counting, and
cannot be used for all current image restoration challenges due
to its nonlinear neural network prediction nature.

To better compare all the mentioned networks, we have
summarized their structure and the performance of them in Table 1.

4 Challenges and opportunities

The existing reconstruction methods for LFM using deep
learning are facing multiple challenges. Firstly, the current
approaches are centered on predicting single frames, necessitating
a refinement in ensuring accurate predictions for consecutive
frames. Nonetheless, enhancing the forecast precision for
continuous frames inevitably translates to an increase in
computational burden, thereby escalating the requisites for
advanced computational resources. Secondly, the scarcity of
available LFM datasets poses a hindrance to fully harnessing
these resources for achieving optimal outcomes. Lastly, the

enigmatic nature of deep learning models presents a hurdle in
enhancing the intelligibility of these intricate models.

4.1 Accuracy in predicting temporal
information

Utilizing cutting-edge techniques in real-time data forecasting,
researchers can accurately monitor the dynamic behaviors of
numerous cells with precision in both the spatial and temporal
domains, thereby enhancing comprehension of neuronal population
activities (Prevedel et al., 2014; Hornik et al., 1989). Nonetheless,
when applying deep learning methodologies to LFM, the
conventional practice involves individual frame prediction,
leading to potential inconsistencies in temporal coherence and
the presence of artifacts over time intervals. To address this
challenge effectively, it is crucial to explicitly account for
temporal dynamics during data reconstruction by incorporating
time-resolved data. While a straightforward approach involves
treating time as an extra dimension within CNNs, such a method

TABLE 1 Comparison of different networks.

Category Network Architecture Metric Running time

Full deep learning-based method

LFMNET (Vizcaino
et al., 2021a)

Conv4d (Choy et al., 2019)
And U-Net (Ounkomol et al.,

2018)

Error with Confocal: 0.086 μm
(test on vessels) 50 ms

VCD-NET (Wang
et al., 2021)

PixelShuffle (Shi et al., 2016)
And U-Net (Ounkomol et al.,

2018)

uniform average resolutions
1.1 μm (x,y)
3.0 μm (z)
(test on isovolumetric
subdiffraction fluorescent beads
distributed in a hydrogel)

5 ms (test on Caenorhabditis
elegans and the blood flow of

beating zebrafish hearts)

F-VCD (Yi et al.,
2023)

RCAN (Chen et al., 2021)
And VCD-NET (Wang et al.,

2021)

Axial resolution than VCD-Net:
2-fold
Lateral resolution: 1.5-fold

20 ms (test on mitochondrial)

HyLFM-Net
(Wagner et al., 2021)

2D residual blocks (Kaiming et al.,
2016)

And 3D residual blocks (Kaiming
et al., 2016)

MS-SSIM
0.982 ± 0.002 (test on beads)
0.91 ± 0.02 (test on static)
0.78 ± 0.04 (test on dynamic)
0.90 ± 0.02
(test on brain)

10 ms (test on medaka heart
dynamics and zebrafish neural

activity)

Deep learning enhanced raw light field
image with numerical inversion

volumetric reconstruction

VsLFM (Lu et al.,
2023)

convolutional layers
Leakey ReLU

And PixelShuffle (Shi et al., 2016)

spatial-angular domain
SNR ~30 dB
SSIM ~0.95
Reconstructed
SNR ~2.5 dB
SSIM ~0.6 (test on 3D tubulins
structure)

1,200 s

Numerical inversion volumetric
reconstruction with deep learning

enhanced volumetric data

CARE (Weigert
et al., 2018)

Residual version of U-Net
(Kaiming et al., 2016; Ounkomol
et al., 2018)

SEG score: from 0.47 to 0.65 (test
on Tribolium castaneum)

DFCAN and
DFGAN (Qiao et al.,

2021)

Fourier channel attention (Chen
et al., 2021), convolutional layers
And PixelShuffle (Shi et al., 2016)

(DFCAN and DFGAN)
And cGAN (Mirza, 2014)

(DFGAN)

NRMSE: 0.0593
MS-SSIM: 0.8665
Resolution: 139 nm (test on low-
fluorescence average photon
count 120 DFCAN)
NRMSE:0.0586
MS-SSIM:0.8680
Resolution:97 nm (test on low-
fluorescence average photon
count 120 DFGAN)
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may not be viable for extensive networks managing prolonged
correlations. An alternative and more efficient solution are to
merge CNNs with advanced recurrent neural networks like
convLSTM (Zhang and Zhang, 2024) and convGRU (Lagemann
et al., 2021) architectures, which are specifically tailored for sequence
prediction tasks. However, this integrated approach may demand
more sophisticated hardware resources to ensure
streamlined execution.

4.2 Hardware requirement

In the realm of deep learning for applications like LFM, the necessity
for customized software frameworks to facilitate the manipulation and
analysis of intricate neural networks is evident. A pivotal consideration
in these advancements pertains to the evolving hardware prerequisites.
As we all known, specialized graphics processors (GPUs) for training
deep learning models underscores the criticality of hardware in
expediting computational processes. The migration towards GPU
utilization over conventional central processing units (CPUs) is
essential for substantial gains in training speed, significantly reducing
the training duration. This transition not only accelerates the pace of
model refinement but also addresses the cost constraints associated with
sophisticated hardware requirements. Looking ahead, the symbiotic
relationship between software innovation and hardware optimization
remains fundamental in shaping the trajectory of deep learning
applications, paving the way for enhanced efficiencies and broader
accessibility across research domains.

4.3 Better network structures and training
strategies can reduce the need for datasets

Deep learning’s effectiveness is vitally dependent on the availability
of training data. Inadequate training data will result in poor
performance. However, a prevalent misperception is that deep
learning requires an enormous amount of training samples. For
example, VsLFM (Lu et al., 2023) training typically uses
5,000 paired spatial-angular patches, and VCD-Net (Wang et al.,
2021) trains using 4,580 pairs of image patches, each with a light
field image (176 × 176 pixels) and a volume (176 × 176 × 51 pixels).
However, LFMNet (Vizcaino et al., 2021a) required 362 high-resolution
images (1,287 × 1,287 pixels), whereas based on the U-Net architecture
(Ounkomol et al., 2018) only used 40 images (1,500 × 1,500 pixels). It
can be observed that different network architectures and training
strategies can significantly reduce the size of the training dataset.
The quality of the data and its relevance to the situation are likely
more crucial. In order to advance further, LFM necessitates innovative
experimental and computational approaches for the production of an
increased quantity and quality of training data.

4.4 Strategies for obtaining a light field
dataset and leveraging existing training data
to enhance the dataset

Various strategies can be explored to acquire a comprehensive
light field dataset. One avenue involves conducting specialized

experiments tailored to capture the requisite images for training
purposes. For instance, employing confocal microscopy and light
field microscopy in tandem to capture pairs of high-quality
volumetric images along with corresponding light field data from
a stationary cell location can help validate LFM image
reconstruction algorithm. Additionally, leveraging an in-depth
understanding of the underlying physics governing light field
propagation enables the utilization of forward model simulations
to generate authentic images (Weigert et al., 2018; Nehme et al.,
2018). Furthermore, the integration of neural networks presents a
promising approach to dataset creation. Recent endeavors have
focused on the development of cell generation models through
adversarial generative techniques (Osokin et al., 2017;
Goldsborough et al., 2017; Yuan et al., 2019), leading to the
generation of synthetic images that can subsequently contribute
to training reconstruction algorithms. Moreover, conventional
approaches, such as data augmentation, present a feasible tactic
for enriching datasets by creating diverse variations of existing
images. This process involves employing methodologies like
rotation, scaling, and manipulation of lighting conditions to
expand the range of training samples available for model
learning. An alternative efficacious approach involves the
utilization of transfer learning (Zeiler and Fergus, 2014). By
transferring knowledge from pre-trained models to new tasks,
transfer learning enables the efficient utilization of learned
features and representations, thereby enhancing the
generalization capability and performance of the neural network
on specific tasks. These techniques, rooted in the diversification of
data and the strategic reuse of network knowledge, play pivotal roles
in advancing the efficacy and adaptability of deep learning models
across various domains and applications. By pretraining networks
on extensive datasets sourced from different domains, transfer
learning expedites convergence and enhances the generalization
capabilities of the models (Weiss et al., 2016). This multifaceted
approach holds significant promise for enriching the light field
dataset and maximizing its efficacy in a research context.

4.5 Explainable/interpreting the deep
neural network

The challenge of model interpretability emerges as a critical issue
given the inherently opaque and enigmatic nature of deep neural
networks (Zhang et al., 2018). To establish deep learning as a reliable
component within LFM-based processes, it is important to explore
the integration of conceptual frameworks and interactive graphical
tools to elucidate the underlying rationale behind generating specific
outcomes. Encouragingly, the field of computer vision has witnessed
advancements in enhancing the interpretability of deep learning
through various methodologies. These include delving into the
essential components of input images for accurate predictions,
scrutinizing the function of intermediate layers, analyzing the
contributions of different module through ablation studies,
constructing hierarchical explanatory graphs spanning across
layers, and designing network architectures that prioritize
interpretability. The adaptation of these techniques to the
domain of light field imaging is deemed essential, calling for the
development of specialized tools tailored to facilitate the
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interpretation of results. One potential avenue involves the creation
of tools explicitly designed to explicate the rationale behind
predicted outcomes, thereby fostering transparency and
comprehension in the intricate mechanisms governing deep
neural networks in LFM contexts.

4.6 Outlook for deep learning to microscale
light field image reconstruction

Deep learning-based LFM is still in its nascent stage, but significant
advancements have been achieved in leveraging deep learning
techniques for this purpose. As we look forward, the future of deep
learning-based LFM reconstruction may further highlight the
utilization of expansive and high-quality big data sets to facilitate
various forms of learning paradigms such as supervised, weakly
supervised, self-supervised, or unsupervised learning. To promote
broader adoption and enhancement of existing tools, as well as the
development of novel ones, it is critical to create extensive datasets to
meet the image analysis requirements of the broader life sciences data.
These datasets should be publicly accessible, assisting skilled machine
learning researchers to tackle biological challenges. It is evident that
there are numerous unexplored applications awaiting discovery in this
domain. It is hence advisable to simultaneously push forward the tool
development and biological prediction processes, given that deep
learning fundamentally thrives on data analysis.
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