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Introduction: H. pylori (Helicobacter pylori) infection represents a significant
global health concern, exacerbated by the emergence of drug-resistant strains
resulting from conventional antibiotic treatments. Consequently, the
development of vaccines with both preventive and therapeutic properties has
become crucial in addressing H. pylori infections. The H. pylori adhesin protein
HpaA has demonstrated strong immunogenicity across various adjuvants and
dosage forms, positioning it as a key candidate antigen for recombinant subunit
vaccines against H. pylori. Optimizing fermentation culture conditions is an
effective strategy to enhance product yield and lower production costs.
However, to date, there has been no systematic investigation into methods
for improving the fermentation yield of HpaA. Enhancing the fermentation
medium to increase HpaA yield holds significant potential for application and
economic benefits in the prevention and detection of H. pylori infection.

Methods: To achieve a stable and high-yielding H. pylori vaccine antigen HpaA,
this study constructed recombinant Escherichia coli expressingHpaA. The impact
of fermentation medium components on the rHpaA yield was assessed using a
one-factor-at-a-time approach alongside Plackett–Burman factorial
experiments. Optimal conditions were effectively identified through response
surface methodology (RSM) and artificial neural network (ANN) statistical
computational models. The antigenicity and immunogenicity of the purified
rHpaA were validated through immunization of mice, followed by Western
Blot analysis and serum IgG ELISA quantification.

Results: Glucose, yeast extract, yeast peptone, NH4Cl and CaCl2 all contributed
to the production of rHpaA, with glucose, yeast extract, andNH4Cl demonstrating
particularly significant effects. The artificial neural network linked genetic
algorithm (ANN-GA) model exhibited superior predictive accuracy, achieving a
rHpaA yield of 0.61 g/L, which represents a 93.2% increase compared to the initial
medium. Animal immunization experiments confirmed that rHpaA possesses
good antigenicity and immunogenicity.

OPEN ACCESS

EDITED BY

Xupeng Cao,
Chinese Academy of Sciences (CAS), China

REVIEWED BY

Ashish A Prabhu,
National Institute of Technology Warangal,
India
Roberto Mazzoli,
University of Turin, Italy

*CORRESPONDENCE

Gang Guo,
guogang7001@163.com

Kaiyun Liu,
liukaiyun@wchscu.edu.cn

RECEIVED 22 September 2024
ACCEPTED 20 November 2024
PUBLISHED 04 December 2024

CITATION

Tan R, Zhou S, Sun M, Liu Y, Ni X, He J, Guo G
and Liu K (2024) Modeling and optimization of
culture media for recombinant Helicobacter
pylori vaccine antigen HpaA.
Front. Bioeng. Biotechnol. 12:1499940.
doi: 10.3389/fbioe.2024.1499940

COPYRIGHT

© 2024 Tan, Zhou, Sun, Liu, Ni, He, Guo and Liu.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 04 December 2024
DOI 10.3389/fbioe.2024.1499940

https://www.frontiersin.org/articles/10.3389/fbioe.2024.1499940/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1499940/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1499940/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1499940/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2024.1499940&domain=pdf&date_stamp=2024-12-04
mailto:guogang7001@163.com
mailto:guogang7001@163.com
mailto:liukaiyun@wchscu.edu.cn
mailto:liukaiyun@wchscu.edu.cn
https://doi.org/10.3389/fbioe.2024.1499940
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2024.1499940


Discussion: This study pioneers the statistical optimization of culture media to
enhance rHpaA production, thereby supporting its large-scale application in H.
pylori vaccines. Additionally, it highlights the advantages of the ANN-GA approach
in bioprocess optimization.

KEYWORDS

Helicobacter pylori, artificial neural network, response surfacemethodology, recombinant
antigen, rHpaA

1 Introduction

Helicobacter pylori (H. pylori) is a conditional pathogen that
selectively colonizes the human gastric mucosa (Wadström et al.,
1996; Amieva and Peek Jr, 2016) and is closely linked to various
gastrointestinal diseases (Malfertheiner, 2018; Zhou et al., 2021).
H. pylori infection has posed a serious threat to human health for
many years (Hooi et al., 2017; Li et al., 2023), with standard
treatments involving triple or quadruple therapies comprising
two antibiotics alongside proton pump inhibitors (PPIs) or
bismuth agents (Malfertheiner et al., 2017). However, these
treatments can lead to gastrointestinal microbiota dysbiosis
(Karakan et al., 2021) and contribute to the development of
antibiotic resistance, resulting in a continuous decline in the
effectiveness of antibiotic treatment in infection eradication
(Nestegard et al., 2022; Setshedi and Smith, 2023). Thus, there
is an urgent need for new strategies to prevent and treat H.
pylori infection.

Numerous studies involving the cloning of various genetic
clusters or antigen genes for use in genetically engineered
vaccines have been performed (Mirzaei et al., 2017; Liu et al.,
2020). A pivotal 2015 study published in The Lancet reported a
recombinant H. pylori vaccine that significantly reduced the natural
infection rate in volunteers, highlighting vaccination as a promising
preventive and therapeutic approach against H. pylori infection
(Zeng et al., 2015). However, challenges remain, including the
low immunogenicity and low production efficiency of antigenic
components (Zhang et al., 2022; Yunle et al., 2024). Therefore, the
selection and preparation of specific antigens are of great
importance.

HpaA, a lipoprotein located on the surface and flagellar sheath of
H. pylori, is a primary adhesin that binds to various receptors on
gastric epithelial cells, facilitating bacterial colonization and
activation and leading to gastric mucosal damage (Valkonen
et al., 1997; Martini et al., 2024). HpaA is conserved across
different H. pylori strains and is essential for colonization
(Carlsohn et al., 2006). Its low homology with other H. pylori
proteins and the strong immunogenicity make it a key candidate
for vaccine development, as studies have indicated its potential to
induce protective immune responses in mice (Lundström et al.,
2001). While current studies have focused primarily on the
immunological effects of HpaA, there is a need to optimize the
production process of recombinant antigens, which is where the
development and optimization of fermentation medium
become crucial.

The fermentation medium defines the chemical and nutritional
environment for host cells during the production of heterologous
proteins and directly impacts production efficiency and economic

viability (Zhang and Gtrasham, 1999). High-level expression of
heterologous proteins may impose a metabolic stress on host
cells, affecting their growth efficiency (Goormans et al., 2020).
Adjusting the culture conditions can alleviate this stress and
optimize the balance between cell growth and protein
production. Considering the stringent safety standards required
for vaccine components, the use of some molecular tools may
increase the complexity of downstream production and
purification processes, which is not conducive to industrial-scale
production.

Nonetheless, a substantial body of research demonstrated
that refining the nutritional parameters within the cultivation
process can markedly elevate the efficiency of recombinant
protein production (Su et al., 2015; Behravan and Hashemi,
2021). Among them, experimental design methods such as
response surface methodology (RSM) and artificial neural
network (ANN) have been successfully employed to optimize
the expression and yield of recombinant proteins in host cells
(Papaneophytou and Kontopidis, 2014). RSM employs
polynomial functions to elucidate the interactive effects of
input variables, while ANNs, structured to mimic biological
neurons, identify nonlinear relationships within data (Pandey
et al., 2018). Genetic algorithms (GA), grounded in evolutionary
theory, have enhanced the optimization of neural networks,
offering greater predictive accuracy than traditional
orthogonal methods (Prabhu et al., 2017). Production of the
recombinant pneumonia vaccine candidate antigen PsaA was
efficiently optimized in Escherichia coli by RSM. The optimized
medium and seed culture conditions reduced the processing time
by 35% and doubled the productivity to 40 (mg/L)/h, while also
decreasing the raw material costs (Larentis et al., 2012). In
another study, RSM and ANN were used to predicted the
specific growth rate and biomass of recombinant Pichia
pastoris during fed-batch methanol fermentation. The
feedstock control strategy for intracellular HBsAg production
by P. pastoris was optimized, and the yield increased by 26%–31%
(Beiroti et al., 2019).

To address the issues of low yield and the lack of systematic
optimization of the cultivation conditions, in this study, E. coli
BL21(DE3) was engineered to produce rHpaA, and the culture
parameters were optimized via various experimental methods and
statistical computational models based on RSM and ANN. The
optimized production conditions increased the rHpaA yield by
93.2%, providing a reference for large-scale production.
Additionally, the immunogenicity of the purified rHpaA was
confirmed, and its ability to elicit a robust immune response in
mice was demonstrated, underscoring its potential in the prevention
and treatment of H. pylori infection.

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Tan et al. 10.3389/fbioe.2024.1499940

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1499940


2 Materials and methods

2.1 Bacterial strains and plasmids

The gene encoding the HpaA protein was derived fromH. pylori
26,695 (GenBank accession number: AE000511.1) and optimized
for E. coli codon usage. The hpaA gene, synthesized without a signal
peptide by GeneCreate Biotechnology Company (Wuhan, China)
was inserted into the NcoI and XhoI sites of the pET28a(+) vector,
yielding the recombinant plasmid. The plasmid was transformed
into E. coli BL21 (DE3) for protein expression. For long-term
preservation, the recombinant bacterial strains were stored
at −80°C in a solution containing 8% (v/v) glycerol.

2.2 Medium and cultivation

Luria Bertani (LB) medium, composed of 5 g/L yeast extract,
10 g/L tryptone, and 10 g/L NaCl was employed for both strain
revival and liquid seed culture preparation. The glycerol stock of the
recombinant E. coli BL21 (DE3) harboring the rhpaA/pET28a(+)
plasmid was revived on LB agar plates at 37 °C for 16 h. A single
colony was selected, inoculated into 10 mL of LB broth containing
100 μg/mL ampicillin, and incubated at 37°C and 220 rpm on a
rotary shaker (Mingquan, Shanghai, China) overnight.
Subsequently, 1 mL of the seed culture was diluted into 100 mL
of induction media at a 1% (v/v) ratio and incubated under the same
conditions until the optical density at 600 nm (OD600) reached
0.6–0.8. The expression of the rHpaA protein was induced by the
addition of isopropyl-β-D-thiogalactoside (IPTG) to a final
concentration of 0.5 mmol/L. After a 4-h induction period, the
cells were harvested by centrifugation at 12,000 g for 5 min.

2.3 rHpaA yield analytical methods

The collected induced cells were suspended in phosphate-buffered
saline (PBS) and sonicated. The total protein content of the lysate was
quantified using the Lowry method (Lowry et al., 1951). Equal amounts
of 10 μg protein were loaded for analysis by 12% sodium dodecyl
sulfate‒polyacrylamide gel electrophoresis (SDS‒PAGE). After
electrophoresis, the gel was stained with 0.1% Coomassie Brilliant
Blue R-250 and visualized with a ChemiDoc™ MP Imaging System
(Bio-Rad Laboratories, California, USA). The band areas in the SDS‒
PAGE gel were quantified with ImageLab 6.1 software (Bio-Rad
Laboratories, California, USA). The rHpaA yield was determined by
multiplying the total protein concentration of the sample by the
percentage signal intensity of rHpaA.

2.4 Determination of the optimum culture
conditions

2.4.1 One-factor-at-a-time experiment
Traditional Terrific Broth (TB) was selected as the basic culture

medium for comparison. To screen effective medium components, the
types of carbon source, nitrogen source,metal ions and phosphate in the
medium formulation were chosen as variables, and the bacterial

biomass yield and recombinant protein expression were considered
as the response variables. Glucose, maltose, lactose, galactose, dextrin,
sucrose, and soluble starch, each containing an equal amount of carbon
content, were used to replace glycerol in the basic medium. Yeast
peptone, yeast extract, beef extract, and corn flour, each with equal
nitrogen content, were used as individual nitrogen sources to substitute
the original mixture of yeast extract and tryptone. Furthermore, the
organic nitrogen source in the TB medium was halved and replaced
with an equal amount of one of the following inorganic nitrogen
sources, ammonium sulfate, ammonium citrate, or ammonium
chloride. To determine the effects of different metal ions on the
formation of rHpaA, 1 mmol/L of Mg2+, Zn2+, Cu2+, Fe2+, Fe3+,
Mn2+, Ni2+, Ca2+, or Co2+ was added to the basic culture medium.
Additionally, the phosphate ion concentrationwasmaintained based on
the original TB composition, but the type of phosphate was changed
from potassium phosphate to sodium phosphate or amixture of both in
equal concentrations. In each single screening experiment, all other
factors were held constant. Statistical analysis of the quantitative results
was conducted using one-way analysis of variance (ANOVA) with
GraphPad Prism 9.5 software (GraphPad Software, San Diego, CA,
USA). A p-value of <0.05 was considered to indicate statistical
significance.

2.4.2 Plackett–Burman experimental design
The Plackett–Burman design was conducted via Design Expert

13 software (Stat-Ease, Inc., Minneapolis, MN, USA) to find key
factors significantly affecting rHpaA yield. The design contained six
elements selected from one-factor-at-a-time experiments: glucose,
NH4Cl, yeast peptone, yeast extract, CaCl2, and mixed phosphate.
Each factor was set at two levels, resulting in a matrix of
12 experimental groups (see Supplementary Material) with
triplicate replications to ensure the reliability of the results.

2.4.3 Steepest ascent path
The steepest ascent path was utilized to guide the experimental

conditions to the near-optimal region. The significant factors
identified by the Plackett–Burman experiment, glucose, NH4Cl,
and yeast extract, were optimized in steps sizes of 2, 3, and 4
based on the coefficient estimates (Table 1). Meanwhile, the
remaining factors were set to their respective extreme levels,
specifically with CaCl2 of 1 mmol/L, yeast peptone of 24 g/L, and
phosphate buffer of 100 mmol/L. The highest level of rHpaA
production reached was considered to be close to the center
point of the experimental optimization design.

2.4.4 Box–behnken design (BBD)
The BBD-RSMwas employed to further optimize and determine

the optimal levels of significant variables. Design Expert 13 software
was utilized to conduct a three-factor, three-level experimental
design. Seventeen sets of experiments, including five center
points, were carried out with the highest point of the steepest
ascent path as the preset center point, and the yield of rHpaA as
the response value (Table 2). The second-order equation was fitted
and the regression model was established as shown in Equation 1.

Y � β0 +∑n
i�1
βixi +∑n

i�1
∑n
j�1
βijxixj (1)

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Tan et al. 10.3389/fbioe.2024.1499940

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1499940


where Y represents the response value; β0, βi and βij are the equation
coefficients; and xi and xj are the independent variables. The
response optimizer of Design Expert software was used to
determine the optimal values of key variables and the maximum
yield of rHpaA within the experimental range.

2.4.5 ANN model and GA optimization
The back propagation method was used to establish the ANN

model, with the glucose, yeast extract, and NH4Cl concentrations in
the medium as input and the rHpaA yield as the output. The transfer
functions tansig and purelin were used for the hidden and output
layers, respectively. The trainbr algorithm was employed to train the
network. The BBD-RSM experimental data were utilized to train the
neural network, with allocation ratios for the training set, test set,
and validation setof 70%, 15%, and 15%, respectively. Training was
halted when the mean square error (MSE) reached 1 × 10−3. To
evaluate the fitting and predictive ability of the model, the root mean
square error (RMSE), variance (R2) and standard error of prediction
(SEP) were calculated for the established model via Equations 2–4,
respectively (Mondal et al., 2023; Patruni and Rao, 2023).

RMSE �
��������������
1
n
∑n
i�1

Yi,e − Yi,p( )2√
(2)

R2 � 1 −
∑n
i�1

Yi,e − Yi,p( )2
∑n
i�1

Yi,e − �Yi,e( )2 (3)

SEP � RMSE
�Ye

× 100% (4)

In these formulae, n represents the number of samples, Yi,e
represents the experimental value, Yi,p represents the predicted value,
and “-” above a variable represents the average value of that variable.

The GA optimization approach was utilized to determine the
optimal levels of significant variables in the cultivation process
within the ANN model. The rHpaA yield function was employed as
the fitness function for the GA, directing the iterative selection process.
The program was developed using MATLAB 2023b software
(MathWorks, Inc., Natick, MA, USA) along with its integrated
GA toolbox.

2.5 Purification of rHpaA

The scale of the rHpaA/pET28a(+)/E. coli BL21 (DE3) cultures
was increased to 1 L under the optimized culture conditions. The
cells were harvested and suspended at a ratio of wet cell weight (g) to
buffer volume (mL) of 1:20 in ice-cold 50 mmol/L phosphate buffer
(PB, pH 7.0) supplemented with 500 mmol/L NaCl, 10 mmol/L
imidazole, 100 U of benzonase and 200 mmol/L MgCl2. After high-
pressure homogenization, the lysate was centrifuged at 12,000 g for
30 min. The supernatant was collected and applied to a pre-
equilibrated Ni-Sepharose affinity column (Cytiva, Marlborough,
MA, USA). Proteins were eluted with 50 mmol/L PB, 500 mmol/L
NaCl and 100 mmol/L imidazole. The eluate was subsequently
diluted 50-fold and subjected to anion-exchange chromatography
using a Q-Sepharose column (Cytiva, Marlborough, MA, USA). The
bound proteins were eluted with a solution of 20 mmol/L PB
containing 150 mmol/L NaCl at pH 7.4 and stored at −80°C.

TABLE 1 Parameter analysis of variables in the Plackett–Burman design.

Code Source Coefficient estimate Contribution (%) F Value p-value

Model 17.53 0.0032

A Glucose −0.0164 34.3664 37.86 0.0016

B NH4Cl 0.0154 30.1742 33.42 0.0022

C CaCl2 −0.0073 6.8801 7.58 0.0402

D Yeast extract −0.0107 14.6369 16.12 0.0102

E Yeast peptone 0.0085 9.3130 10.26 0.0239

F Phosphates 0.0008 0.0904 0.10 0.7650

TABLE 2 Steepest ascent path design.

Run Variables rHpaA
Yield (g/L)

Glucose (g/L) NH4Cl (g/L) Yeast extract (g/L)

1 9 2 20 0.4775 ± 0.0312

2 7 5 16 0.5823 ± 0.0473

3 5 8 12 0.5124 ± 0.0330

4 3 11 8 0.4676 ± 0.0282

5 1 14 4 0.3012 ± 0.0307
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The purity of the purified rHpaA was assessed via size exclusion
chromatography–high-performance liquid chromatography (SEC‒
HPLC) on an Agilent Infinity 1260 II system (Santa Clara, CA, USA)
with an Xtimate SEC-300A column (300 mm × 7.8 mm; Welch
Materials Inc., Shanghai, China). The mobile phase comprised
150 mmol/L PB and 10% acetonitrile, with the flow rate of
1.0 mL/min. The column temperature was maintained at 20°C,
and the injection volume was 10 µL. The protein was detected by
an UV detector at 280 nm.

2.6 Animal immunization and sample
collection

Six-week-old, specific-pathogen-free (SPF) female BALB/c mice
were randomly divided into a control group and an experimental
group, with 20 mice per group. The experimental group received
immunization with 50 μg of rHpaA mixed with 1 mg of aluminum
adjuvant (Thermo Fisher Scientific, Waltham, MA, USA) in an
equal volume via intramuscular injection on days 0, 14, and 21. The
control group received an equivalent treatment with PBS. Serum
samples were collected from the tail veins of mice 1 week after the
final immunization and isolated by centrifugation at 3,000 g
for 5 min.

The experimental animals were purchased from Dossy
Experimental Animals Co., Ltd. (Chengdu, China) and housed in
the experimental animal center of West China Hospital, Sichuan
University. All experiments were approved by the institutional ethics
committee (number: 20220113002).

2.7 Assessment of antigenicity and
immunogenicity

The antigenicity of rHpaA was assessed via Western blotting.
The purified protein was subjected a 12% SDS-polyacrylamide gel
and electrophoretically transferred onto a 0.22 μm pore-sized
polyvinylidene fluoride (PVDF) membrane. The membrane was
blocked with 5% (w/v) nonfat dry milk in Tris-buffered saline with
0.1% Tween-20 (TBST) for 1 h. After three washes with TBST, the
membrane was incubated with either mouse anti-H. pylori lysate
serum or anti-rHpaA serum, which was prepared in our laboratory,
as the primary antibody for 2 h. Following three additional washes
with TBST, the membrane was incubated with horseradish
peroxidase (HRP)-conjugated goat anti-mouse IgG (Sangon
Biotech, Shanghai, China) as the secondary antibody for 1 h. The
SuperFemto ECL Chemiluminescence Kit (Vazyme, Nanjing,
China) was used to visualize the immunoreactive bands with a
ChemiDoc™ MP Imaging System.

The immunogenicity of rHpaA was evaluated using an enzyme-
linked immunosorbent assay (ELISA). The wells of a 96-well ELISA
plate were coated with 100 μL purified rHpaA at a concentration of
2 μg/mL and then blocked with 1% (w/v) bovine serum albumin
(BSA) for 1 h at 37°C. Serial dilutions of serum samples from
immunized mice were added to the wells and incubated for 2 h.
Following three washes with PBST, HRP-conjugated goat anti-
mouse IgG was added and incubated for 30 min at 37°C. The
plate was then washed again, and 100 μL of TMB chromogenic

substrate solution was added to each well for 15-min incubation at
37°C. The enzymatic reaction was stopped by adding 50 μL of 2 mol/
L sulfuric acid (H2SO4) per well, and the absorbance at 450 nm was
measured via a microplate reader (BioTek Instruments,
Winooski, VT, USA).

3 Results

3.1 One-factor-at-a-time analysis for
medium component screening

To enhance the yield of rHpaA, one-factor-at-a-time
experiments were performed to assess the composition of the
basic medium. Understanding the optimal carbon source is
crucial, as it serves as the primary energy substrate for
microorganisms. The experimental data (Figure 1A) showed that
maltose and glucose significantly enhanced rHpaA expression,
achieving levels of 44.20% and 44.33%, respectively. These levels
were 10.39% and 10.71% higher than the control group. Further
evaluation revealed that when glucose was used as the carbon source,
resulted in the highest cell density, with an OD600 value of 4.72,
which was 1.29-fold higher than that of the control at 3.65. The
maximum rHpaA yield reached 0.45 g/L, marking a 1.41-fold
increase compared to the control group.

Upon identifying the optimal carbon source, the focus shifted to
the nitrogen source. The experiments (Figure 1B) revealed that the
addition of inorganic nitrogen sources effectively increased rHpaA
expression, but ammonium citrate inhibited cell growth. The
combination of NH4Cl with yeast extract and yeast peptone
resulted in the highest OD600 at 3.87 and the protein expression
of 47.25%. This mix yielded 0.40 g/L of rHpaA, which was 1.27 times
greater than that of the control.

Metal ions are essential for microorganisms, often serving as
enzyme cofactors that influence cellular physiological processes. The
next step was to investigate these elements for their potential to
enhance rHpaA production. Compared to the control, the addition
of Mg2+, Zn2+, Cu2+, Ni2+ and Ca2+ boosted rHpaA expression.
Notably, only Ca2+ increased biomass simultaneously, resulting in
an rHpaA yield of 0.39 g/L, which was 1.31 times greater than that of
the control (Figure 1C).

The types of phosphate were also investigated, as they are
necessary for electrochemical gradients and cellular signaling.
The results indicated that the simultaneous addition of sodium
phosphate and potassium phosphate to the culture medium resulted
in a higher yield of rHpaA compared to the use of a single phosphate
(Figure 1C). In the culture medium containing mixed phosphates,
the yield of rHpaA reached 0.38 g/L, which was 1.27 times that of the
control group, with an expression level of 46.06% and an
OD600 of 3.83.

3.2 Plackett–Burman design for key factor
identification

The Plackett–Burman experimental design is a factorial
screening method used to identify key variables from a
comprehensive multivariate analysis (Plackett and Burman, 1946;
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Quinlan and Lin, 2015). On the basis of preliminary one-factor-at-a-
time experiments, six medium components were selected as
variables, labeled A, B, C, D, E, and F representing glucose,
NH4Cl, CaCl2, yeast extract, yeast peptone and mixed phosphate
solution, respectively. The response values in the design matrix for
the 12 sets of experimental conditions varied from 0.3568 to
0.4575 g/L (see Supplementary Material). Analysis with Design
Expert 13 revealed that the model was statistically significant at
p < 0.05. Among the factors, glucose (p = 0.0016), NH4Cl (p =
0.0022) and yeast extract (p = 0.0102) had themost significant effects
on rHpaA yield, with contributions of 34.3664%, 30.1742% and
14.6369%, respectively (Table 1).

3.3 Steepest ascent path analysis for value
range narrowing

The steepest ascent path is an optimization strategy for
multifactorial experiments, designed to incrementally adjust
factor levels towards the optimal design center. The coefficients
from the Plackett–Burman experiment (Table 1) indicated that
NH4Cl positively affecting the production of rHpaA, whereas
glucose and yeast extract had negative effects. This implied that
to reach the maximum response, the concentration of NH4Cl should

be progressively increased, whereas the concentrations of glucose
and yeast extract should be decreased. During the second step of the
five-step ascent, the yield of rHpaA peaked at 0.585 g/L, with the
concentrations of the medium components approaching the optimal
solution, at which point the concentrations of glucose, NH4Cl, and
yeast paste were 7 g/L, 5 g/L, and 16 g/L, respectively (Table 2).

3.4 Model analysis for culture conditions
optimization
3.4.1 BBD-RSM

BBD-RSM was used to simulate the specific effects of the
amounts of glucose, NH4Cl and yeast extract added on rHpaA
production within the range of values around the peak determined
by the steepest ascent path. From the design matrix of the coding
variables and rHpaA production under the corresponding
conditions (Table 3), the quadratic regression equation as
Equation 5 was obtained.

Y � −0.532804 + 0.084574A + 0.059140B + 0.093028C
−0.001900AB + 0.001294AC − 0.000673BC
−0.007167A2 − 0.003260B2 − 0.003296C2

(5)

where Y represents the yield of rHpaA (g/L), A represents glucose
concentration (g/L), B represents NH4Cl concentration (g/L), and C
represents yeast extract concentration (g/L).

FIGURE 1
Effects of different medium components on rHpaA production. (A) rHpaA yield, expression rate, and OD600 under different carbon source
conditions. (B) rHpaA yield, expression rate, and OD600 under different nitrogen source conditions. (C) rHpaA yield, expression rate, and OD600 under
different phosphate and metal ion conditions. *p < 0.05, **p < 0.01, ***p < 0.001.
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The quadratic regression model’s ANOVA (Table 4)
reveals a model p-value <0.0001, signifying statistical
significance, and a lack of fit p-value >0.05, indicating an

adequate fit. Thus, the model is considered both significant
and sufficiently robust for the biological data analysis (Duan
et al., 2020). The R2 value of 0.9832 suggested a strong

TABLE 4 ANOVA of the RSM regression model.

Source Sum of squares Df Mean square F Value p-value

Model 0.0289 9 0.0032 45.49 < 0.0001

A-Glucose 0.0007 1 0.0007 9.43 0.0180

B-NH4Cl 0.0004 1 0.0004 6.22 0.0413

C-Yeast extract 0.0059 1 0.0059 82.95 <0.0001

AB 0.0005 1 0.0005 7.36 0.0301

AC 0.0004 1 0.0004 6.07 0.0433

BC 0.0003 1 0.0003 3.69 0.0961

A2 0.0035 1 0.0035 48.99 0.0002

B2 0.0036 1 0.0036 51.32 0.0002

C2 0.0117 1 0.0117 165.83 <0.0001

Residual 0.0005 7 0.0001

Lack of fit 0.0002 3 0.0001 1.03 0.4689

Pure error 0.0003 4 0.0001

Cor total 0.0294 16

TABLE 3 Design and results of the response surface methodology.

Run Factors rHpaA yield(g/L)

Glucose (g/L) NH4Cl (g/L) Yeast extract (g/L) Actual response Predicted response

1 5 2 16 0.5286 ± 0.0291 0.5234

2 9 8 16 0.5154 ± 0.0358 0.5202

3 7 5 16 0.5804 ± 0.0148 0.5914

4 9 5 20 0.4859 ± 0.0326 0.4841

5 7 5 16 0.5895 ± 0.0226 0.5914

6 7 5 16 0.5921 ± 0.0392 0.5914

7 9 5 12 0.5157 ± 0.0147 0.5175

8 5 5 12 0.5547 ± 0.0302 0.5565

9 5 8 16 0.5564 ± 0.0327 0.5613

10 9 2 16 0.5331 ± 0.0199 0.5282

11 7 5 16 0.6037 ± 0.0396 0.5914

12 7 8 20 0.4846 ± 0.0712 0.4816

13 7 8 12 0.5584 ± 0.0209 0.5518

14 5 5 20 0.4835 ± 0.0215 0.4817

15 7 5 16 0.5913 ± 0.0383 0.5914

16 7 2 20 0.4762 ± 0.0194 0.4829

17 7 2 12 0.5178 ± 0.0273 0.5209
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FIGURE 2
Response surface and contour plot for rHpaA production. (A) Response surface of NH4Cl and glucose concentrations on rHpaA yield. (B) Contour
plot of NH4Cl and glucose concentrations on rHpaA yield. (C) Response surface of yeast extract and glucose concentrations on rHpaA yield. (D) Contour
plot of yeast extract and glucose concentrations on rHpaA yield. (E) Response surface of yeast extract and NH4Cl concentrations on rHpaA yield. (F)
Contour plot of yeast extract and NH4Cl concentrations on rHpaA yield.

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Tan et al. 10.3389/fbioe.2024.1499940

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1499940


correlation between the experimental and predicted response
values. The adjusted determination coefficient (adj R2) value was
0.9616, indicating that 96.16% of the variation in rHpaA yield
was attributed to the independent variables. From the
perspective of these individual variables, yeast extract (C),
glucose (A), and NH4Cl (B) all had significant effects on the
yield of rHpaA. Additionally, the interaction between AB and
AC is significant, and the contour plot is elliptical.

The three-dimensional response surface and contour plots
(Figure 2) visually demonstrate the effects of the different
variables on the response values in the regression equation.
The three sets of variables showed the same response trend:
when one variable remained unchanged, the response value
initially increased and then decreased as the other two
variables increased. This indicated that the yield of rHpaA has
a maximum value on the surface. The response optimizer of
Design Expert software was utilized to maximize rHpaA yield
within a defined range. At glucose, NH4Cl, and yeast extract
concentrations of 6.488 g/L, 5.653 g/L, and 14.807 g/L,

respectively, the RSM forecasted a peak rHpaA yield of
0.597 g/L. Three parallel experiments were carried out under
the optimal conditions to verify the optimized results. The yield
of rHpaA was 0.5878 ± 0.0157 g/L (n = 3), which was 88.4%
higher than the basic medium.

3.4.2 ANN-GA
To develop more precise and advanced optimization

strategies, the following sections were dedicated to the
application of the ANN and GA. The neural network was
trained with the data from the BBD, and the number of
neurons in the middle layer was determined to be 6 via trial
and error process; thus, the optimal topology of the neural
network was determined to be 3-6-1. The training
performance plot (Figure 3D) and the training state plot
(Figure 3B) showed a progressive reduction in model error
with each iteration. At the third iteration, the MSE reached its
nadir, signifying model stabilization and minimal predictive
error. The error histogram (Figure 3C) closely adhered to a

FIGURE 3
ANN model analysis. (A) Data regression plot. (B) Training state plot. (C) Error histogram. (D) Training performance plot.
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normal distribution centered near zero, indicating the absence of
systemic prediction biases and high predictive accuracy. The
fitting plots for the training, testing, and validation data
(Figure 3A) exhibited a high degree of data fitting, with an R2

value of 0.9895, suggesting the robust generalizability of the
model. Therefore, the ANN model is capable of accurately
predicting the rHpaA yield, demonstrating high precision and
low error rates.

GA was applied to the aforementioned neural network model
for global training, with iterative repetitions to achieve the
maximum yield of rHpaA. After 58 rounds of GA
optimization, the average fitness value and optimal fitness
value of the objective function approached the same value
(Figure 4), yielding a theoretical maximum yield of 0.614 g/L,
with the optimal medium composition comprising 6.492 g/L
glucose, 6.655 g/L NH4Cl, and 14.910 g/L yeast extract. Under

these cultivation conditions, the rHpaA yield obtained from three
replicate experiments was 0.6123 ± 0.0391 g/L (n = 3), which was
93.2% higher than that of the initial basal medium.

3.4.3 Comparison of the RSM and ANN models
Optimization and prediction through twomodels have led to the

determination of the optimal medium formulation for rHpaA
production. To facilitate a direct comparison, parameters for the
RSM and ANN models were calculated. Both models exhibited
strong fitting capabilities, with R2 values exceeding 0.95. The ANN
model demonstrated superior predictive accuracy and data fitting,
with RMSE and SEP values of 5.496 × 10−3 and 1.021%, respectively,
which are lower than those of the RSM model at 5.66 × 10−2 and
10.49%. More intuitively, the scatter plot of data comparison
(Figure 5) clearly showed the predicted results of the ANN
model are closer to the experimental values. Under the two
optimal culture conditions, the predicted yield from the RSM
model differed from the experimental yield by 1.57%, while the
predicted yield from the ANN-GA model differed from the actual
yield by 0.28%, showing a smaller deviation of the ANN-GA
predictions from the experimental values.

3.5 Purification and identification of rHpaA
The optimal cultivation conditions determined with the ANN-

GA model were upscaled, and the cell pellets were harvested and
lysed. The rHpaA was expressed in a soluble form in the optimized
medium (Figure 6A). Upon lysis, the supernatant was separated, and
the target protein was subjected to sequential purification steps
involving Ni2+ affinity chromatography and anion-exchange
chromatography. The purity and homogeneity of the final rHpaA
preparation were assessed by SEC-HPLC, which revealed a distinct
peak at a retention time of 9.468 min (Figure 6D), indicating a high
degree of purity and uniformity.

To validate the application value of rHpaA, an immunization
study was conducted in mice via intramuscular injection. Western
blotting was performed to evaluate the antigenicity of rHpaA, using
mouse anti-H. pylori lysate serum or anti-rHpaA serum as the

FIGURE 4
ANN-GA fitness function evolution of rHpaA production.

FIGURE 5
Comparison of the experimental values and the predicted values
from the BBD and ANN.
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primary antibody. There was a single band at approximately 28 kDa
(Figure 6B), revealing both samples specifically reacted with rHpaA.
The recombinant antigen can be recognized by the mouse anti-H.
pylori lysate serum.

ELISA was conducted to evaluate the immunogenicity of rHpaA.
After serial dilution up to 262,144-fold, the levels of specific IgG in
the anti-rHpaA serum remained significantly higher than those in
the negative control (PBS group), with a statistically significant
difference (p < 0.0001) (Figure 6C).

4 Discussion

The current study systematically investigated the effects of
various culture medium components on rHpaA production by
recombinant E. coli for the first time, and the optimal
component concentration of the medium was determined by
RSM and ANN model optimization. It also explored the
purification methods and the fundamental immunological
properties of rHpaA.

Different culture medium compositions may exert varying
effects on microbial growth and product metabolism. The results
of one-factor-at-a-time experiments indicated that utilizing
glucose as the carbon source significantly enhanced the

expression efficiency of the recombinant E. coli, leading to a
marked increase in rHpaA production. The preference for
glucose may be attributed to its rapid uptake and metabolism
by bacteria, which facilitated more efficient energy conversion
(Jeckelmann and Erni, 2020). Furthermore, this study
demonstrated that the combined use of inorganic and organic
nitrogen sources is more advantageous for rHpaA production
compared to the use of a single nitrogen source. Notably, the
addition of NH4Cl resulted in a significant increase in rHpaA
production. Inorganic nitrogen sources provide more quick-
acting nitrogen and reduce the lag phase, thereby promoting
rapid strain growth and metabolism (Kuypers et al., 2018).
Replacing complex organic nitrogen sources like yeast extract
and peptone with inorganic nitrogen sources also helps control
production costs for economic feasibility (Terol et al., 2019). The
addition of Ca2+ and the use of a mixed phosphate significantly
enhanced the production of rHpaA. Ca2+ can affect ribosome
function and protein folding (Ohkuri et al., 2002). The phosphate
mixture can supply both K+ and Na+, providing greater stability
in maintaining ion balance and osmotic pressure across the cell
membrane, thereby better supporting the transport of nutrients
into cells (Stautz et al., 2021; Szatmári et al., 2020).

Microbial metabolite synthesis critically depends on the
nutritional environment, with different culture media causing

FIGURE 6
Identification and analysis of purified rHpaA. (A) Expression analysis of rHpaA via SDS‒PAGE. Lane M, molecular weight marker. Lane 1; rHpaA in
whole bacteria; Lane 2, rHpaA in the supernatant; Lane 3, rHpaA in the precipitate. (B)Western blot analysis of purified rHpaA. Lane M, molecular weight
marker; Lane 1, reactivity bands of purified rHpaA with anti-rHpaA serum; Lane 2, blank control for Lane 1; Lane 3, reactivity bands of purified rHpaA with
anti-H. pylori lysate; Lane 4, blank control for Lane 3. (C) Serum-specific IgG analysis of the rHpaA-immunized group and the PBS control group. (D)
SEC-HPLC analysis of purified rHpaA.
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significant changes in protein expression, primarily due to variations
in resource allocation (Goormans et al., 2020). Considering the
interaction and complex effects of multiple factors in the engineered
E. coli culture medium, multi-factor optimization methods were
used to avoid deviation from the results of one-dimensional studies.
Plackett–Burman experimental analysis identified glucose, yeast
extract, and NH4Cl as the most significant variables, which are
essential carbon and nitrogen sources that greatly influence rHpaA
as direct energy substrates. The steepest ascent design further
determined the value range of the central composite design,
promoting the transition from preliminary variable screening to a
more detailed optimization process, and prepared for subsequent
precise adjustments (Sztendur and Diamond, 2002). The RSM
model established a quadratic regression equation relating actual
variables to rHpaA yield, with a three-dimensional plot highlighting
significant interactions between glucose and yeast extract, as well as
glucose and NH4Cl (Jankovic et al., 2021). Utilizing RSM data, the
ANNmodel further dissected the implicit nonlinear relationships of
input variables on rHpaA yield. With GA optimization, a definitive
formula for the culture medium that significantly enhances rHpaA
production was derived. Concurrently, the ANN-GA model
exhibited superior regression accuracy in both the prediction and
optimization process (Prabhu et al., 2017). The limitation of BBD-
RSM is its capacity to construct only polynomial regression models,
which restricts its generalization ability when addressing complex
data sets (Hamza et al., 2024). In contrast, artificial neural networks
possess a nonlinear activation function that effectively captures
intricate nonlinear relationships within the data, thereby
providing enhanced data processing and generalization
capabilities (Liu et al., 2022). This makes neural networks more
suitable for guiding the optimization process of biologics
manufacturing.

The structure and immunogenicity of rHpaA were critical
factors influencing the protective efficacy of the vaccine. SEC-
HPLC results indicated that rHpaA, following two-step
purification, exhibited high purity and homogeneity. The
recombinant antigen was recognized by mouse anti-H.pylori
lysate serum, demonstrating that the rHpaA possessed
antigenicity comparable to that of the natural HpaA from H.
pylori (Lundström et al., 2003). The quantitative analyses of
specific IgG in the serum of immunized mice revealed that the
rHpaA antigen displayed high immunogenicity and effectively
induced specific IgG responses, thereby confirming its potential
for vaccine application (Banga Ndzouboukou et al., 2021).

In the development of H. pylori vaccines, HpaA is widely
regarded as one of the most promising antigens. While most
previous studies have concentrated on the immune effects and
mechanisms of HpaA, there has been less focus on its engineering
applications. To achieve large-scale application in the vaccine
field, it is crucial to systematically enhance the antigen
production yield. The optimization of fermentation conditions
is a key strategy to significantly improve both product yield and
quality. This study successfully increased rHpaA production
through a series of experiments and model design
methodologies, establishing a foundation for the future
commercialization of H. pylori vaccines composed of rHpaA.

Despite these positive findings, it is important to acknowledge the
limitations of this study, which primarily focused on optimizing
the composition of the culture medium. Future research must
tackle the challenge of refining a broader range of culture
conditions during scale-up fermentation to ensure improved
scalability and reproducibility of the production method.

5 Conclusion

This study applied a systematic optimization strategy for the
culture medium, in conjunction with RSM and ANN, leading to a
significant enhancement in the production of rHpaA. The obtained
rHpaA exhibited robust immunogenicity in animal models,
providing a viable solution for its large-scale production in H.
pylori vaccines. The ANN-GA model demonstrated superior
accuracy in prediction and optimization, underscoring its broad
utility in biotechnology.
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