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Introduction:Chronic Ankle Instability (CAI) is a chronic syndrome resulting from
repeated ankle sprains that lead to persistent dysfunction.the purpose of this
study is to determine whether visual disruption could influence static and
dynamic postural control in people with and without chronic ankle instability
(CAI), with the objective of gaining a comprehensive understanding of the
interactions between visual inputs and postural control.

Methods: Thirty people with CAI (21 males and 9 females, age = 22.0 ± 1.8 years,
height = 174.4 ± 10.2 cm, body mass = 72.5 ± 15.4 kg; Cumberland Ankle
Instability Tool (CAIT) score = 19.7 ± 1.8) and twenty-nine without CAI (24 males
and 5 females, age = 22.9 ± 1.6 years, height = 172.8 ± 8.0 cm, bodymass = 69.0 ±
11.3 kg; CAIT score = 29.0 ± 0.7) were recruited. Their static and dynamic postural
control was measured in two conditions with or without visual disruption,
simulated using stroboscopic glasses. Static postural control was measured
during single-limb standing and represented by root mean square (RMS) of
the plantar center of pressure (CoP), dynamic postural control was measured
during a Y-balance test and represented by the relative reach distance. Two-way
mixed ANOVA (between group: CAI vs non-CAI, within group: normal vision vs
visual disruption) was used to analyze data.

Results and discussion: Significant interactions were detected in the CoP-RMS in
the anteroposterior (AP) (p = 0.021, η2p = 0.090) andmediolateral (ML) (p < 0.001,
η2p = 0.208) directions, and the relative reach distances in the posteromedial (PM)
p = 0.023, η2p = 0.088) and posterolateral (PL) (p = 0.009, η2p = 0.113) directions,
from normal vision to visual disruption. The CoP-RMS in the AP and ML directions
significantly increased and the relative reach distances in the PM and PL directions
significantly decreased in people with CAI while remaining unchanged in those
without CAI. People with CAI are susceptible to visual disruption on postural
control, highlighting the importance of visual input in maintaining stable posture
in this population.
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1 Introduction

Acute ankle sprains are among the most prevalent
musculoskeletal injuries (Waterman et al., 2010). Up to 70% of
people who experience an acute lateral ankle sprain may develop
chronic ankle instability (CAI) within a year following the initial
injury (Herzog et al., 2019). Annually, the United States spends
approximately 152 million USD on the treatment of ankle sprains
(Feger et al., 2017).

The acute ankle sprains experienced by people with CAI may
impact their static and dynamic postural control (Sierra-Guzmán
et al., 2018). Diminished postural control is associated with falls
(Moncada and Mire, 2017) and injuries (Hrysomallis, 2007; Paterno
et al., 2010), particularly among those with CAI (Prawiradilaga et al.,
2020). Static balance control, typically quantified by the root mean
square (RMS) of plantar center of pressure (CoP) during single-leg
standing (Song et al., 2021), may be compromised by an acute ankle
sprain, due to the decreased tactile sensation that follows the injury
(Liu et al., 2024). Similarly, dynamic postural control, often assessed
by the relative reach distance during the Y-balance test (YBT)
(Sierra-Guzmán et al., 2018), may also be adversely affected by
an acute ankle sprain. This may be attributed to the reduction in
lower extremity muscle strength after the injury (Hou et al., 2020).

The static and dynamic postural control of people with CAI may
be more significantly influenced by visual disruption than those
without CAI. The visual system plays a pivotal role in enhancing
postural control, as it is adept at object motion perception and
recognition, and is highly sensitive to dynamic scenes (Guerraz and
Bronstein, 2008). A study has demonstrated reduced ankle
proprioception among people with CAI (Xue et al., 2021),
potentially necessitating a greater reliance on visual cues to
maintain postural control (Song et al., 2016). People inevitably
encounter environments or conditions that cause visual
disruption, such as reduced visual stimulation due to dim
lighting (Honeine and Schieppati, 2014) or decreased visual
perception as a result of aging (Nguyen et al., 2021), people with
CAI may particularly vulnerable due to their existing proprioception
deficits, which may be used to compensate for other decreased
sensations (Liu et al., 2023), like vision.

The specific impact of visual disruption on their postural control
has not been fully understood. Further exploration in this area is
crucial for gaining a comprehensive understanding of the complex
interaction between visual input and postural control in this specific
population. This study aims to determine whether visual disruption
would affect static and dynamic postural control in people with and
without CAI. We hypothesized that compared to those without CAI,
visual disruption might result in #1. greater increases in the CoP-
RMS; and #2. greater decreases in the relative reach distance during
the Y balance test in people with CAI.

2 Methods

2.1 Participants

To the best of our knowledge, no prior studies have examined the
impact of visual disruption on the CoP-RMS during single-limb
standing, and the relative reach distance during the Y Balance Test

in people with and without CAI. Data from our pilot study have been
used for sample size estimating, where 3 people with CAI and another
3 without CAI participated. The effect size (η2p) for the group-by-
condition interaction pertaining to the CoP-RMS and relative reach
distance of YBT were 0.064 and 0.037. An a priori power analysis
utilizing G*Power (3.1, Universität Düsseldorf, Düsseldorf, Germany)
revealed that a sample size of 54 participants (with 27 participants in
each group) would be necessary to achieve an alpha level of 0.05 and a
statistical power of 0.80.

Thirty people with CAI (9 females and 21 males, aged 22.0 ±
1.8 years, with a height of 174.4 ± 10.2 cm and a body mass of 72.5 ±
15.4 kg; Cumberland Ankle Instability Tool (CAIT) score = 19.7 ±
1.8) and twenty-nine people without CAI (5 females and 24 males,
aged 22.9 ± 1.6 years, with a height of 172.8 ± 8.0 cm and a body
mass of 69.0 ± 11.3 kg; CAIT score = 29.0 ± 0.7) participated in this
study. The inclusion criteria for people with CAI adhered to the
guidelines by the International Ankle Consortium (Gribble et al.,
2013), which included: (a) experiencing at least one lateral ankle
sprain 12 months prior to enrollment, leading to cessation of
physical activity for at least 1 day; (b) experiencing at least two
lateral ankle sprains; (c) experiencing at least two episodes of ankle
“giving way” within the 6 months preceding enrollment; and (d) a
CAIT score of less than 24. The inclusion criteria for people without
CAI were: (a) matching the CAI participants in terms of gender, age
(±3 years), height (±5 cm), and weight (±5 kg); (b) having no history
of lateral ankle sprains; and (c) a CAIT score of 28 or higher. The
exclusion criteria for both groups were (Song et al., 2017): (a) having
a lower extremity fracture or surgery; (b) sustaining an acute injury
to the lower extremity within the last 3 months; (c) having
neurological disorders, diabetes mellitus, or vestibular disorders;
and (d) having bilateral CAI. This study received approval from the
ethics committee of Shandong Sport University (No. 2022044), and
all participants provided written informed consent.

2.2 Protocols

The participants wore form-fitting T-shirts and shorts, with their
tested limbs designated as the affected limbs for people with CAI and
the corresponding limbs on the same side for those without CAI. Each
participant underwent two tests: the single-limb standing test and the
YBT, under both normal vision and visual disruption conditions. We
randomly tested the single-limb standing test and Y-balance test with
normal vision and visual disruption by using a computer-generated
randomized sequence. Visual disruption was simulated using
stroboscopic glasses (Sibokeji, Zhuhai, China) at 3 Hz, alternating
between 0.100 s of clarity and 0.233 s of opacity (Han et al., 2022).

2.2.1 Single-limb standing test
The static balance control was quantified using the single-limb

standing test. In this test, participants stood with their tested foot placed
on a force platform (AMTI, BP600900, United States), maintaining
their body as still as possible with their hands resting on their hips. The
untested hip was flexed at 30° and the knee at 45°, and this position was
held for 30 s under normal vision and visual disruption conditions.
Throughout the test, participants fixated their gaze on a black dot
positioned 1.8 m above a wall located 2.5 m away (Sun et al., 2018). The
CoP data were recorded for approximately 30 s at a 1,000 Hz. One trial
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was conducted separately under normal vision and visual disruption
conditions, separately.

2.2.2 Y-balance test
The Y-Balance Test Kit was utilized to evaluate the participants’

postural control capabilities (Plisky et al., 2009). This comprehensive
kit consists of a central plate and three extendable tubes positioned
in the anterior (ANT), posteromedial (PM), and posterolateral (PL)
directions, each tube terminating in a unique plastic plate. During
the assessment, participants stood barefoot on the central plastic
plate, with their tested leg as the base of support, and pushed each of
the three movable plates as far as possible with their non-tested leg.
Each direction (ANT, PM, PL) was tested separately, with three trials
conducted in each under normal vision and visual disruption
conditions (Shaffer et al., 2013), the mean value of the three
trials for each direction was then calculated for data analysis.

2.3 Data reduction

During the single-limb standing test, the CoP data were
subjected to low-pass filtering at a cutoff frequency of 10 Hz
(Zéronian et al., 2021) for a duration of 10 s, commencing
approximately 3–5 s after the onset of the standing task
(Zéronian et al., 2021). Equation 1 was used to calculate these
filtered data to calculate the CoP-RMS.

RMS �
�������������
1
n
∑n

i�1 xi − �x( )2
√

(1)

wherexi donates the CoP position for eachmeasurement; �x donates the
average of all measurements; n donates the number of measurements

During the Y-balance test, participants’ leg lengths were
measured from the anterior-superior iliac spine to the distal end
of the medial malleolus. The relative reach distance was normalized
by leg length using Equation 2 (Johnston et al., 2018):

Relative reach distance � reach distance/leg length × 100% (2)

2.4 Statistics

Data were analyzed using SPSS (26.0, IBM, New York,
United States) and G*Power (3.1, Universität Düsseldorf,
Düsseldorf, German). Shapiro-Wilk tests were used to verify the
normality of the data. Two-way mixed-design ANOVAs,
distinguishing between-group factors (CAI vs. non-CAI) and
within-group factors (normal vision vs. visual disruption), were
utilized to ascertain the main effects of group and condition, as well
as the group-by-condition interactions. If significant interactions
were identified, simple effects analyses were employed to perform
pairwise comparisons. When the data did not follow a normal
distribution, the non-parametric Mann-Whitney U test was used
to compare the differences between the two groups under normal
vision and visual disruption conditions. Partial eta squared (η2p) was
used to indicate the effect size of the two-way ANOVA’s interactions
and main effects with the thresholds: 0.01–0.06 for small,
0.06–0.14 for moderate, and >0.14 for large effect size
(Richardson, 2011). Cohen’s d was used to indicate the effect size

of post hoc pairwise comparison with the thresholds: <0.20 for
trivial, 0.21–0.50 for small, 0.51–0.80 for medium, and >0.81 for
large effect size (Cohen, 1988). Data are presented as mean ±
standard deviation and the significance level was set at 0.05.

3 Results

As shown in Table 1, a group-by-condition interaction was
detected in CoP-RMS in the anteroposterior (AP) (p = 0.021, η2p =
0.090) and mediolateral (ML) (p < 0.001, η2p = 0.208) directions.
From normal vision to visual disruption conditions, the CoP-RMS
in the AP (normal vision = 9.36 ± 2.19 mm, visual disruption =
12.64 ± 7.05 mm, p = 0.005, d = 0.63) and ML (normal vision =
7.47 ± 2.01 mm, visual disruption = 8.54 ± 2.28 mm, p < 0.001, d =
0.50) directions significantly increased in people with CAI while
remained unchanged in those without CAI.

As shown in Table 2, significant group-by-condition
interactions were detected in the relative reach distances in PM
(p = 0.023, η2p = 0.088) and PL (p = 0.009, η2p = 0.113) directions.
From normal vision to visual disruption conditions, the relative
reach distance in the PM (normal vision = 107.0 ± 11.6%, visual
disruption = 110.1 ± 12.2%, p = 0.046, d = 0.26) and PL directions
(normal vision = 111.1 ± 10.8%, visual disruption = 114.4 ± 9.0%, p =
0.026, d = 0.33) significantly decreased in people with CAI while
remained unchanged in those without CAI. In addition, significant
group main effects were detected. Compared with people without
CAI, those with CAI have a significantly shorter relative reach
distance of YBT in the PM (p = 0.003, η2p = 0.141) and PL
(p = <0.001, η2p = 0.194) directions.

4 Discussion

This study aimed to investigate the impact of visual disruption on
static and dynamic postural control in people with and without CAI.
Our results supported hypotheses #1 and #2. Specifically, visual
disruption significantly increased CoP-RMS, and significantly
decreased the relative reach distance in the YBT among people with
CAI, whereas these effects were not observed in people without CAI.

Our findings reveal that visual disruption leads to a decrease in
static postural control, as indicated by CoP-RMS, in people with
CAI, whereas this effect is not observed in those without CAI. This
reduction in static postural control is often interpreted as a sign of
decreased automation of static posture control (Roerdink et al.,
2011; Rizzato et al., 2023). Our finding is consistent with previous
studies. Song et al. investigated the effect of closed eyes on the CoP
displacement during single-limb standing test in people with CAI,
and their results showed that with the reduction of visual
information, the static postural control during single-limb
standing test in people with CAI decreased (Song et al., 2017).
Furthermore, Lee et al. showed a significant decrease in static
postural control in healthy people when both somatosensory and
visual disruption were present, whereas there was no significant
change when only visual disruption was present (Lee et al., 2022).

We propose that the impact of visual disruption on people with
CAI stems from their limited ability to allocate additional attentional
resources towards maintaining stability. Attentional resources are
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TABLE 1 Root mean square of center of pressure in the single-limb standing test.

CAI (N = 30) Non-CAI (N = 29) Group effect Condition effect Interaction

Normal vision Visual disruption Normal vision Visual disruption p η2p p η2p p η2p
RMSAP (mm) 9.36 ± 2.19 12.64 ± 7.05a 9.39 ± 2.42 8.91 ± 6.15 0.073 0.050 0.083 0.052 0.021 0.090

RMSML (mm) 7.47 ± 2.01 8.54 ± 2.28a 7.79 ± 1.66 7.41 ± 1.43 0.378 0.014 0.071 0.056 <0.001 0.208

RMSAP/ML: the root mean square of center of pressure in the anteroposterior or mediolateral directions.
adenotes a significant difference compared with Visual disruption conditions in people with CAI.

TABLE 2 Relative reach distance in the Y-balance test.

CAI (N = 30) Non-CAI (N = 29) Group effect Condition effect Interaction

Normal vision Visual disruption Normal vision Visual disruption p η2p p η2p p η2p
Anterior (LL%) 68.3 ± 9.0 66.2 ± 9.1 74.1 ± 8.5 72.7 ± 7.7 0.006 0.123 0.003 0.147 0.480 0.009

Posteromedial (LL%) 110.1 ± 12.2 107.0 ± 11.6a 117.9 ± 13.4 119.9 ± 16.6 0.003 0.141 0.607 0.005 0.023 0.088

Posterolateral (LL%) 114.4 ± 9.0 111.1 ± 10.8a 122.9 ± 14.0 125.2 ± 15.1 <0.001 0.194 0.613 0.005 0.009 0.113

Anterior, posteromedial, and posterolateral represent the relative reach distances in the anterior, posteromedial, and posterolateral directions.

LL, represents leg length.
adenotes a significant difference compared with visual disruption conditions in people with CAI.
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crucial for maintaining physical stability and integrating sensory
information (McDowd, 2007; Katsuki and Constantinidis, 2014).
When sensory information is inadequate or inaccurate, people
require more attentional resources to process this information
compared with people without sensory deficits (Shumway-Cook
and Woollacott, 2000; Redfern et al., 2001a; Teasdale and
Simoneau, 2001). Given that people with CAI require more
attentional resources to process their compromised sensory
information (Song et al., 2017; Terada et al., 2019), visual
disruption further increases the demand for attentional resources
to maintain stability, ultimately leading to a deficit in the resources
allocated to physical stability and a subsequent decrease in static
postural control. Several pieces of evidence support our hypothesis.
Firstly, reduced relevant sensory information causes decreased static
postural control in people with CAI (Song et al., 2017). Secondly,
when visual information is reduced, people with impaired or absent
sensory functions tend to be more concerned about maintaining
physical stability (Brown et al., 1999; Lindenberger et al., 2000; Rankin
et al., 2000; Marchese et al., 2003; Redfern et al., 2004). These findings
suggest that the visual disruption in our study may have
disproportionately affected people with CAI, leading to a reduction
in static postural control and potentially increasing their risk of injury.

Our results further demonstrated that visual disruption
significantly impaired dynamic postural control in people with
CAI, whereas it had no discernible effect on those without CAI,
suggesting a heightened reliance on vision for maintaining stability
among those with CAI. A previous study has shown that people with
CAI are more visually dependent than those without CAI in
performing the dynamic task of one-legged jumping and that
somatosensory sensations other than vision are not sufficient to
compensate for the detrimental effects of visual disruption in people
with CAI (Han et al., 2022). In addition, a previous meta-analysis,
which aggregated data on time to boundary under both eyes-open
and eyes-closed conditions among healthy controls and people with
CAI, corroborated our findings by emphasizing the greater visual
dependence among those with CAI (Song et al., 2016).

We posit that the impact of visual disruption on postural control in
people with CAI stems from proprioceptive deficits. In situations of
sensory deficits, proprioception can typically compensate for the loss of
other sensory cues to maintain stability (Liu et al., 2023). However,
people with CAI exhibit weaker proprioception, rendering them unable
to provide sufficient and effective sensory information (Kawabata et al.,
2024). This, in turn, leads to an inability to adequately compensate for
the reduced visual inputs, ultimately resulting in compromised postural
control (Redfern et al., 2001b). Conversely, people without CAI, who
possess unimpaired proprioception, may exhibit reduced reliance on
visual inputs and heightened reliance on proprioception in response to
visual distractions.

The first limitation of this study is that, although stroboscopic
glasses have been proven effective for visual disruption, they cannot
simulate the complex visual changes associated with aging, such as
macular degeneration, cataracts, and glaucoma, which affect visual
perception. Therefore, future research should explore changes in
physiological complexity, balance control, and injury potential in
older adults with clinical vision loss. The second limitation lies in the
gender imbalance in our participants, with a higher proportion of
males, which may restrict the generalization of our findings to
female populations. Future studies should strive to recruit a more

gender-balanced participants to better represent the broader
population and mitigate potential gender-related biases.

5 Conclusion

People with CAI are more vulnerable to visual disruption during
static and dynamic postural control than those without CAI,
suggesting that visual disruptions can adversely affect postural
control in people with CAI, highlighting the importance of visual
input in maintaining stable posture in this population.
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