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Introduction: Color vision deficiency (CVD), a common visual impairment,
affects individuals’ ability to differentiate between various colors due to
malfunctioning or absent color photoreceptors in the retina. Currently
available diagnostic tests require a behavioral response, rendering them
unsuitable for individuals with limited physical and communication abilities,
such as those with locked-in syndrome. This study introduces a novel, non-
invasive method that employs brain signals, specifically Steady-State Visually
Evoked Potentials (SSVEPs), along with Ishihara plates to diagnose CVD. This
method aims to provide an alternative diagnostic tool that addresses the
limitations of current tests.

Methods: Electroencephalography (EEG) recordings were obtained from 16
subjects, including 5 with CVD (specifically Deuteranomaly), using channels
O1, O2, Pz, and Cz. The subjects were exposed to visual stimuli at frequencies
of 15 Hz and 18 Hz to assess the proposed method. The subjects focused on
specific visual stimuli in response to questions related to the Ishihara plates. Their
responses were analyzed to determine the presence of CVD. Feature extraction
was performed using Power Spectral Density (PSD), Canonical Correlation
Analysis (CCA), and a combined PSD + CCA, followed by classification to
categorize subjects into two classes: normal vision and CVD.

Results: The results indicate that the proposed method effectively diagnoses
CVD in individuals with limited communication abilities. The classification
accuracy of SSVEP exceeded 75% across the three classifiers: Decision Tree
(DT), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The SVM
classifier demonstrated higher accuracy compared to the other classifiers,
exceeding 90%.

Discussion: These observations suggest that the SVM classifier, utilizing the
combined feature set of PSD + CCA, may be the most effective in this
classification task. These findings demonstrate that the proposed method is an
accurate and reliable diagnostic tool for CVD, particularly for individuals unable to
communicate.
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1 Introduction

Color vision is based on the fact that the human retina contains
three different cone photoreceptors, which absorb photons (Celesia
and Celesia, 2005). Having an abnormality or lacking one or more of
these cones leads to color vision deficiency (CVD). CVD is basically
defined as the inability for a person to distinguish colors in normal
lighting (Woldeamanuel and Geta, 2018), causing struggles in
affected individuals in their daily lives, such as driving, working,
or consciousness levels. In the retina, each cone photoreceptor is
sensitive to a specific region of the visible spectrum, covering a range
of wavelengths associated with specific color hues. There are three
main types of cones: the S-cone, which detects short wavelengths;
the M-cone, which detects medium wavelengths; and the L-cone,
which detects long wavelengths (Thoreson and Dacey, 2019). The
ranges of the cones in the visible spectrum overlap, requiring
complex computations by the brain to accurately recognize the
correct hue. This shows that brain signals can provide significant
insights into color perception, which involves several steps. It is
initiated by cones detecting the wavelength, after which the brain
decodes the signal by comparing the overlapping ranges of different
cones, allowing us to perceive the correct color (Thoreson and
Dacey, 2019; Conway, 2009; Werner, 2014). CVD is associated with
abnormalities in cone sensitivity or the lack of specific cones (Chan
et al., 2014). It is one of the most common vision disorders, affecting
1 in 12 males and 1 in 200 females (Alamoudi et al., 2021). The
prevalence rate of CVD is not constant among different populations,
with rates ranging from 1.40% to 13.93%, depending on various
factors, including genetic and environmental influences (Male et al.,
2023; Fareed et al., 2015; Fakorede et al., 2022; Shah et al., 2013).
When a specific cone fails to detect a wavelength, it results in the
failure to transmit the signal to the brain, impacting the decoding
process and ultimately leading to a failure in color perception
(Alamoudi et al., 2021). Genetic CVDs are classified into two
main types based on the affected cone. The types of CVD are
anomalous trichromacy and dichromacy. Anomalous trichromacy
is subdivided into protanomaly, associated with an abnormal
L-cone; deuteranomaly, associated with an abnormal M-cone;
and tritanomaly, associated with an abnormal S-cone.
Dichromacy is subdivided into protanopia, associated with a
missing L-cone; deuteranopia, associated with a missing M-cone;
and tritanopia, associated with a missing S-cone (Chan et al., 2014;
Dohvoma et al., 2018).

People with CVD suffer in various aspects of their lives,
especially when they do not recognize the disorder early on.
Studies show that individuals with CVD often lack awareness of
their condition in early childhood compared to their peers, leading
to missed opportunities and disadvantages if they are unaware of it.
This lack of awareness can impact their life paths and daily activities
(Woldeamanuel and Geta, 2018; Chan et al., 2014; emhj, 2021).
However, detecting the disorder early can provide them with an
opportunity to adapt and manage the condition naturally without
significantly affecting their lives (Alamoudi et al., 2021; Gordon,
1998). The most common methods for diagnosing CVD include the
Ishihara test, the Farnsworth–Munsell (FM) 100-hue test, and the
anomaloscope (Fanlo Zarazaga et al., 2019; Pandey et al., 2015).
Nevertheless, other methods have been developed and tested, such
as genetic testing, which depends on identifying any changes in

genes associated with CVD (Davidoff et al., 2016), or color
arrangement tests, such as the Farnsworth D-15, which depend
on arranging colors in a specific order (Károly, 2024), or using
imaging techniques such as Spectral Domain Optical Coherence
Tomography (SD-OCT) to assess the sensitivity of the retina’s
photoreceptors (Gupta et al., 2011).

These methods are not always accurate and may not be suitable
for individuals with movement or communication disabilities or
young children, as they require behavioral responses. Additionally,
some tests, such as the Ishihara test, provide only qualitative
assessments, while others, such as the FM test and D-15 test, rely
on subjective responses that can lead to errors. Some tests are
challenging and require training, such as the anomaloscope.
Moreover, genetic testing has limitations as it may miss some
undiscovered mutations leading to ambiguity in diagnosis and is
considered complex, making it impractical in routine clinical
diagnosis. Finally, imaging techniques like SD-OCT provide
structural but not functional information, making it inaccurate to
diagnose vision diseases, such as CVD. Therefore, it is crucial to find
alternative methods that can overcome the limitations of current
assessments, allowing for accurate and precise diagnostic procedures
to help those affected by CVD (Fanlo Zarazaga et al., 2019; Pandey
et al., 2015; Davidoff et al., 2016; Gupta et al., 2011; Salvia and
Ysseldyke, 1971). In recent times, Electroencephalography (EEG)
has emerged as a promising avenue for diagnosing CVD. By
measuring brain activity, EEG provides a unique window into
neural responses triggered by visual stimuli, potentially
enhancing the accuracy and depth of diagnosis in this particular
field, paving the way for a more comprehensive understanding of
CVD and improving the lives of those affected.

Building on this understanding, the brain signals measured by
EEG can provide significant insights into retina color perception,
enabling the development of an objective and accurate method for
diagnosing CVD (Teixeira and Gomes, 2023). Specifically, the
steady-state visual evoked potential (SSVEP) examines the
responses of neurons when exposed to repetitive visual
stimulation at specific frequencies. SSVEP is an effective choice
for detecting EEG variations in response to different colors due to its
high signal-to-noise ratio (SNR) and low susceptibility to artifacts
(Cao et al., 2012; Albahri et al., 2023; Chu et al., 2017). However, the
use of SSVEP for diagnosing CVD has been minimally explored,
despite its potential to improve diagnostic methods and benefit
many individuals worldwide. Most studies have focused on the
variations that colors could induce in SSVEP response, but they are
unaware of its potential for diagnostic purposes. Additionally, some
limitations associated with using SSVEP as a diagnostic technique
for CVD could include the challenge of identifying procedures that
are not overly complex and time-consuming. Therefore, this study
aims to present a direct and objective method using SSVEP to
facilitate the easy diagnosis of CVD, focusing on the most common
type of CVD, red-green CVD, which includes protanomaly,
deuteranomaly, protanopia, and deuteranopia. The proposed
method aims to overcome the limitations of current assessments
and enhance the lives of people with CVD.

This paper is structured into multiple sections. It begins with a
review of related work to contextualize previous studies in the field.
Following this, the methodology section explains the approach
adopted to fulfill the study’s objectives. Subsequently, the results
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section presents and thoroughly analyzes the experimental findings
obtained through the methodology explained. Finally, the discussion
section delves deeper into the implications of the results,
emphasizing the significance and efficacy of the proposed
method. The paper concludes with a succinct summary and
outlines potential future research endeavors.

2 Related works

In EEG techniques, SSVEP has been recognized as a viable
option for diagnosing CVD in several studies, while alternative
methods like ERP have also been employed in this field. However,
ERP has rarely been utilized for diagnostic purposes in this area;
instead, it has explored the relationship between brain function and
color recognition. The scarce studies that have applied this for
diagnostic purposes are only referenced in Bieber et al. (1997)
and Thomas et al. (2017). In Bieber et al. (1997), they utilized
the silent distribution method, which involves adjusting the levels of
various light wavelengths to stimulate the specific cone type
required. Their study aimed to diagnose infants by comparing
their results to those of adults, which could be a limitation due
to variations in human retinas with age (Hendrickson et al., 2008;
Vinekar et al., 2015). In Thomas et al. (2017), they developed a
device in which they used color stimuli consisting of the primary
colors (red, green, and blue) during EEG recordings. Subsequently,
they calculated the energy variance, observing a higher deviation in
the particular color associated with CVD in the individual. However,
they tested their method on only two subjects, making it challenging
to generalize the results, which implies the need for further testing to
ensure more dependable outcomes (AlEssa and Alzahrani, 2024).

The infrequent use of SSVEP for diagnostic purposes parallels
that of ERP. Prior to 2020, there were relatively few published studies
on the application of SSVEP in diagnosing CVD, despite the
longstanding recognition of the influence of different colors on
SSVEP responses (Thomas and Umamaheswari, 2016; Roy et al.,
2021; Göksel Duru and Alobaidi, 2021). The studies utilizing SSVEP
for diagnostic aims are mainly (Zheng et al., 2021), and (Norton
et al., 2021). In Zheng et al. (2021), they implemented a technique
based on sweep SSVEP to diagnose CVD by designing a stimulus
pattern involving a red-green checkerboard with varying luminance
ratios to evoke the SSVEPs and make conclusions by using an
equiluminance turning curve. Because their research incorporated
sweep SSVEP, encompassing a wide frequency spectrum for
stimulation, this introduced some limitations associated with
complexity and time-consuming. However, in Norton et al.
(2021), they studied the detection of CVD through SSVEP, not
sweep SSVEP, utilizing an innovative approach to spot metamers.
They discovered that individuals with normal color vision exhibit an
SSVEP close to zero, whereas those with CVD do not. However,
their study includes more than one experiment for each subject and
a total time reaching approximately one hour, which could be
considered a limitation and challenging to use this method in
routine clinical diagnosis.

The novel technique proposed in this paper for diagnosing CVD
through SSVEP aims to address the limitations identified in previous
studies. Unlike the challenges associated with the complexity and
time-consuming nature of previous studies, the method introduced

here focuses on utilizing SSVEP in a streamlined, efficient, and time-
saving manner compared to all studies that utilized EEG for
diagnostic purposes. By specifically using SSVEP instead of sweep
SSVEP, this technique offers a more direct and precise approach to
CVD diagnosis. Moreover, by optimizing the experimental design to
minimize the number of experiments required for each subject and
reducing the total assessment time to 30 min, this method aims to
enhance the feasibility and practicality of using SSVEP for routine
clinical diagnosis. By overcoming these limitations through a more
focused and efficient application of SSVEP, this novel technique has
the potential to provide a more accessible and reliable method for
diagnosing CVD, offering significant advancements in this field.

3 Methodology

This section outlines the methodology employed to achieve the
objectives of the study. It provides a detailed description of the
research design, data collection procedures, analytical techniques,
and other pertinent aspects of the methodology, building on relevant
literature to ensure a robust approach for addressing the
research questions.

3.1 Participants

The study protocol was approved by the Institutional Review
Board of Imam Abdulrahman bin Faisal University. All participants
received comprehensive information about the study and
voluntarily signed a written consent form in accordance with the
approved protocol. Written informed consent was obtained from
the individuals for the publication of any potentially identifiable
images or data included in this article. The study included
16 participants (10 males and 6 females) with an age of 30.5 ±
9.7. Of these, 5 (all male) had red-green color vision deficiency, while
the remaining 11 had normal color vision. All subjects had no
history of neurological or ophthalmological diseases. Table 1
summarizes the demographic details of the study participants,
including age, gender, and health condition (CVD or healthy).

3.2 EEG recordings

To record the EEG, an OpenBCI Cyton Biosensing Board
(OpenBCI, Brooklyn, NY, United States), as shown in Figure 1A,
was used. The board was connected to a PC via a USB dongle. The
board has 8 channels and a 32-bit processor, and all the data were
sampled at 250 Hz. The EEG was recorded using a cap with dry
comb electrodes, shown in Figure 2B, which were placed according
to the international 10–20 electrode system. These electrodes were
chosen for their compatibility with the OpenBCI board, as well as
their ease of use. Four channels were used: O1, O2, Cz, and Pz/, as
shown in Figure 2A. Selecting these specific regions due to their
significant association with cortical vision in the brain (Norcia et al.,
2015; Srinivasan et al., 2006). The reference and ground electrodes
were placed on the right and left earlobes, respectively, using
conductive gel to enhance conductivity and reduce impedance.
The OpenBCI GUI, shown in Figure 1C, was used for data
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acquisition. The experiment interface was designed in Python
(version 3.12.0), and data analysis was conducted using both
Python and MATLAB (version R2023b; The MathWorks, Inc.,

Natick, MA, United States). Figure 2B shows the experimental
set-up, with the subject wearing the EEG cap equipped with dry
comb electrodes. The subject is exposed to a screen with the

TABLE 1 Demographic information of study participants.

Subject ID Gender Age (years) Health condition Subject ID Gender Age (years) Health condition

1 M 35 Healthy 9 M 41 CVD

2 F 25 Healthy 10 F 25 Healthy

3 F 26 Healthy 11 M 37 Healthy

4 M 18 Healthy 12 F 23 Healthy

5 F 23 Healthy 13 F 30 Healthy

6 M 36 CVD 14 M 22 CVD

7 M 57 Healthy 15 M 40 CVD

8 M 28 Healthy 16 M 22 CVD

FIGURE 1
(A) The OpenBCI Cyton Board and USB dongle used in the experiment, (B) the EEG electrode cap with the 10–20 electrode placement system, (C)
the OpenBCI GUI (OpenBCI, 2023).

FIGURE 2
(A) Electrode placement’s locations according to the 10–20 system, with highlighted regions indicating the specific sites used in this study. (B)
Experimental setup with a subject undergoing the EEG recording. The left screen displays the visual stimuli generated using Python, while the right screen
shows real-time data acquisition in the OpenBCI GUI.
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stimulation function, while another screen displays the measured
data during the experiment.

3.3 Experimental procedure for
eliciting SSVEPs

A specially designed stimulation setup, incorporating a software
interface, was used to elicit SSVEPs. The interface, as shown in
Figure 3 consists of two squares flickering at different frequencies

(15 Hz and 18 Hz) with a series of Ishihara plates positioned above
each square. The EEG was recorded for the subjects during the task.
Each subject was asked to sit in front of a display in a laboratory with
normal lighting. Each subject then focused on a flickering square
(15 Hz or 18 Hz) positioned below a pre-identified number to assess
whether they selected the correct plate, which indicated if the subject
had CVD. Each subject underwent six sessions, with each session
consisting of 10 trials. During each trial, subjects were asked to focus
on the flickering square for 10 s, followed by a 10 s rest interval.
During each trial, subjects were instructed to refrain from blinking,
moving, or talking. However, during rest, they were allowed to blink,
move, and talk to ensure comfort. By considering the electrode
connections, ensuring signal clarity, and conducting the experiment,
the total duration of the experiment was approximately 30 min per
subject. Figure 4 illustrates the step-by-step procedure followed in
this research to achieve its objectives.

3.3.1 EEG synchronization and trigger setup
The synchronization and precise timing between the stimulus

and the data stream were essential to obtain accurate data. This was
achieved by adding an external trigger to the OpenBCI Cyton board
was the method used to achieve this. In this study, it was crucial to
identify the EEG signal that occurs when the stimulation begins. The
trigger was also used to distinguish between the rest and trial
periods, which is essential for subsequent segmentation step. To
accomplish this, the OpenBCI Cyton board mode was changed to
digital mode in the OpenBCI GUI, allowing the reading to occur
from the external pins. The electronic components used included a
breadboard, an Arduino Nano, a CNY17 optocoupler, resistors
(100Ω and 1 kΩ), and connecting wires. An optocoupler is a

FIGURE 3
Overview of the SSVEP-based BCI system used in this study for diagnosing color vision deficiency (CVD). EEG signals were acquired using the
OpenBCI headset, with visual stimulation presented at flickering frequencies of 15 Hz and 18 Hz on a screen. The acquired EEG signals were filtered and
segmented. Subsequently, power spectral density (PSD) was extracted using theWelchmethod for feature extraction. Additionally, Canonical Correlation
Analysis (CCA) was employed as another feature extraction technique. Finally, classification was performed using three classifiers to differentiate
between normal and CVD conditions.

FIGURE 4
Experimental Steps Followed by Subjects in Each Session: Firstly,
the subjects were asked to choose between two Ishihara plates and
focus on the flickering square corresponding to their choice for ten
seconds. They then took a ten-second rest. This process was
repeated ten times (trial and rest) before proceeding to the next
session, which involved different Ishihara plates and
different questions.
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semiconductor device used to transmit electrical signals between two
separate circuits. It consists of two parts: a light-emitting diode
(LED) that emits light, and a light receiver, typically a photodiode or
phototransistor. Both parts are hidden inside a body with metal legs
for connection reasons (Storr, 2024). The visual representation of
the electronic circuit used in the experiment is illustrated in
Figure 5A, while the real circuit is depicted in Figure 5B.

The function of the circuit can be summarized as follow: First,
stimulation starts once the “Start” button (shown in Figure 3) is
clicked. Simultaneously, the Arduino output pin D3 of the Arduino
sends a voltage. This voltage causes the LED in the optocoupler to
emit light, activating the photodiode and forming a short circuit
between pins 4 and 5 of the optocoupler to form a short circuit. This
allows current to reach to the Cyton board as an external input. A
wire connects pin 5 of the optocoupler to D11 of the Cyton board to
enable this connection.

3.3.2 Experimental design parameters
The experimental design parameters were carefully chosen to

meet the objectives of the study. Firstly, some basic controlled
laboratory conditions were considered in order to enhance the
accuracy of the results. The experiments were conducted with
consistent ambient lighting, maintaining a distance of
approximately 30 cm from the stimulator, ensuring the
invariability of environmental factors for all subjects. Design
decisions also considered the participants” comfort, as the
experiment should not exceed 30 min to avoid discomfort for the
individuals undergoing the test. The flickering time was set to 10 s in
each trial to avoid potential eye problems caused by the flickering
effect. The rest period was also chosen to be 10 s to allow individuals
to move and rest their eyes, ensuring their comfort. Additionally,
more than 10 s could be a little challenging for individuals taking the
test, as they may struggle to focus on the flickering for longer
periods, potentially impacting the EEG data and leading to
inaccuracies in the results. Important design parameters include
the values of the frequencies used to elicit SSVEP, the colors of the
background and flickering squares, the Ishihara plates used, and
their specific arrangement. The selection of frequencies was
particularly crucial, as they are fundamental in BCI systems
based on SSVEP. Generally, these frequencies are categorized into
three main ranges: the low band, the middle band, and the high

band, which encompass the ranges of 5–12 Hz, 12–30 Hz, and
30–60 Hz, respectively (Zhang et al., 2017). In this study, the chosen
frequencies were 15 Hz and 18 Hz, which fall within the middle
band. These frequencies were selected based on previous research
identifying the optimal values for eliciting SSVEP. In Duart et al.
(2020), it was demonstrated that the middle range offers the best
signal-to-noise ratio (SNR), indicating its advantages in SSVEP-
based BCI systems. Additionally (Kuś et al., 2013), suggested that a
specific range within the middle band (e.g., 12–18 Hz) is optimal for
eliciting SSVEP. Furthermore (Zhang et al., 2017), found that the
largest SSVEP amplitude occurs at a 15 Hz stimulus, making it a
favorable choice for stimulation due to its easily recognizable
amplitude during diagnosis. The second frequency, 18 Hz, was
selected because it falls within the optimal range (Kuś et al.,
2013) and offers a noticeable difference from 15 Hz, ensuring
clear amplitude differentiation in SSVEP responses.

In addition to frequency selection, the design of the stimulus
interface was also critical for obtaining accurate results. In this study,
the background color was chosen as black, while the stimulation
color for the flickering squares was selected as white. According to
Duart et al. (2020), white and red were suggested as ideal colors
when using middle-range frequencies. However, red color can be
uncomfortable and may trigger epileptic seizures. Therefore, white
was selected as the stimulation color. Another reason for choosing
white is that the stimulation in this study lasts 10 s. As reported by
Du and Zhao (2022), white color is found to be the best choice when
the stimulation duration exceeds 1.5 s. Additionally, the black
background was chosen because it outperforms other colors, such
as red and blue, when paired with white stimulation (He and Abu
Bakar, 2023). These color choices were made to maximize
experimental efficiency, subject comfort, and result accuracy.

A critical aspect of the experiment involved the subject’s
selection between two plates based on a pre-identified number.
For instance, if the subject is asked to choose the number “2”, they
are expected to focus on the flickering squares below the plate they
selected as number “2”. Thus, selecting appropriate plate pairs in
each session is crucial for accurate diagnosis. To ensure the selection
of appropriate plate pairs, 26 volunteers who suffer from red-green
CVD participated in providing their answers for the standard
Ishihara test (Colorlite, 2024). Their answers played a crucial role
in determining the Ishihara plates used during the procedure.

FIGURE 5
(A) Schematic connection of the external trigger in Proteus software. The Cyton board’s pins are simulated using a receptacle connector, with the
three pins representing voltage (Vcc), ground (GND), and digital I/O pin (D11), respectively. The setup includes an Arduino Nano connected to an
optocoupler to isolate and interface the external trigger with the Cyton board. (B) Real Circuit Connection. The Arduino Nano is powered via a USB
connection to the computer.
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Another important factor considered was the presence of hidden
digits on specific Ishihara plates. These hidden digits are designed so
that individuals with normal vision are cannot recognize them, while
those with red-green CVD can identify them (Birch, 1997). This is
due to individuals with CVD relying on the S-cone, which detects
short wavelengths and enables them to perceive blue and recognize
the hidden digits (Miyahara, 2009). Importantly, the more hidden
digits an individual can recognize, the more severe their CVD is
(Birch, 1997). This phenomenon plays a significant role in assessing
CVD severity. Figure 6 illustrates the Ishihara plates used, with the
plates displaying hidden digits specifically shown in Figures
6D, G, K.

In this study, the design of each session with specific plate pairs
was based on prior observations and theoretical expectations. In
session 1, the “2” and “5” pair was selected because volunteers
consistently perceived “5” as “2”, while the “2” appeared as nothing.
This observation aligns with the findings presented in (Ekhlasi et al.,
2021), which demonstrated that individuals with red-green CVD
perceive “2” shown in Figure 6A as nothing. In session 2, the pair
consists of “45” and one of the hidden digit plates shown in
Figure 6D, which represents “nothing”. It is expected that

individuals with CVD recognize the “nothing” plate shown in
Figure 6D as “45”(Hidden plates, 2024). In session 3, the pair
consists of “5”, which is recognized by volunteers with CVD as
“2”, and “6”, which is recognized by the volunteers as “5”. This
arrangement allows for diagnosis since individuals with CVD will
choose “6” if asked to identify “5”, unlike individuals with normal
vision who will identify it correctly.

In session 4, the pair consists of the hidden digit plate shown in
Figure 6G, which represents “nothing”, and the other plate is “5”. The
hidden digit plate shown in Figure 6G was recognized by volunteers as
“5”. This aligns with (Ekhlasi et al., 2021), where CVD subjects identified
this specific hidden digit as “5”. This ensures thatwhen aCVD individual
is asked to identify “5”, they will choose the hidden digit shown in
Figure 6G instead. In session 5, the pair consists of “3”, which is
recognized “5” by some volunteers, while others perceive it as
“nothing” or “3”. The other plate is “5”, which is recognized as “2”
by individuals with CVD. This sessionmay serve as an indicator of CVD
severity, as some individuals may correctly identify it. Finally, session
6 involves a hidden digit shown in Figure 6K, expected to be recognized
as “2”(Hidden plates, 2024), and a “2”, typically perceived as “nothing”
by individuals with CVD (Ekhlasi et al., 2021).

FIGURE 6
Ishihara plates pairs used in each Session. In each session, subjects were asked to choose between two plates. The target and non-target plates were
as follows: Session 1 includes (A) the target plate showing “2” and (B) the non-target plate showing “5”; Session 2 includes (C) the target plate showing “45”
and (D) the non-target plate showing a hidden digit plate; Session 3 includes (E) the target plate showing “5” and (F) the non-target plate showing “6”;
Session 4 includes (G) the non-target plate showing a hidden digit plate and (H) the target plate showing “5”; Session 5 includes (I) the non-target
plate showing “3” and (J) the target plate showing “5”; Session 6 includes (K) the non-target plate showing a hidden digit plate and (L) the target plate
showing “2”.
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Theoretical expectations were also developed to predict the
selections of individuals with CVD based on the chosen plates.
The selection of these plates pairs in the sessions is designed to
accurately diagnose CVD. Individuals with CVD are expected to
choose specific plates that differ from those selected by individuals
with normal vision. Each of the six sessions contains a different pair
of plates, ensuring the accuracy of the diagnosis. Even if a subject
guesses an answer in one session, the likelihood of consistent
guessing is reduced as the plates vary from session to another.
The theoretical expectation of subjects’ selections based on the plates
are illustrated in Table 2.

3.4 EEG data pre-processing and feature
extraction

The raw EEG data were collected using the OpenBCI GUI
software (version 5.2.2), saved as. txt files, and then imported
into Python and MATLAB for processing. First, the EEG data for
all subjects were filtered using a 4th-order Butterworth bandpass
filter (BPF) with a cutoff frequency range of 5–30 Hz, followed by a
notch filter to eliminate 60 Hz powerline noise, both applied in the
OpenBCI GUI software. Additionally, a second BPF with a range of
5–50 Hz was applied in Python to ensure better signal
representation. Next, the EEG data were re-referenced to the
average of all channels to improve the SNR. The data were then
segmented into 10-s trials for each session. After segmentation,
artifact rejection was performed using Independent Component
Analysis (ICA) to remove artifacts-related components, such as eye-
blinks, from the EEG signals. After the ICA-based removal process,
visual inspection and amplitude-based rejection were conducted to
discard trials in which any EEG channel exceeded ±100 μV. After
that the 10 trials for each session were averaged to improve the SNR.

The SSVEP data segmentation was performed using Python.
First, during data recording, a trigger was utilized to separate the
data into two distinct conditions as previously mentioned. When the
subject focused on the stimulation, the trigger was set to 0;
conversely, when the subject was not stimulated, the trigger was
set to 1 in each session. The data was segmented into 10-s intervals,
alternating between “trial” (stimulation) and “rest” (no stimulation)
segments. This structured segmentation approach facilitated data
organization for subsequent analysis. With 10 trial and 10 rest
periods in each session, the averages of these segments were
calculated separately for each session and used in the
classification process.

Feature extraction was conducted using traditional target
identification algorithms, including fast Fourier transform (FFT),
power spectral density (PSD), and canonical correlation analysis
(CCA). PSD, a technique widely employed for detecting SSVEPs,
allows for the extraction of frequency information from EEG signals.
PSD values were computed using the Welch method with a Hann
window to mitigate sharp transition effects on frequency content,
and the results were subsequently converting to µV2/Hz. The 10-s
EEG data windows (2,500 samples) were divided into 19 segments
(250 samples) with a 50% overlap. On the other hand, CCA, known
for its rapidity and straightforward integration, was utilized to
identify target frequencies. CCA facilitates the identification of
the target stimulation frequency through correlation coefficient
analysis by constructing reference signals using sine and cosine
templates. These methods were utilized for their efficacy in handling
multichannel EEG signals and optimizing electrode and time
parameters for SSVEP analysis (Hakvoort, 2010; Scarpino et al.,
1990; Ma et al., 2022).

For PSD, the equation for the periodogram of each segment is
given by Welch’s Method (2024), as shown in Equation 1.

P k( ) � X k( )| |2
M

(1)

where P(k) represents the periodogram at frequency k, |X(k)|2
denotes the magnitude squared of the Fourier transform of the signal
at frequency k, and M represents the total number of samples in
the signal.

The Welch estimate of the power spectral density is then given
by Welch’s Method (2024), as shown in Equation 2.

S k( ) � 1
N

×∑ P n( ) k( )[ ] (2)

where S(k) represents theWelch estimate of the PSD at frequency k,
N represents the number of frames used in the Welch method.
P(n)(k)] represents the periodogram of the nth frame at frequency
k. This equation calculates the average of all the periodograms at
frequency k.

CCA involves examining two sets of variables (X,Y). Unlike
other correlation methods, CCA is capable of detecting robust linear
relationships between multidimensional variables that might go
unnoticed due to the coordinate system used. CCA’s effectiveness
lies in identifying pairs of linear transformations (Wx,Wy) for these
variable sets. These transformations maximize the correlation
between the coordinate systems when applied (Hakvoort, 2010;
Wang et al., 2014).

TABLE 2 Selection expectations based on questions in each session.

Sessions # Question in each session Normal vision selection CVD selection

1 Which one is number 2? Figure 6A Figure 6B

2 Which one is number 45? Figure 6C Figure 6D

3 Which one is number 5? Figure 6E Figure 6F

4 Which one is number 5? Figure 6H Figure 6G

5 Which one is number 5? Figure 6J Figure 6I

6 Which one is number 2? Figure 6L Figure 6K
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The resulting projections of these transformations are termed
canonical variates and can be expressed as shown in Equation 3
(Hakvoort, 2010).

Wx,Wy( ) � argmax corr XWx, YWy( )∣∣∣∣∣ ∣∣∣∣∣ (3)

where Wx andWy represent the linear transformations, and X and
Y represent the sets of variables.

CCA was performed for each stimulation frequency between a
set of EEG signals inX and a set ofYf of SSVEP responses, as shown
in Equation 4 (Hakvoort, 2010).

Yf �

sin 2πft( )
cos 2πft( )

.

.

.
sin 2πHft( )
cos 2πHft( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

Where f represents the stimulation frequency, H represents the
number of harmonics, and T represents the sampling period, and fs

represents the sampling rate. While CCA produces several
correlation coefficients, the largest one was considered. In this
study, the first 3 harmonics were included in the CCA analysis to
capture the strongest components of the SSVEP response, as higher
harmonics generally have lower SNRs and introduce more noise.

To analyze the neural responses, a two-way repeated measures
ANOVA was performed using SPSS Statistics (IBM, Armonk, NY,
United States), with frequency (15 Hz and 18 Hz) as a within-
subjects factor and participant groups (normal vs CVD) as a
between-subjects factor (Park et al., 2009). The statistical
significance level (α) for all analyses was set at p ≤ 0.05.
Mauchly’s test of sphericity was applied to verify the assumption
of sphericity for the within-subjects comparisons, and Greenhouse-
Geisser or Huynh-Feldt corrections were applied when necessary to
adjust for any violations.

3.5 Data augmentation for balanced features
using SMOTE

For each subject, a feature matrix was generated from the EEG
data, comprising PSD and CCA features. From each selected EEG
channel (O1, O2, Cz, and Pz) and target frequencies (15 Hz and
18 Hz), a total of 16 features per subject were extracted. Specifically,
this feature set included 8 features from PSD (4 channel ×
2 frequencies) and 8 features from CCA (4 channel ×
2 frequencies) to efficiently capture relevant characteristics of
EEG signals for distinguishing between healthy and CVD
subjects. Given the class distribution, the feature matrix
contained a total of 176 features for healthy subjects (16 features
× 11 subjects) and 80 features for CVD subjects (16 features
× 5 subjects).

To address this imbalance and improve classification
performance, Synthetic Minority Over-sampling Technique
(SMOTE) was implemented to balance the class distribution in
our data (Chawla et al., 2002). SMOTE is a widely used
oversampling algorithm that proportionally increases the
representation of minority classes, thereby balancing the number

of samples in each class. In this study, ensuring that the classifier
model is trained on an equal number of samples from each class is
essential to avoid model bias toward the majority class. To achieve
this balance, SMOTE was applied to augment the minority class data
(CVD) with synthetic samples. SMOTE was implemented on the
combined feature set, generating synthetic samples for the minority
class by interpolating between existing PSD and CCA values,
resulting in an equal number of samples for each class in the
training set. The SMOTE algorithm generates these synthetic
samples using the following (Equation 5).

xnew � xi + λ xj − xi( ) (5)

where xnew is the new synthetic sample generated, xi is an existing
sample from the minority class, xj is a randomly chosen nearest
neighbor of xi within the minority class, and λ is a randomly
selected value between 0 and 1 for each synthetic sample, which
determines the position of xnew along the line segment connecting xi

and xj.

3.6 Classification procedures

After balancing the dataset using SMOTE, we applied three
distinct classifiers (Decision Tree (DT), Support Vector Machine
(SVM), and K-Nearest Neighbors (KNN)) to assess their
performance in differentiating CVD from healthy cases. The DT
classifier creates models to classify data by representing decision
logics. This algorithm takes the form of a tree-like structure,
comprising multiple levels, with the top node referred to as the
root node. The internal nodes of the tree correspond to tests
conducted on input variables, and based on the outcomes of
these tests, the algorithm branches out to the appropriate nodes.
The leaf nodes of the tree represent the decision outcomes. Building
decision trees depends on calculating the entropy based on the data
requirements (Uddin et al., 2019; Decision Tree, 2024). Figure 7A
shows an illustration of the DT algorithm.

The equation that represents the entropy of a single attribute is
shown in Equation 6 (Britannica, 2024).

E S( ) � ∑c
i�1
pi log2 pi (6)

Where E(S) represents the entropy function, pi represents the
probability of an event S.

The SVM classifier has the ability to classify data depending on
the Kernel method, which utilizes a linear classifier for non-linear
problems, making it capable of classifying both linear and non-linear
data. It transforms each data point into a different space and
identifies a hyperplane that effectively separates the data into
different classes. By representing each data point as a coordinate
in space, the SVM algorithm determines the optimal hyperplane to
distinguish the classes (Uddin et al., 2019; Boateng et al., 2020).
Figure 7B shows an illustration of the SVM algorithm.

The equation that represents the SVM classifier is given by
Equation 7.

K xi,x
′
i( ) � 1 +∑p

j�1
xijxij

′⎛⎝ ⎞⎠ ∧d (7)
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WhereK represents the Kernel function, (xi,x′
i) represents the inner

products of the training observations, and p represents the degree of
the polynomial kernel.

The KNN classifier depends on the number of nearest neighbors,
denoted as K. By choosing different values for K, the classification
results for a given sample object will vary. The Euclidean distance
function is used in the measurement process to assign the case to the
nearest neighbor class (Uddin et al., 2019; Boateng et al., 2020).
Figure 7C shows an illustration of the KNN algorithm, where the
star represents the new object that is classified as black when K � 3,
while it is classified as red when K � 5.

The equation that represents the Euclidean distance metrics
used in the KNN classifier is given by Equation 8 (Boateng
et al., 2020).

D x, y( ) � ∑N
i�1

�����
x2
i y2

i

√
(8)

where D(x, y) represents the distance between the points x and y,
and N represents features numbers.

Moreover, the classification conducted in this study was
evaluated using various methods. Initially, classification accuracy
is a commonmethod to evaluate the performance of classifying EEG
signals in BCI applications. We used k-fold cross-validation to train
and test extracted features for all classifiers, where k was set to 5. In
this approach, the dataset was divided into 5 partitions, with
4 partitions iteratively used for training and the remaining
partition used to test the model’s performance. The accuracy can
be calculated using Equation 9.

Accuracy � Number of correct SSVEP responses assigned classes

Total number of SSVEP responses
× 100

(9)
To analyze the classification accuracies, - a two-way repeated

measures ANOVA was performed using SPSS Statistics (IBM,
Armonk, NY, United States), with classifier type (SVM, DT,
KNN) and feature set (PSD, CCA, PSD + CCA) as within-
subjects factors. The statistical significance level α for all analyses
was set by p≤ 0.05.

The confusion matrix provides a comprehensive evaluation of
the classification model’s performance by offering essential data to
calculate precision, recall, and the F1-score, which collectively

provide a complete picture of the model’s performance. The
matrix consists of different situations (illustrated in Table 3),
which are True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) for the three classes.

The F1 score can be calculated by first computing the precision
and recall using Equations 10–12.

Precesion � TP

TP + FP
(10)

Recall � TP

TP + FN
(11)

F1 − score � 2 × Precesion × Recall

Precesion + Recall
(12)

It is worth noting that precision is also referred to as the positive
predictive value, recall is referred to as sensitivity or true positive
rate, while specificity is referred to as the true negative rate. Also,
sensitivity is associated with TP and FN, while specificity is
associated with TN and FP.

4 Results

This section presents the outcomes and insights derived from
the research. It includes the findings, interpretations, implications,
and potential limitations. Additionally, it evaluates the
methodology by presenting the results and comparing them
with other studies.

4.1 SSVEP response

SSVEP responses were observed throughout the experiment.
Figure 8 illustrates the topographical maps of SSVEP amplitudes
under three different conditions: rest, 15 Hz stimulation, and 18 Hz
stimulation. These maps display the distribution of the brain activity
across the scalp recorded from eight electrodes (O1, O2, Pz, C3, Cz,
C4, Fp1, Fp2) placed according to 10–20 system. During the rest
condition, the SSVEP activity is predominantly low across most of
the scalp, particularly in parietal and occipital regions. However, the
central region exhibits a higher amplitude, as indicated by the red
coloration in the topographical map. This observation suggests that
the brain maintains a certain level of baseline activity even without

FIGURE 7
Illustrations of the three classification algorithms: (A) represents DT algorithm, (B) represents SVM algorithm, and (C) represents KNN algorithm
(Chawla et al., 2002).
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external visual stimuli. This persistent activity could be attributed to
several factors, including alpha wave generation, spontaneous brain
processes, and the influence of Default Mode Network (DMN)
(Knyazev et al., 2011).

At 15 Hz stimulation, the topographical map reveals a notable
increase in SSVEP amplitude, particularly in the occipital region
(O1 and O2). This finding aligns with expectations, given that these
areas of the brain are responsible for visual processing. The
heightened amplitude in these areas indicates that the 15 Hz
visual stimulus generates a strong neural response in the visual
cortex. Furthermore, the map shows that while the activity is
concentrated in the occipital region, it also extends into adjacent
parietal areas, suggesting a broad activation of the brain’s visual
processing networks when exposed to the 15 Hz frequency. As
SSVEPs are primarily generated in the occipital lobe, a relative
reduction in activity in the frontal and central regions is observed, as
depicted in Figure 8. Similarly, during 18 Hz stimulation, a clear
increase in SSVEP amplitude, particularly in the occipital region
(O1 and O2), was observed. These observations suggest that the
15 Hz and 18 Hz frequencies effectively elicit strong neural
responses and robustly stimulate the visual cortex, making them
ideal choices for SSVEP-based CVD diagnostic.

TABLE 3 Confusion matrix situations.

Situation Meaning

True Positive (TP) Represents the number of instances that belong to the CVD
class and are correctly classified as CVD.

True
Negative (TN)

Represents the number of instances that belong to the normal
(healthy) class and are correctly classified as normal

False Positive (FP) Represents the number of instances that belong to the normal
class but are incorrectly classified as CVD.

False
Negative (FN)

Represents the number of instances that belong to the CVD
class but are incorrectly classified as normal

FIGURE 8
Topographical maps of SSVEP amplitudes of different conditions: rest, 15 Hz, and 18 Hz. Brain activity is shown across eight electrodes (O1, O2, PZ,
C3, CZ, C4, FP1, FP2).

FIGURE 9
PSD analysis in subjects with normal vision (left) and color vision deficiency (CVD) (right) during the experiment. Both subjects were instructed to
focus on a target square flickering at 18 Hz, corresponding to the number “2”. The subject with normal vision correctly identified the 18Hz target, resulting
in a distinct PSD peak around 18 Hz, while the subject with CVD incorrectly identified the target, resulting in a PSD increase around 15 Hz associated with
the number “5”.
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The SSVEP responses were analyzed using four electrodes (O1,
O2, Pz, Cz) which exhibited the highest activity during stimulation
and are particularly significant for SSVEP analysis. Figure 9 shows
the PSD analysis of SSVEP responses for two subjects: one with
normal vision and another with CVD. The central portion of the
figure presents the visual stimuli, with the target frequency set at
18 Hz. The graphs on either side illustrate the PSD results for the
occipital electrodes (O1, O2) and central electrodes (Pz, Cz),
providing a comprehensive view of the neural responses recorded
from these specific electrode locations. This detailed analysis allows
for a deeper understanding of how individuals with normal vision
and CVD exhibit distinct brain activity patterns in response to visual
stimuli, particularly in relation to the target frequencies presented.
For the subject with normal vision, the PSD graph on the left reveals
a distinct peak around 18 Hz, particularly evident in the occipital
regions (O1 and O2). This robust neural response signifies that the
subject’s brain is effectively synchronized with the 18 Hz stimulus,
aligning precisely with the intended target frequency for focus and
attention. In contrast, for the subject with CVD, the PSD graph on
the right displays a peak response around 15 Hz instead of the target
18 Hz. This indicates that the subject focused on the 15 Hz, despite
the 18 Hz stimulus being the target. This misalignment underscores
the difficulties individuals with CVD encounter in accurately
processing visual stimuli, shedding light on the distinct
challenges they face in cognitive processing and perception. A
distinct peak at 10 Hz (non-target) was observed for both
stimulation frequencies but becomes more apparent when the
subject focuses on 18 Hz. Moreover, upon comparing the average
PSD ratios between normal vision and CVD subjects, the differences
in their responses are evident in Figure 10. Ratios greater than
1 signify higher PSD in normal vision subjects, whereas ratios below
1 indicate higher PSD in CVD subjects. The PSD ratio is calculated

as the average PSD in normal vision subjects divided by that in CVD
subjects. In the 14–16 Hz range, normal vision subjects exhibit
higher PSD for the 15 Hz target, whereas CVD subjects display
higher PSD for the 18 Hz target. Conversely, in the 17–19 Hz range,
normal vision subjects demonstrate higher PSD for the 18 Hz target,
while CVD subjects showcase higher PSD for the 15 Hz target.

To examine the observed differences in neural responses, a two-
way repeated-measures ANOVA was performed using color vision
status (normal vs CVD) and frequency region (14–16 Hz vs
17–19 Hz) as factors. The results revealed a significant
interaction effect between color vision status and frequency
region on the average PSD ratio (F(1.14) � 5.76, p � 0.021)) as
shown in Figure 10. This finding indicates that the effect of color
vision status on the PSD ratio differs depending on the frequency
region being analyzed. Bonferroni-corrected post hoc comparisons
further showed that normal vision subjects exhibited significantly
higher PSD ratios at the 15 Hz target in the 14–16 Hz range and at
the 18 Hz target in the 17–19 Hz range compared to CVD subjects,
reflecting a potential difference in visual perception at these
frequencies.

4.2 Classification results

The classification accuracy is shown in Figure 11, offering a
detailed insight into the performance of three distinct classifiers: DT,
SVM, and KNN. These classifiers are evaluated across two pivotal
target frequencies, which are 15 Hz and 18 Hz, providing a nuanced
understanding of their efficacy at different frequency levels.
Moreover, the evaluation is conducted using three feature sets:
PSD, CCA, and a combined feature set comprising both PSD and
CCA (PSD + CCA). This approach allows for a thorough
examination of how these classifiers perform when leveraging
distinct feature sets, shedding light on the interplay between
feature selection and classification accuracy. This detailed analysis
provides valuable insights into the optimal configurations for
achieving high accuracy in this classification task. Each classifier
is represented by three bars corresponding to the different feature
sets, with error bars indicating the standard deviation.

In both conditions at 15 Hz and 18 Hz, the classifiers
consistently achieve high accuracy levels, exceeding the 75%
threshold. This indicates the effectiveness of the classifiers in
accurately classifying data based on the chosen feature sets. At
15 Hz, depicted in Figure 11A, the SVM classifier demonstrates the
highest accuracy, reaching 93.75% ± 1.5% with the combined feature
set (PSD + CCA), notably outperforming the individual feature sets
(PSD and CCA). A similar trend is observed with the DT classifier,
which achieves an accuracy of 87.5% ± 1.3% with PSD + CCA,
slightly below that of SVM. For the KNN classifier at 15 Hz, both the
PSD and PSD + CCA feature sets yield the same accuracy of 81.25%,
indicating limited performance for KNN with feature set
combination.-When analyzing the results at 18 Hz (Figure 11B),
it is evident that the SVM classifier outperforms both DT and KNN
across most of feature sets, achieving an accuracy of 87.5% ± 1.3%
with PSD + CCA feature set. This consistent superior performance
of SVM at 18 Hz suggests its effectiveness in accurately classifying
data at this specific frequency. Additionally, DT and KNN classifiers
exhibit similar performance, at around 81.25% with the same feature

FIGURE 10
Comparison of average PSD ratio between normal vision and
CVD subjects in two frequency regions (14–16 Hz and 17–19 Hz) for
flickering targets at 15 Hz (blue) and 18 Hz (orange) measured at
channel O2. The PSD ratio is determined by dividing the average
PSD in individuals with normal vision by that in individuals with CVD.
Notably, normal vision subjects show enhanced neural entrainment to
15 Hz in the 14–16 Hz range and to 18 Hz in the 17–19 Hz range, while
CVD subjects exhibit the opposite pattern. Statistical Significance (p <
0.05) underscores distinct neural processing dynamics.
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set, though SVMmaintains a clear accuracy advantage - when using
PSD and PSD + CCA feature set. Overall, the highest accuracy is
achieved by the SVM classifier using the combined feature set (PSD
+ CCA) for both frequencies.-The exceptional performance of SVM
when combining multiple feature sets can be attributed to its
proficiency in handling high-dimensional feature spaces
effectively, a characteristic for which SVM is renowned
(Cervantes et al., 2020). A two-way repeated-measures ANOVA
was conducted with classifier type (SVM, DT, KNN) and feature set
(PSD, CCA, PSD + CCA) as within-subjects factors. The analysis
revealed no significant main effect of classifier type on classification
accuracy (F(2, 28) � 1.34, p � 0.28), indicating that accuracy levels
did not differ significantly among the classifiers. Similarly, no
significant main effect of feature set was observed
(F(2, 28) � 0.92, p � 0.41), suggesting that the choice of feature
set (PSD, CCA, or PSD + CCA) did not significantly impact
classification accuracy. Moreover, based on the confusion
matrices presented in Figure 12, the SVM classifier shows more
accurate predictions and fewer misclassifications, particularly when
using the combined feature set (PSD + CCA). This is shown by the
high rates of correct classification, with SVM achieving 100%
accuracy for CVD cases and 90.9% for normal cases using PSD +
CCA, demonstrating its effectiveness in distinguishing between the
two classes.

5 Discussion

In this study, a novel non-invasive method for diagnosing CVD
was introduced, utilizing SSVEP feature extraction and
classification. Subjects were exposed to varying frequencies to
trigger the SSVEP response, leading to successful data analysis
and classification. This method offers universal applicability,
accommodating individuals facing mobility or communication
challenges. Unlike traditional approaches, this method requires
no extensive training, ensuring time efficiency and objective
results. By sidestepping behavioral responses, training

requirements, subjectivity, and potential manipulation of results,
this method outperforms existing diagnostic techniques.

The spatial characteristics depicted in Figure 8, showhigh activity in
the occipital and parietal electrodes (O1, O2, Pz) during the stimulation
period (15Hz, 18Hz), which are typically themost affected areas during
SSVEP elicitation. The activation of occipital and parietal regions during
color vision can be elucidated by considering the neural pathways
involved in processing color information. The occipital lobe, known for
its role in visual processing since it contains the primary visual cortex
that receives input from the lateral geniculate nucleus (LGN) located in
the thalamus. The processing of color information involves the
activation of cone cells in the retina, which are sensitive to different
wavelengths of light corresponding to different colors. These signals
travel through the optic nerve to the LGN and then to the visual cortex,
where complex processing occurs (ScienceDirect Topics, 2024;
Covington and Al Khalili, 2024). On the other hand, the parietal
lobe is involved in integrating sensory information from various
modalities, including vision. It plays a role in spatial perception, and
the coordination of visual-motor tasks. During color vision tasks, the
parietal cortex may be engaged in processes related to spatial awareness
of stimuli, object recognition based on color cues, and the coordination
of motor responses to visual color information (Souza-Couto et al.,
2023). So, the heightened activity in these brain areas during SSVEP
tests at 15 Hz and 18 Hz likely indicates that the brain is actively
processing color information. This activity reflects the complex neural
pathways responsible for understanding and reacting to colors in our
environment.

Additionally, the activity in the parietal electrode (Pz) surpasses
that of the central electrode (Cz). These findings are in line with
previous research, such as (Norcia et al., 2015), which suggests that
the SSVEP generates its most robust responses in occipital areas,
originating from the visual cortex in the occipital region responsible
for visual processing. Moreover, as highlighted in (Srinivasan et al.,
2006), optimal SSVEP responses are attainable in both occipital and
parietal regions. These studies align with the results of this study, as
heightened activity was observed in the parietal and occipital
regions, resulting in increased amplitudes and stronger SSVEP

FIGURE 11
Mean classification accuracy for (A) 15 Hz and (B) 18 Hz across three classifiers (DT, SVM, and KNN) using different feature sets (PSD, CCA, and PSD
+ CCA).
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responses. The clarity of the proposed diagnostic technique relies on
the activity differences observed in these regions. This finding helps
explain the channel selection in this study, suggesting that these
electrodes are the most suitable choices when measuring SSVEP
responses. Furthermore, another study (Nguyen et al., 2019)
revealed that the SSVEP responses were weakest and had the
smallest amplitudes in central regions compared to occipital. This
finding may explain the lower activity observed in the central
electrode in this study, suggesting that the central channels may
not be the optimal choice for diagnosing CVD using SSVEP
measurements. However, it is important to note that the strength
of SSVEP responses is influenced by the flickering frequencies used.

Furthermore, as expected, during the experiment, all five CVD
subjects failed to choose the correct options in all sessions,
confirming the selection expectations of the subjects” answers

presented in Table 2 with a 100% success rate. Each of the five
CVD subjects consistently selected the Ishihara plate corresponding
to the non-target frequency, indicating that they incorrectly
identified the numbers and confirming their CVD condition.
This ensures the proper arrangement of Ishihara plate pairs and
their ability to successfully distinguish between individuals with
normal vision and those with CVD, as the arrangement process in
this research involves selecting pairs that may be intertwined for
those suffering from CVD. In Figure 9, the PSD exhibits a peak
around 18 Hz for normal vision subject, ensuring that the subject
was focusing on the target frequency, which means they chose the
Ishihara plate correctly. Conversely, the subject with CVD
incorrectly identified and focused on a square flickering at 15 Hz,
associated with the number “5”, resulting in a PSD increase around
15 Hz. However, for both stimulating frequencies, there was a clear

FIGURE 12
Confusion matrices for three Classifiers (SVM, DT, KNN) using three feature sets (PSD, CCA, PSD + CCA) for classifying normal vision and
CVD subjects.
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peak that appeared at approximately 10 Hz for most subjects. This
finding is actually consistent with what was reported in Xie et al.
(2016) and Kuś et al. (2013). In Xie et al. (2016), they observed a peak
at 10 Hz, which was a non-target frequency, while the target
frequencies were 8 and 12 Hz. Similarly, in this study, a peak
appeared at 10 Hz when the target frequencies were 15 and
18 Hz. The reason for this could be explained by what was
discussed in Xie et al. (2016) as they suggested that this peak
may appear due to the gray-to-gray (GTG) effect, which depends
on pixels (Ryans Computers, 2024) and the screen characteristics.
These factors are difficult to eliminate. Additionally, in Kuś et al.
(2013), they also observed a sharp peak at 10 Hz when the
stimulation frequency was in the range of 13–25 Hz. They
suggested that this occurrence could be attributed to findings
from previous research by Regan (1975), where they
demonstrated that SSVEP responses show peaks around 10 Hz
and 20 Hz in most cases when using mid-range stimulation
frequencies. All of these findings agree with the results of this
study. Generally, the SSVEP can be influenced by the device and
screen characteristics used (Zhu et al., 2010). This fact also explains
the presence of a peak in the range of 15–20 Hz instead of strictly at
15 Hz (the target frequency), or in the range of 15–18 Hz instead of
strictly at 18 Hz (the target frequency). For instance, when selecting
15 Hz for the flickering square, this value may vary from one device
to another based on the screen characteristics. However, all these
factors do not affect the clarity of the subject’s choice.

Moreover, the classification results showed high accuracy for all
three classifiers (DT, SVM, KNN) with an accuracy percentage
exceeding 75% using the feature sets of PSD, CCA, and combined
PSD + CCA. Generally, the highest accuracy is achieved by the SVM
classifier, reaching 93.75% ± 1.5% at 15 Hz and 87.5% ± 1.2% at 18 Hz

with the combined feature set (PSD + CCA). Previous studies, such as
(Wang et al., 2014), suggest that SSVEP classification could be enhanced
by combining PSD andCCA, as the classification results from these two
methods are somewhat correlated. This study confirms that combining
PSD and CCA can indeed yield higher accuracy in classification. The
superior classification capability of SVM classifier in this study stems
from its effectiveness in managing high-dimensional feature spaces
efficiently, a renowned characteristic that contributes to its exceptional
performance when integrating multiple feature sets (Cervantes
et al., 2020).

Generally, when comparing this novel method to conventional
assessment methods, this innovative method offers unparalleled
inclusivity, accommodating individuals worldwide, including
those with disabilities that restrict movement or speech. Notably,
individuals with locked-in syndrome, who may be fully paralyzed
except for eye movement, find this method exceptionally well-suited,
as it requires only the focus on a flickering square after identifying a
target number. Furthermore, this method stands out for its
simplicity, requiring no extensive training or detailed
explanation, thereby saving valuable time. Its objective nature
contributes to more reliable results compared to traditional tests.

When juxtaposed with previous research endeavors, this method
distinguishes itself by its efficiency and user-friendliness. By significantly
reducing the time and steps required for completion, it ensures the
comfort of individuals undergoing the test. The straightforward
approach is easily understandable across diverse populations, in
contrast to the intricate techniques such as sweep SSVEP proposed
in earlier studies (Zheng et al., 2021). These complex methods often
necessitate prolonged experiment durations and data analysis, impeding
their integration into routine clinical assessments. For instance, studies
like (Norton et al., 2021) that delve into SSVEP experiments involving

TABLE 4 Comparison of recent studies investigating EEG-based methods for diagnosing or assessing color vision deficiency (CVD).

Study Year Subjects Objective Key findings

Wicaksono et al.
(2020)

2020 25 total (21 normal,
4 partial color-blind)

Investigate EEG response to Ishihara test
stimulus in CVD vs normal vision using ERP

Significant differences found in ERP components (300–400 m)
between CVD and normal individuals, primarily in parietal and
occipital regions, suggesting impaired numerical processing in
CVD participants

Zheng et al.
(2021)

2020 26 total (15 CVD,
11 healthy)

Quantitative diagnosis of CVD using SSVEP
and correlation with FM 100-hue test

SSVEP-based color vision severity index (ICVD) successfully
classified between normal, anomalous trichromats, and
dichromats; demonstrated strong correlation with traditional FM
100-hue test results

Ekhlasi et al.
(2021)

2021 20 total (10 CVD,
10 healthy)

Analyze EEG signals during Ishihara’s test for
CVD vs healthy individuals

Significant differences in frequency bands (Delta, Theta, Beta1,
Beta2) between CVD and healthy groups in right
temporoparietal regions (P4, T6); KNN classifier achieved 85.2%
accuracy in distinguishing between groups

Norton et al.
(2021)

2021 19 total (16 healthy,
3 CVD)

Develop a BCI-based method to assess color
vision without active participation

SSVEP-based method to identify metamers allows for non-
participatory assessment; demonstrated capability to distinguish
between color-vision deficits and normal vision

Habibzadeh et al.
(2022)

2022 10 healthy Improve efficiency of BCI-based color vision
assessment using metaID + algorithm

metaID + algorithm significantly reduced data requirements by
61.3% while achieving comparable accuracy to prior methods;
enhanced SSVEP-based color vision assessment

Atkins et al.
(2023)

2023 3 healthy Optimize SSVEP stimulation frequency for
BCI-based color vision assessment

Found 16 Hz to be the optimal stimulation frequency for
differentiating CVD; results indicate potential for separate
assessment of hue and illuminance effects on SSVEP responses

Current Study 2024 16 total (5 CVD,
11 healthy)

Diagnose CVD vs healthy using EEG Achieved high accuracy using PSD and CCA features; SVM
classifier showed best performance in distinguishing CVD from
healthy controls
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metamers identification tend to demand additional training or detailed
explanations before testing, prolonging the overall testing process. In
stark contrast, the method presented in this study requires no prior
training or intense concentration, or fully mentally sound people,
simply necessitating focus on the flickering square post-question
posed by the tester. With a concise time frame not exceeding
30 min and a user-friendly approach that minimizes disturbances,
this novel method is poised for seamless integration into
clinical practices.

Moreover, by addressing the limitations associated with prior
studies, such as Bieber et al. (1997) and Thomas et al. (2017),
particularly in terms of demographic diversity encompassing age
and gender, this method showcases its versatility by being
successfully applied to individuals of varying demographics. Its
effectiveness across both male and female subjects spanning
different age ranges exemplifies its potential for widespread
adoption in clinical settings. Table 4 presents a comparison of
our study with recent literature on EEG-based methods for
diagnosing or assessing color vision deficiency (CVD).

6 Limitations

Several limitations are associated with the current study that
may impact the generalizability of the results. Firstly, the study
included a small sample size with only 16 participants, five of whom
are diagnosed with CVD. Although the diagnosis was successful for
all CVD subjects, the consistency of outcomes and findings in this
research should be further validated with a larger sample.
Additionally, the limited number of participants increases the
risk of overfitting, which could reduce the model’s performance
on broader datasets. Secondly, the class imbalance favoring non-
CVD participants poses challenges for machine learning algorithms,
as these models may exhibit bias towards the majority class. To
address this limitation, we used the SMOTE algorithm to balance the
classes; however, future studies could explore alternative methods or
employ specialized algorithms designed to handle imbalanced
datasets. Lastly, the demographic constraints, with all CVD
participants being male, limit the diversity of the sample and
may affect generalizability across different populations. For future
work, investigating CVD diagnosis with a large and gender-balanced
sample would provide valuable insights into gender-specific
patterns. These improvements aim to enhance the reliability and
applicability of EEG-based CVD diagnostics.

7 Conclusion

In conclusion, the utilization of EEG signals and machine learning
algorithms for the non-invasive classification and diagnosis of CVDs
represents a significant advancement in the field of visual impairment
assessment. This study has successfully showcased the effectiveness of
employing SSVEP as a reliable method for diagnosing CVDs,
particularly in individuals facing challenges with direct
communication or behavioral responses. The findings of this
research underscore the potential of SSVEP-based diagnostics to
provide accurate and objective assessments of CVDs, circumventing
the limitations associated with traditional diagnostic tests.

Moving forward, future investigations in this domain could
focus on expanding the scope of color vision deficiencies
considered, refining standardized operating protocols for EEG-
based CVD diagnosis, validating the reliability of these methods
across varied populations, and exploring the practical applications of
such diagnostic techniques in clinical settings. Additionally, future
studies might explore the integration of auditory or tactile BCIs to
assist individuals with advanced locked-in syndrome who may have
limited visual functionality. By continuing to advance research in
this area, we can enhance the accessibility, accuracy, and inclusivity
of CVD assessments, ultimately improving the quality of care and
support provided to individuals with visual impairments.
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