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Introduction: Modification of natural enzymes to introduce new properties and
enhance existing ones is a central challenge in bioengineering. This study is
focused on the development of Taq polymerase mutants that show enhanced
reverse transcriptase (RTase) activity while retaining other desirable properties
such as fidelity, 5′- 3′ exonuclease activity, effective deoxyuracyl incorporation,
and tolerance to locked nucleic acid (LNA)-containing substrates. Our objective
was to use AI-driven rational design combined with multiparametric wet-lab
analysis to identify and validate Taq polymerase mutants with an optimal
combination of these properties.

Methods: The experimental procedure was conducted in several stages: 1) On
the basis of a foundational paper, we selected 18 candidate mutations known to
affect RTase activity across six sites. These candidates, along with the wild type,
were assessed in the wet lab for multiple properties to establish an initial training
dataset. 2) Using embeddings of Taq polymerase variants generated by a protein
languagemodel, we trained a Ridge regressionmodel to predict multiple enzyme
properties. This model guided the selection of 14 new candidates for
experimental validation, expanding the dataset for further refinement. 3) To
better manage risk by assessing confidence intervals on predictions, we
transitioned to Gaussian process regression and trained this model on an
expanded dataset comprising 33 data points. 4) With this enhanced model, we
conducted an in silico screen of over 18 million potential mutations, narrowing
the field to 16 top candidates for comprehensive wet-lab evaluation.

Results and Discussion: This iterative, data-driven strategy ultimately led to the
identification of 18 enzyme variants that exhibited markedly improved RTase
activity while maintaining a favorable balance of other key properties. These
enhancements were generally accompanied by lower Kd, moderately reduced
fidelity, and greater tolerance to noncanonical substrates, thereby illustrating a
strong interdependence among these traits. Several enzymes validated via this
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procedure were effective in single-enzyme real-time reverse-transcription PCR
setups, implying their utility for the development of new tools for real-time reverse-
transcription PCR technologies, such as pathogen RNA detection and gene
expression analysis. This study illustrates how AI can be effectively integrated
with experimental bioengineering to enhance enzyme functionality
systematically. Our approach offers a robust framework for designing enzyme
mutants tailored to specific biotechnological applications. The results of our
biological activity predictions for mutated Taq polymerases can be accessed at
https://huggingface.co/datasets/nerusskikh/taqpol_insilico_dms

KEYWORDS

bioengineering, function enhancement, reverse transcription, machine learning, protein
language model, rational design, Taq polymerase

Introduction

The field of bioengineering has rapidly advanced through the
modification of natural enzymes to develop new functionalities and
enhance existing properties, addressing critical needs in modern
science, industry, and healthcare (Śpibida et al., 2017; Coulther,
Stern, and Beuning, 2019; Nikoomanzar et al., 2020; Ouaray et al.,
2020). Early on, random mutagenesis followed by selection that
mimics natural evolution was the most widespread way to obtain
new mutated enzymes with modified functions of interest. This
approach, while being fruitful, is time-consuming and labor-
intensive. Later, rational-design approaches began to emerge,
based on information obtained from protein alignments and
structures of their complexes with ligands. These approaches,
substantially advancing enzyme engineering, are often based on
extensive empirical data and can be limited by the complexity of
protein interactions. As the quest for efficiency and precision in
protein engineering continues, the integration of computational
tools has become inevitable.

Deep learning, especially involving the use of language models,
has transformed protein science by enabling researchers to
efficiently harness vast genomic databases like BFD and
UniRef50. These protein language models (PLMs), trained via
unsupervised pretraining techniques, predict masked amino acids
by interpreting contextual information from visible sequence data.
The resulting embeddings—dense, information-rich vectors for each
amino acid—capture essential biophysical and structural properties
not explicitly mentioned in the data. Through aggregation of these
embeddings, entire protein sequences can be parameterized, laying a
comprehensive foundation for predicting mutations’ effects on a
protein’s structure. Such capabilities allow for practical application
of these models in various bioengineering tasks, including prediction
of secondary structures, of residue contacts, and of a mutational
impact on enzyme functionality (Elnaggar et al., 2022; Rives et al.,
2021; Lin et al., 2023; Notin et al., 2022; Rao et al., 2021; Jumper et al.,
2021), thus advancing the field beyond previously available methods.

The first remarkable application of a PLM to rational enzyme
engineering was achieved with UniRep (Alley et al., 2019), which
was trained on over 20 million protein sequences from UniRef50,
thereby allowing the model to learn general protein features in an
unsupervised manner. The representations learned by UniRep
effectively support linear regression models in guiding directed
evolution, thus proving adequate for capturing necessary

information about mutant proteins (Alley et al., 2019). It has also
been found that UniRep simulates a fitness landscape accurately
enough for engineering applications using only 24 functionally
characterized proteins bearing amino acid substitutions (Biswas
et al., 2021). UniRep utilizes a deep recurrent neural network
based on the biLSTM architecture, which is relatively small by
modern standards. In contrast, current large language models,
especially those in protein science, predominantly involve the
transformer architecture, which has been demonstrated to be
superior in handling complex sequence data. Among modern
families of PLMs, one can mention ESM (Verkuil et al., 2022;
Hie et al., 2022), RITA (Hesslow et al., 2022), ProtT5 (Elnaggar
et al., 2022), ProstT5 (Heinzinger et al., 2023), ProGen2 (Madani
et al., 2023), ProtGPT2 (Ferruz et al., 2022), and ECNet (Luo et al.,
2021), representing the current state of the art in PLMs and yielding
promising results in various applications including protein design.
Alongside the primary use of PLMs for predicting protein behaviors,
multiple sequence alignment (MSA)-based models, also known as
MSA transformers (Rao et al., 2021; Jumper et al., 2021), introduce a
unique approach to integrating evolutionary information during
protein analysis. These models require constructing MSAs as input,
thereby effectively taking two-dimensional (2D) input instead of
traditional 1D data. This 2D input necessitates a specialized
architecture, significantly increasing computational and
memory demands.

In the majority of enzyme bioengineering studies, candidate
enzymes have been selected based on a limited set of parameters
from a huge number of mutants obtained by randomized
mutagenesis. The latter typically generates a large pool of
candidates, which has to be investigated in detail to choose the
most promising mutants. Given that the evaluation of an original
pool of candidates by wet-lab experiments is time-consuming and
labor-intensive, initial sorting of candidates is traditionally done in a
limited series of experiments. If the candidate must simultaneously
exhibit several useful properties, the limitation on the scope of
experiments conflicts with full-fledged evaluation. As a
consequence, possible negative effects of the introduced
mutations on some important properties of the modified enzyme
can be overlooked, and, on the other hand, the main improved
characteristic can be evaluated under suboptimal conditions. For
this reason, some promising candidates can be rejected by the initial
selection, and conversely, candidates with undesired properties can
pass through the selection screen because the same amino acid
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substitution at a functionally significant position can simultaneously
affect several functions, sometimes in opposite directions.

In this regard, in our study, we suggest an alternative strategy for
a multifunctional enzyme design: in silico preselection of candidate
mutants bymeans of rational predictions about an extended range of
biotechnologically significant properties, to take them into account
right from the start. We believe that the iterative procedure involving
several rounds of computational prediction and subsequent
experimental studies must be a promising alternative to the
traditional approaches, especially when tradeoffs must be made
between several simultaneously required biological functions and
physicochemical characteristics. To prove this concept, we
attempted to construct and experimentally validate a predictive
model aimed at selecting mutants of Thermus aquaticus DNA
polymerase (hereinafter referred to as Taq pol)—having a set of
required properties—by combining structure-based rational design
and experimental results of multiparametric wet-lab assays.

Taq pol, a thermostable DNA-dependent DNA polymerase, has
found widespread applications (primarily in amplification
techniques) due to a combination of numerous useful properties,
such as ease of accumulation in bacterial expression systems,
extreme thermostability, high processivity, and strong 5′–3′
exonuclease activity. Therefore, Taq pol is a good example of an
enzyme that requires a combination of several different activities to
be successfully used as a tool in molecular biology and
biotechnology. Wild-type Taq pol is characterized by relatively
low fidelity (because it lacks an active 3′–5′ exonuclease
proofreading domain), negligible strand displacement activity,
marked decrease in activity during the insertion of non-canonical
substrates, and has only very low intrinsic RNA-dependent DNA
polymerase activity. This limits the use of wild-type Taq pol as a core
enzyme in somemolecular biological applications. At the same time,
Taq pol is known for its structural plasticity: it tolerates multiple
amino acid substitutions, even in evolutionarily conserved regions
(Loh and Loeb, 2005). This property makes Taq pol a convenient
model for function enhancement and modification studies.
Numerous modified versions of Taq pol have been obtained that
are characterized, for example, by increased resistance to PCR
inhibitors (Kermekchiev et al., 2009), improved elongation
(Yamagami et al., 2014) and strand displacement abilities
(Ignatov et al., 2014; Barnes, Zhang, and Kermekchiev, 2021),
3′–5′ exonuclease activity (Park et al., 1997), a reduced capacity
to discriminate against dideoxynucleotides (Laos, Thomson, and
Benner, 2014) or to elongate mismatched PCR primers (Drum et al.,
2014; Lim et al., 2022), wider substrate specificity (Ghadessy et al.,
2004; Schultz et al., 2015), or cold sensitivity (Kermekchiev, Tzekov,
and Barnes, 2003).

One of Taq pol engineering directions is the creation of enzymes
with dual DNA- and RNA-dependent DNA-polymerase (reverse
transcriptase, RTase) activities for biotechnology, molecular genetic
studies, and applied diagnostic tools. Traditional mesophilic RTases
such as M-MuLV or AMV have difficulty synthesizing cDNA
through stable RNA secondary structures and GC-rich motifs.
High-temperature reverse transcription (RT) may enhance cDNA
synthesis efficiency and reduce primer dimerization and side
product formation. RTases derived from Taq pol are expected to
retain these properties and thus to have an advantage over
mesophilic RTases. The single-enzyme approach could streamline

the development of real-time RT-qPCR tools, also benefiting from
the enzyme’s thermostability and inhibition tolerance in terms of
storage, shipping, and automation. These and other potential
benefits stimulate the ongoing efforts to create new high-
temperature RTases engineered from Taq pol and other
thermostable DNA polymerases. Successful examples of
enhancement of the RTase activity in Taq pol via introduction of
one or more point mutations have long been known (Sauter and
Marx, 2006; Ong et al., 2006; Vichier-Guerre et al., 2006; Marx et al.,
2010; Blatter et al., 2013; Raghunathan and Marx, 2019; Barnes,
Zhang, and Kermekchiev, 2021; Huber, Betz, and Marx, 2023). Of
note, in different studies, modifications at completely different sites
have had similar effects on this property. For instance, in ref.
(Vichier-Guerre et al., 2006), a directed-evolution experiment
with the Stoffel fragment of Taq pol gave 27 mutant enzymes
showing appreciably (up to two orders of magnitude) enhanced
RTase activity, which was achieved for different mutants through
amino acid substitutions at more than 50 positions.

In our study, we set the following selection goal: to create an
enzyme that a) possesses an enhanced RTase activity in a PCR-
compatible buffer, and b) retains some beneficial properties of the
wild-type enzyme (sufficient fidelity, 5′–3′ exonuclease activity,
thermal stability, the ability to effectively incorporate
deoxyuracyl, and the capacity to process locked nucleic acid
(LNA)-containing substrates; hereafter: LNA substrates) that are
unaffected or even improved. A list of parameters was compiled
based on the suitability of mutants for molecular diagnostic
applications. Additionally, we tested all the produced mutant
enzymes for the “hot start” capacity through blocking by a
monoclonal antibody or a DNA aptamer. By means of several
rounds of experiments, we created a set of multivariate regression
models built on top of embeddings obtained via the ProtT5 language
model family (Elnaggar et al., 2022). This PLM-based regression
model efficiently integrated the evolutionary insights and allowed us
to identify several Taq pol mutants with noticeably enhanced RTase
activity combined with the preservation (or even enhancement) of a
number of required preselected characteristics.

Materials and methods

The selection of the first batch of Taq pol mutants was guided by
literature data to ensure a diverse range of physicochemical changes,
such as variations in charge, volume, aromaticity, and polarity,
which could influence enzyme function in different ways (see
details in the Results section).

Generation of Taq pol mutants

The nucleotide sequence of the Taq pol–encoding gene was
codon-optimized for translation in the Escherichia coli expression
system. All rare codons were eliminated, and codon frequency after
the optimization was equal to or greater than 8/1,000. The coding
part of the synthetic gene sequence started from the fourth codon of
the original Taq pol sequence: therefore, the protein we used differed
from native Taq pol by the absence of the first 3 amino acid (aa)
residues. Nonetheless, to facilitate the comprehension and

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Tomilova et al. 10.3389/fbioe.2024.1495267

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1495267


interpretation of the results in the context of publications by other
research groups, the numbering of amino acid positions
corresponding to native Taq pol is utilized throughout the text.
Oligonucleotides for PCR-based gene synthesis were designed in
online software DNAWorks (v3.2.4) (https://hpcwebapps.cit.nih.
gov/dnaworks/). The gene sequence was divided into five
fragments ~500 bp long and flanked with restriction
endonuclease sites, which helped to clone the gene into the
pJET1.2/blunt vector (Thermo Fisher Scientific, United States).
The mutations were introduced into the corresponding fragments
by site-directed mutagenesis. The full-length gene for each mutant
was assembled by sequential ligation of fragments into the pET28a-
Novagen expression vector (Sigma-Aldrich, United States). All
sequences of synthetic constructs were verified by Sanger
sequencing on an Applied Biosystems 3,500 instrument (Thermo
Fisher Scientific) with the BigDye Terminator v3.1 Cycle Sequencing
Kit. All Taq pol mutants were expressed in E. coli BL21 (DE3)pLysS.
Competent cells were transformed with the expression plasmid and
grown at 37°C in 400 mL of the Luria–Bertani medium containing
30 μg/mL kanamycin and 34 μg/mL chloramphenicol. When cell
density reached OD600 of 0.8–0.9, protein expression was induced
with 1 mM isopropyl β-D-1-thiogalactopyranoside. After 3 h of
expression, the cells were centrifuged at 6,400 g for 10min at 4°C and
stored at −70°C until analysis. Cell pellets were resuspended in a
buffer consisting of 20 mM NaH2PO4 (pH 8.0), 50 mM NaCl, 0.
1 mM EDTA, 1 mM PMSF, and 1% of Triton X-100. After heat
denaturation at 75°C for 40 min in a water bath, the lysates were
centrifuged at 39,000 × g and 4°C for 20 min. The supernatant was
treated with 0.05% polyethyleneimine to remove chromosomal
DNA and centrifuged at 39,000 × g and 4°C for 20 min. The
supernatant was passed through a 0.45 μm syringe filter and
purified on a Ni-NTA column using a buffer composed of
20 mM NaH2PO4 (pH 8.0), 0.5 M NaCl, 0.1 mM EDTA, 15 mM
imidazole, and 0.1% of Triton X-100. The proteins were eluted with
20 mM NaH2PO4 pH 8.0, 0.5 M NaCl, 0.1 mM EDTA, 250 mM
imidazole, and 0.1% of Triton X-100, and then dialyzed against
another buffer (20 mM Tris HCl pH 8.0, 75 mM NaCl, and 0.1 mM
EDTA) overnight with stirring in a cold room. The concentration of
purified proteins was determined spectrophotometrically.

Agarose gels

Horizontal electrophoresis chamberWideMini Sub Cell GT and
Gel Documentation System Gel Doc XR+ (Bio-Rad, United States)
were used to examine 2% agarose gels during electrophoresis and to
take photographs.

Oligonucleotide primers and probes

The oligonucleotides were designed using the PrimerQuest
online service (https://eu.idtdna.com/calc/analyzer). All
oligonucleotides were synthesized at Vector-Best (Russia).
Structures of primers and fluorescently labeled probes are
presented in Supplementary Table S1.

Determination of equilibrium
dissociation constants

Kinetic curves of the change in fluorescence anisotropy in
kinetic assays of the formation of enzyme–substrate complexes
(determination of equilibrium dissociation constants: Kd) as well
as kinetic curves of the change in SYTO 13 fluorescence in
experiments on the rate of polymerase-driven synthesis
[determination of catalytic constants of the polymerization
reaction rate in the presence of dT and dU: kCat(dT) and
kCat(dU)] were recorded on an SX20 stopped-flow spectrometer
(Applied Photophysics, United Kingdom) with the Pro-Data
SX20 software (Applied Photophysics). Each kinetic curve was
obtained by averaging 15 to 30 experimental curves. The
fluorescence anisotropy measured in the experiment at each
time point depends on the current concentration of the
complex of polymerase with a labeled substrate called H-Kd
(see Supplementary Table S1): the higher the concentration of
the specified complex, the higher the anisotropy value is.
Quantitative processing of the experimental data was carried
out using the “minimize” function of the scipy. optimize
Python library via optimization of the parameters determining
the formation of the “polymerase-labeled oligonucleotide”
complex (in the case of Kd calculation) and through
optimization of the parameters determining the elongation rate
of the 20_60 hairpin template [in the case of kCat(dT) and kCat(dU)
calculation]. Reaction conditions were as follows: cell volume,
20 μL; temperature, 55°C; buffer: 5 mM Tricine-KOH pH 8.0,
100 mM KCl, 3.4 mMMgCl2, 0.1 mM each dNTP, 0.01% of Tween
20, 1/5000 SYTO 13, and 20 nM hairpin template. Fluorescence
was detected at an excitation wavelength of 535 nm and a cutoff
filter >570 nm (in the case of Kd determination) or using an
excitation wavelength of 485 nm and a cutoff filter >530 nm [in the
case of kCat(dT) and kCat(dU) determination].

Assessment of the hot-start capacity by
means of a monoclonal antibody and
DNA aptamer

This experiment with a monoclonal antibody to Taq pol
(Clontech, United States) and a DNA aptamer (Vector-Best) was
performed as described elsewhere (Bragin et al., 2008). Briefly,
polymerase kinetics and their change related to the blocking by
the antibody or aptamer were registered by means of an increase in
SYTO 13 fluorescence after elongation of the OnOff hairpin
template (see Supplementary Table S1) during catalysis by
different concentrations of tested enzymes at different
temperatures. Hereinafter (if not specified otherwise), in all
kinetic assays, a 1/2,500 dilution of SYTO 13 from a commercial
stock solution (Thermo Fisher Scientific) was used. The reaction was
carried out in 1× RT buffer (50 mM tricine-KOH pH 8, 50 mM KCl,
0.0001% of Tween 20, 100 μg/mL BSA, and 3 mM MgCl2) with
0.4 mM each dNTP and 100 nM OnOff hairpin template as
500 cycles at 45°C. Blocking was considered effective when it
resulted in at least a 10-fold decrease in the reaction rate.
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The effective reaction rate constant
evaluation

The effective reaction rate constant was evaluated under the
same conditions as in the hot-start experiment, via 500 cycles at
60°C. For each enzyme, four concentrations were analyzed in serial
2-fold dilutions. Prior to this, the lowest concentration of each
enzyme was experimentally found that gave a kinetic curve of the
classic shape. Each enzyme concentration was analyzed in triplicate,
and the experiment with each enzyme was conducted twice: thus, for
each tested concentration of each enzyme, six kinetic curves were
built. The inverse kinetics problem was examined for each curve
dataset via calculation of the effective reaction rate constant. The
inverse problem was solved by a numerical approach involving
Gauss and RKM methods for a system of differential equations and
“the Peak descent” method for step-by-step curve approximation
(Tomilov, Zagoruiko, and Kuznetsov, 1999). The effective rate
constants obtained in this way were averaged for each enzyme.
Finally, the ratio of the activity of each mutant enzyme to the control
was computed:

R ratio( ) � keffmut

keffcont

The effect of dTTP substitutionwith dUTP on
the DNA synthesis rate

The influence of dTTP substitution with dUTP on the synthesis
rate of the DNA-dependent DNA polymerase was evaluated under
the same conditions. The second and third concentrations of each
enzyme from the serial dilutions described above were tested. Each
enzyme concentration was analyzed in triplicate. The experiment
with each enzyme was conducted in two ways: either with 0.4 mM
each dNTP including dTTP or with dUTP instead dTTP at the same
concentration. Data were recorded as the ratio of effective reaction
rate constants between reactions in dTTP-containing buffer and
dUTP-containing buffer (hereinafter: the dT/dU rate).

Tolerance to LNA substrates

Evaluation of the ability to process LNA substrates was
performed under the same conditions. The second concentration
for each enzyme from the serial dilutions described above was
utilized. Each enzyme was tested in triplicate with each of four
DNA hairpin substrates: LNA-0, LNA-1, LNA-2, and LNA-3 (all of
which had identical structure, but LNA-1–3 carried LNA
nucleotides at different positions imitating the LNA
modifications of PCR primers and DNA templates, see
Supplementary Table S1; Supplementary Figure S1). The kinetic
curves were averaged for each enzyme/substrate pair. For each
enzyme, the ratio of the extension rate of the LNA-modified
hairpin to the extension rate of the substrate without
modification was evaluated. The closer this ratio was to 1, the
more tolerant the enzyme was to this LNA modification variant.

Reverse transcription activity assessment

RTase activity was assessed for all Taq pol variants in two ways.

1) Through direct evaluation of RT kinetics by means of the
increase in SYTO 13 fluorescence during extension of a
double-stranded substrate comprising 7.5 nM oligo (dT)
primer and 600 pg/μL poly(r)A. The 50 μL reaction was
carried out in 1× RT buffer with 14.5% of trehalose, and
240 μM dTTPs on a CFX96 thermocycler with an optical
module (Bio-Rad) by the following protocol: 500 cycles at
45°C. Enzyme concentrations were selected so that the
kinetic curve could be clearly recorded and had the
classic shape. Each experiment was conducted in
duplicate, and curves plotted from the mean values for
each experimental data point were employed for
interpretation. Ratios of the activity of each mutant
enzyme to controls (which were the WT and subunit
p66 of HIV RTase, hereinafter referred to as p66
(Vector-Best) were computed as described above.

2) By assessing the relative synthesis efficiency of four specific
cDNAs of different lengths compared to natural reverse
transcriptase. The RT (30 min at 60°C) was allowed to
proceed in a 50 μL reaction mixture composed of 1×
PCR buffer (Vector-Best) supplemented with 10% of
trehalose, 100 μg/mL BSA, 5 mM MgCl2, 0.4 mM each
dNTP, 0.6 M betaine, and 500 nM corresponding sequence-
specific reverse primer (see Supplementary Table S1).
Synthetic RNA transcripts containing specific sequences
of the human parainfluenza virus 2 (HPIV2)
phosphoprotein gene (90 nt), human metapneumovirus
(hMpV) nucleoprotein gene (116 nt), rhinovirus (RhV)
5′-UTR (201 nt), and human immunodeficiency virus
(HIV-1) 5′ LTR (526 nt) were added at the same
concentration (~106 copies/reaction) to spike the reaction
mixture. p66, serving as the reference enzyme, was assayed
under the same conditions, except for the temperature and
enzyme concentration, which were selected in preliminary
experiments (15 nM and 50°C). 5 μL of each RT reaction
were mixed with respective sets of primers and fluorescently
labeled probes (See Supplementary Table S1) in nucleic acid
elution buffer (Vector-Best) added to the final volume of
50 μL, and then amplification was performed by real-time
PCR with the help of ready-to-use freeze-dried master
mixes containing PCR buffer and the wild-type Taq pol
(Vector-Best). The thermal cycling protocol was as follows:
2 min at 95°C and then 50 cycles of 10 s at 94°C and 20 s at
60°C. Amplification data were recorded on the
CFX96 instrument. Each experiment was conducted
twice, and the obtained Cq values were averaged. RTase
activity in each “Taq pol mutant/cDNA” pair was assessed
as the difference between the average Cq value shown by the
tested enzyme and the value shown by the p66.

The second method turned out to be more informative and
reproducible, and it was the results obtained by it that were used to
train models.
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Assessing the usability of selected Taq pol
mutants in a single-tube RT-PCR with
TaqMan detection

Enzymes with the best combination of desirable characteristics
(sufficient DNA-dependent DNA polymerization rate and PCR
efficiency, enhanced RTase activity, the ability to utilize LNA
substrates and dUTP, and the capacity to effectively cleave TaqMan
probes) were tested for suitability for single-tube RT-PCR. The 50 μL
reaction was carried out on the CFX96 thermocycler in 1× PCR buffer
with primers to the target sequences at a concentration of 500 nM each
and fluorescently labeled probes at 250 nM. Each mutant enzyme was
added at 120 nM, and synthetic RNA transcripts carrying the 90-nt
HPIV2 sequence and the 116- nt hMpV sequencewere used to spike the
reaction mixture at 106 and 104 copies/reaction. Either a mixture of
26 nM p66 and 120 nMWT or 120 nMWT alone served as a control.
The following thermal cycling conditions were implemented: 15 min at
60°C (found for all mutant Taq polmutants in preliminary optimization
experiments) or 15 min at 50°C (for the p66), then 1 min at 94°C and
50 cycles of 10 s at 94°C and 20 s at 60°C with fluorescence recording.
The data were interpreted with respect to two parameters: Cq reflected
integral efficiency of RT and cDNA amplification, and the amplitude
and shape of the fluorescence curve signified the 5′ exonuclease activity
resulting in the cleavage of the labeled probe.

DNA-dependent DNA polymerase synthesis
fidelity assessment

The fidelity of DNA-dependent DNA polymerase activity of
each polymerase variant was evaluated as the proportion of
misincorporated nucleotides during synthesis of a specific 99 bp
fragment of the hepatitis B virus (HBV) S gene with this enzyme in
PCR. The fidelity values were calculated from the data obtained by
next-generation sequencing of the PCR products. Purified HBV
DNA (7.5 pg/reaction) served as a template for PCR. HBV genome
fragments were synthesized on Bio-Rad CFX96 in a volume of 30 μL
of 1× PCR buffer with primers HBV-F and HBV-R at 500 nM each
and the fluorescently labeled HBV-P probe at 250 nM according to
the following protocol: 2 min at 95°C, then the cycles: 10 s at 94°C,
and 20 s at 60°C. Taq pol mutants were added at 120 nM. The
reaction was stopped at the time of reaching a plateau (for different
enzymes, it required different number of amplification cycles). PCR
was monitored in real-time using SYTO 13 fluorescence (to track the
reaching of a plateau) and ROX fluorescence (to assess PCR
efficiency and the ability to cleave 5′-labeled probes). It is
noteworthy that the PCR efficiency determined in this analysis
was applied as an independent criterion to model training and
selection of candidates.

PCR products were purified by SPRI on Ampure XP
paramagnetic microbeads (Beckman Coulter, United States) prior
to library construction and quantified on a Qubit 2.0 instrument
with the help of the dsDNA High Sensitivity Quantitation kit
(Thermo Fisher Scientific). A purified PCR product (50 ng) was
used for construction of NGS libraries by the NEBNext® Ultra™ II
DNA Library Prep Kit for Illumina (New England Biolabs,
United States). KAPA UDI Primer Mixes (KAPA biosystems, cat.
No. 09134336001) were employed for library indexing to minimize

the risk of library cross-contamination. Illumina adapters were
ligated to the resultant fragments and barcoded by PCR with
primers from the NEBnext multiple oligos for the Illumina kit
(New England Biolabs, cat. #E7600) and Phusion DNA
polymerase (Thermo Fisher Scientific). Sequencing was
performed on the Illumina MiSeq 2,500 instrument (Illumina,
United States). The coverage per sample was 88–698 thousand
150-nt paired-end reads. To map reads to the HBV genome and
identify nucleotide substitutions in them, the UGENE v42.0-dev
software package (Unipro, Russia) and the BWA-MEM and
SAMtools tools built into it were used. To reduce the probability
of mistaking sequencing errors for the errors of a tested polymerase
at the stage of selecting variants, all reads of individual nucleotides
(either matching the reference or different from it) with a
Q-value >30 (the probability of sequencing error is >0.01%) were
discarded. Further calculations were performed in Microsoft Excel
2019 (Microsoft, United States). All detected nucleotide
substitutions that represented a deviation from the reference and
were not part of the primers were designated as polymerase errors.
First, for each nucleic-acid sample, the frequency of nucleotide
substitutions in the final pool of amplicons was evaluated as:

f � Nalt/Nalt+ref

where f is the average frequency of nucleotide substitutions for all
positions, Nalt is the number of nucleotide reads that differed from
the reference (total for all positions of the target), and Nalt+ref is the
total number of nucleotides read (total for all positions of the
amplicon). The polymerase fidelity was then calculated from the
error rate via the formula:

p � E × f/n

where p is the error rate, f denotes the error rate in the final
amplicon population, E is PCR efficiency, and n represents the
number of amplification cycles. The efficiency of each individual
reaction was assessed by means of the fluorescence curve shape in
the LinRegPCR software (Ruijter et al., 2009). For each enzyme, the
experiment was conducted in triplicate, and the resulting fidelity
assessment was the averaged data.

Parametrization of protein sequences

In our work, we employed transformer-based PLMs to
parametrize mutated protein sequences into dense vectors. In
particular, we utilized the encoder part of the encoder-decoder
ProtT5-XL model (Elnaggar et al., 2022), using last-layer
embeddings of the encoder for parametrization. The resulting
per-token sequence embeddings were next aggregated by
average pooling to obtain sequence level representations. These
served as input to the predictor on top of the language model
embeddings.

We fine-tuned the last six layers of the ProtT5-XL encoder using
the masked language modeling objective because the authors of ref.
(Biswas et al., 2021) argue that fine-tuning on homologs of a target
protein sequence greatly improves the results of protein function
prediction models, and our experiments suggested the same, though
the effect was less drastic for larger models.
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We chose the model implementation released in the HuggingFace
library (Wolf et al., 2020) and fine-tuned it with ZeRo stage
2 optimization (Rajbhandari et al., 2020) available in the DeepSpeed
library by Microsoft (https://github.com/microsoft/DeepSpeed). The
model was fine-tuned for 2 weeks on a server containing four
NVIDIA V100 GPUs at a batch size of 1,024 and a learning rate of
1e-5, with a linear decay schedule, and 200 warmup steps.

The data employed to fine-tune the model were retrieved from
the UniRef100 database. Homologous sequences were extracted
using jackhmmer (Eddy, 2011) with default settings and the
Klenow fragment of Taq pol (UniProt ID: P19821) as a reference.
At the time of data acquisition (January 2022), the
UniRef100 database contained 280,483,851 proteins. The
extracted set of homologous proteins consisted of
91,808 sequences with lengths up to 949 aa (mean length of
703.3 and a median of 875 aa).

Regression models

In this project, we employed regression models on top of
embeddings to predict functional effects of amino acid
substitutions in Taq pol. For the first batch of data, we utilized
the Ridge regression to capture a relation between the embeddings
and the target properties. The ridge regression model was chosen for
its simplicity and effectiveness in handling multicollinearity among
features. We fine-tuned the α parameter by leave-one-out cross-
validation, with mean absolute percentage error (MAPE) as the
evaluation metric.

For the second batch of data, we switched to Gaussian Processes
using the GPytorch library (Gardner et al., 2021). This decision was
driven by the limitations observed in linear models, which
sometimes produced extreme predictions. Gaussian Processes
have the additional advantage of quantifying the uncertainty of
predictions, thereby offering a more nuanced understanding of a
model’s confidence in its outputs.

Each property was modeled using manually selected kernels and
their respective parameters. We primarily utilized Matern or
SpectralDelta kernels and adjusted the number of deltas as
needed to best capture the underlying data patterns. This manual
selection process ensured that the kernels were well-suited to specific
characteristics of each property, thereby enhancing a model’s
predictive performance.

To prepare the targets for the modeling, all values were scaled by
subtraction of the mean and dividing by the standard deviation.
Additionally, some targets were logarithmically transformed
beforehand to stabilize variance and normalize the distribution.
After predictions were made by Gaussian Processes, the density of
the predictions was transformed back to the nonlogarithmic space in
order to maintain interpretability. All parameters and their
configurations can be found in the Supplementary Table S2.

Selection and validation of
predictive models

Lacking direct experimental data for Taq pol, we availed
ourselves of deep mutational scanning data from BlaC (Firnberg

et al., 2014) and avGFP (Sarkisyan et al., 2016) for benchmarking,
which later became a part of the ProteinGym benchmark (Notin
et al., 2023). The latter provides extensive mutational data for over
200 proteins, making it beneficial for this research field.

For model selection, we performed repeated random sampling
of small training sets, which allowed us to estimate the distribution
of metrics by means of the remaining data. This approach reflects
our initial setting of small training sets (e.g., 18 mutants) for Taq pol.
We evaluated model performance as Spearman’s correlation
coefficients and a set of Top-k metrics adapted from (Biswas
et al., 2021). Spearman’s correlation—a rank-based metric—was
chosen to evaluate the ordinal relation between predicted and actual
activity values because our primary goal was to rank mutants by
functionality rather than predict exact values. Top-k metrics (k = 4,
8, 16, and 24) were used to describe the hits that exceeded the WT in
terms of functionality among the top predictions. These metrics are
especially useful in real-world scenarios where the selection of
enhanced mutants is based on a model’s top predictions, and the
extent of wet-lab experimental validation is limited. The fine-tuned
ProtT5-XL yielded the results comparable to those of non-fine-
tuned ProtT5-XXL, and we selected the ProtT5-XL model for
protein parametrization owing to its smaller size.

Mutational scanning at the chosen sites

The selection of the mutation set for our study was guided by
several critical considerations. Firstly, we limited the number of
substitutions per mutant to no more than three. This approach was
adopted to avoid scenarios where a substitution can disrupt useful
properties of the enzyme and this phenomenon may go undetected
by our regression models. These models, designed to simulate a
fitness landscape, may not accurately predict such problems owing
to being trained on relatively sparse data. To refine our mutation site
selection procedure, we relied heavily on insights from pertinent
literature. Our literature review was instrumental in narrowing
down the search space; exhaustively searching for all possible
triple substitutions across all Taq pol mutants would have
resulted in over 1,011 data points. Consequently, our mutational
scanning encompassed all single mutants at every position in Taq
pol along with double and triple mutants specifically at aa 507, 515,
536, 540, 570, 573, 578, 586, 614, 626, 639, 670, 667, 707, 708, 728,
732, 742, 743, 747, and 783. This targeted approach enabled us to
efficiently explore mutations having the potential to alter the
enzyme’s properties in line with our study’s goals.

An outline of the Taq pol variants design and evaluation pipeline
is given in Figure 1.

Results

Starting the selection of
substitution mutants

To train the first version of the model aimed at predicting effects
of amino acid changes on the selected Taq pol parameters, we began
with a multiparametric wet-lab testing of a limited set of mutants
carrying various single amino acid substitutions that were located at
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FIGURE 1
The outline of the Taq pol variants design and evaluation pipeline. First, the in silico analyses of PLMs and different regression models for protein
function enhancement were performed with publishedmutational data, and the chosen PLMwas fine-tuned with Taq pol homologs (evotuned) (1a); and
the initial aa substitutions were selected for wet-lab experimental evaluation based on structural analysis and literature sources (1b). Then, the first round
of experimental evaluation was performed (2), and the evotuned ProtT5-XL-UR50-Evo model was used to obtain the embeddings of Taq pol and a
vast set of its mutants with 1–3 aa substitutions, after which the first regression model was built, and a new set of Taq pol mutants was selected (the
mutated variants marked with asterisk were selected from literature sources) for validation (3). After the second round of experiments (4), the second
model was obtained based on ProtT5-XL-UR50-Evo and Gaussian Process regression, and another set of Taq pol mutants was chosen (5) for the third
round of experimental assessment (6).
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key positions in different structural domains and were expected to
affect various protein properties in different directions. Initially, we
applied the following restrictions: for resource-saving reasons, to
characterize only 18 mutants first, together with the wild-type Taq
pol (hereinafter referred to as the WT) serving as a reference; to
check several key positions localized to all structural domains
(thumb, palm, and finger); and to include a few mutants that
have low expected activity in PCR. Thus, using a limited number
of options, we intended to obtain various combinations of
substitutions in terms of changes in such physicochemical
properties as charge loss/replacement, physical volume,
aromaticity, and polarity.

The results from (Raghunathan andMarx, 2019) were employed
as a starting point for choosing the substitutions to be evaluated
experimentally. There, 12 key positions were investigated in detail:
N483, E507, S515, and K540 (thumb); A570, D578, V586, and V783
(palm); and I614, H639, F667, and M747 (finger). We selected six
out of these 12 positions: M747 and D578 (contacting the template
strand), E507 and S515 (coming into contact with the primer
strand), and H639 and F667 (binding to an incoming nucleoside-
5′-O-triphosphate). Other positions were excluded due to their high
tolerance to amino acid substitutions. Thus, the following

18 mutations were finally chosen for the first round of wet-lab
assays: E507D, E507Q, E507K, S515D, S515F, S515N, D578K,
D578N, D578W, H639A, H639F, H639Y, F667A, F667Y, F667M,
M747E, M747D, and M747Q. Six conservative substitutions
(E507D, E507Q, S515D, D578N, H639Y, and F667Y) and four
substitutions expected to result in PCR activity loss (S515F,
H639A, F667A, and M747D) according to ref. (Raghunathan and
Marx, 2019) were intentionally included in this list. Locations of the
investigated amino acid positions in 3D structure of the Taq pol
large fragment complexed with a DNA molecule are depicted in
Figure 2 (together with other positions further assayed in our study).

Multiparametric testing of the first 18mutant
polymerases

The results of testing of the first 18 mutant enzymes in
comparison with the WT enzyme are summarized in Table 1.
For the WT, the results were comparable to those in the
literature. Despite the expected loss of PCR activity in four
mutants (S515F, H639A, F667A, and M747D) according to
(Raghunathan and Marx, 2019), in our experiments all the
enzymes manifested the DNA-dependent DNA polymerase
activity and the ability to perform real-time PCR with cleavage of
fluorescently labeled probes. Nevertheless, in all cases, the rate of this
synthesis was found to be reduced as compared to the WT.
According to the rate of DNA polymerase synthesis in hairpin
extension assays, among all Taq pol variants analyzed, these four
enzymes were at the bottom of the scale. PCR efficiency was quite
high in all cases, 1.82 to 1.99, except for S515D (1.73) and F667A
(1.59). As for mutants S515F and M747D, they were fully
PCR-active.

Eight enzymes showed higher RTase activity compared to the
WT, and for six of the eight (two mutants in the thumb domain,
three mutants in the palm domain, and one mutant in the finger
domain), this improvement was substantial. The considerable
increase in RTase activity in these proteins was detected both by
RT-PCR and by elongation of oligo (dT) primers on a poly
(rA) substrate.

The enzymes with noticeably enhanced RTase activity showed
(see Table 1) the following.

• higher catalytic constants for both dT-containing and dU-
containing dNTP mixes;

• fidelity of DNA-dependent DNA polymerase activity
comparable to that of the WT or lower; a decreased (except
for M747Q) dT/dU rate;

• stronger affinity (lower Kd) for a DNA substrate as compared
to the WT enzyme;

• reduced negative effects of an LNA in the model substrates,
regardless of its position;

• a lowered temperature optimum of DNA-dependent DNA
polymerase activity.

In all cases, the cDNA synthesis ability of mutant enzymes
decreased markedly with increasing target length. ΔCq values of all
mutant enzymes versus the p66 showed the highest correlation

FIGURE 2
Locations of assayed amino acid positions in 3D structure of the
large fragment of Thermus aquaticus DNA polymerase I complexed
with a DNA molecule (Protein Data Bank ID: 3KTQ). The spatial
structure of Taq pol is presented as a gray ribbon diagram. Red
spheres denote Cα atoms of amino acid residues (aa) that were
mutated alone or in several combinations. The labels indicate residues
and their positions in WT Taq pol (SwissProt: P19821). The image was
produced in PyMOL v.2.5.0 (Schrödinger and DeLano, 2021).
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TABLE 1 Results of multiparametric experimental testing of 18 Taq pol mutants and of the WT enzyme.

Enzyme RT,
90 nt
cDNA

RT,
116 nt
cDNA

RT,
201 nt
cDNA

RT,
526 nt
cDNA

k/
kwt

Fidelity,
nt/error

dT/
dU
rate

T opt
approx,

°S

LNA1 delay,
fold

LNA2 delay,
fold

LNA3 delay,
fold

Kd,
nM

kCat(dT),
s-1

kCat(dU),
s-1

Antibody
blocking

Aptamer
blocking

E507K −0.9 −1.89 4.65 6.85 0.25 5,205.19 1.00 64.00 2.78 1.19 4.41 3.38 27.66 23.60 Absent Strong

M747Q −0.81 −0.33 1.12 8.89 0.50 4,985.04 1.29 63.00 5.15 1.30 9.11 4.41 24.75 24.89 Absent Strong

D578K −0.73 1.22 0.55 6.76 0.15 5,140.39 1.16 62.75 2.16 1.44 6.81 4.20 19.39 10.57 Strong Strong

D578N −0.53 0.93 0.76 9.9 0.38 4,677.34 1.08 63.5 3.92 1.41 7.61 4.26 23.86 24.85 Absent Strong

E507Q −0.34 0.72 2.76 9.98 0.40 5,633.62 1.13 64.00 4.76 1.51 8.38 4.78 33.94 27.92 Absent Strong

D578W 1.09 1.95 1.39 7.56 0.17 5,440.88 0.98 63.50 2.40 1.30 5.03 4.99 19.04 19.17 Strong Strong

S515N 2.37 2.63 11.7 N/A 0.58 7,742.98 1.29 69.75 8.52 1.31 11.19 6.71 26.83 29.12 Strong Strong

E507D 2.53 4.61 7.63 N/A 0.51 6,644.88 1.32 66.50 4.50 3.09 13.31 21.44 36.71 30.31 Absent Strong

WT Taq 4.44 5.34 15.29 14.33 1 5,986.21 1.29 72.25 4.68 1.66 10.67 6.19 35.56 32.99 Strong Strong

F667Y 5.34 7.59 13.48 N/A 0.30 8,433.00 1.34 67.75 9.44 2.28 22.43 11.66 15.35 11.84 Weak Strong

S515D 6.09 9.53 9.46 N/A 0.14 14,600.8 1.18 74.00 7.36 2.618 15.33 80.71 9.22 9.43 Strong Strong

M747E 6.19 8.42 11.39 N/A 0.32 7,543.12 1.21 71.00 8.64 4.98 19.42 25.53 17.37 16.30 Strong Weak

F667M 9.75 11.06 14.65 14.16 0.13 13,759.40 2.11 70.00 12.20 2.76 >30 8.79 7.00 1.75 Strong Strong

H639Y 9.76 10.44 14.88 N/A 0.15 2,707.11 1.86 69.75 11.81 3.05 22.22 7.46 9.56 3.16 Strong Strong

H639A 10.51 11.78 13.96 N/A 0.06 14,470.5 2.61 68.00 3.70 2.09 11.25 8.14 1.94 0.23 Strong Strong

H639F 11.88 12.81 17.87 N/A 0.04 8,614.00 2.09 61.75 7.36 3.06 13.68 6.55 1.75 0.10 Strong Strong

M747D 13.2 16.06 16.23 N/A 0.06 15,244.40 2.00 69.00 14.04 4.08 >40 29.63 4.61 2.18 Strong Absent

S515F 14.05 15.48 N/A N/A 0.07 6,114.36 1.66 72.75 1.34 2.23 9.31 211.11 10.00 10.00 N/A Weak

F667A 16.12 18.05 N/A N/A 0.02 42,014.30 2.38 71.00 10.36 2.14 23.43 11.14 0.39 0.12 Strong Weak

Enzymes that manifested sufficient RTase activity are labeled in red. RTase activity was assessed as the difference in Cq values in the synthesis of each cDNA between a Taq pol mutant and the p66 RTase. The delay caused by the presence of LNA in amodel substrate was

estimated as the difference in reaction rates between a substrate containing an LNA nucleotide and the control substrate (without such a modification); nt, nucleotides; N/A–below detection limit.
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between the 90-nt and 116-nt targets (R2 = 0.99). With the shortest
fragment, some Taq mutants outperformed the p66. Two enzymes
failed to produce detectable 201-nt cDNA, and regarding 526-nt
cDNA, it could be generated only for eight enzymes out of the 19,
always with a substantial lag behind the p66. The ability to process
the longest target clearly correlated with catalytic constants and
negatively correlated with the LNA-mediated delay and Kd.

Some mutations led to the loss of the blocking of the enzyme
by the antibody or the DNA aptamer. Namely, the M747Q
mutation resulted in a loss of binding to the antibody while
affinity for the aptamer was retained. In contrast, M747D led to
loss of binding to the DNA aptamer but had no effect on the
blocking by the antibody.

Utilizing the initial version of our model, which was trained on
the dataset comprising the 19 data points, we made predictions of
various properties of Taq pol mutants while specifically targeting
those within a conservative trust radius of three amino acid
substitutions away from the WT sequence. This constrained
approach was chosen because our primary objective was to
develop industrial candidate enzymes, which must meet multiple
stringent requirements to function effectively. Therefore, we focused
on mutations at specific sites identified in (Raghunathan and Marx,
2019). As a result, over 18 million Taq pol mutants were assessed
under our prediction model.

Selection and testing of the second and third
batches of mutant polymerases

In further experiments, for resource-saving reasons, we reduced
the set of experimentally estimated parameters: 1) excluded the
LNA-2 assay, which simulated the incorporation of an LNA
nucleotide into a newly synthesized strand (this was outside the
scope of our purposes); 2) excluded the LNA-1 assay as redundant in
relation to the LNA-3 assay (the same characteristic and a less
pronounced effect); excluded kCat(dT) and kCat(dU) measurement
because of low throughput (the same features of Taq pol mutants
were indirectly evaluated by higher-throughput assays); 4) skipped
the assessment of the temperature optimum, which in our
experiments showed too high variation. Of the remaining
parameters, RTase efficiency on 90-nt and 116-nt templates, the
effective reaction rate constant, fidelity, PCR efficiency, the dT/dU
rate, kCat(dT), and kCat(dU) (based on the experimental results
obtained on the first batch of enzyme variants), and probability
of enzyme blocking by the antibody or by the DNA aptamer were
chosen as independent parameters for model training. The LNA-3
substrate delay, RTase efficiency on the 201-nt and 526-nt templates,
and RTase activity measurements with the oligo (dT)-poly (rA)
complex were not used for the training (because these characteristics
could not be reliably evaluated by our methods in all enzymes) but
were monitored in the wet-lab experiments.

When selecting candidates for enhancing RTase activity, we
were guided by the following criteria: kCat(dT) and kCat(dU) at least
20 nM, PCR efficiency not less than 1.85, the dT/dU rate not more
than 1.5, the error rate not greater than 1/3,000, the effective reaction
rate constant ≥0.2 of theWT, and the probability of no blocking with
the antibody or DNA aptamer not more than 0.1. The remaining
characteristics were disregarded in the selection.

To assess the predictive power of the newly developed algorithm
and for its possible further refinement, we selected and synthesized
another 13 mutant Taq pols on the basis of both the model
predictions and literature data. The logic of their choice was
as follows.

• to include new sites for a single substitution as compared to
those used in the initial model training; the new substitutions
had to have a positive impact on the quality of subsequent
predictions (R660S and D732N);

• to include two- or three-substitution mutants expected to
evolve in opposite directions according to the model
predictions: enhanced RTase activity (E507K-D732N,
D578H-M747Q, E507Q-S515N-D578S, E507Q-D578S-
I614M, E507Q-D578S-R728Q, D578S-R728Q-M747Q, and
D578S-R728Q-M747V) and higher fidelity (V586N-M747T,
S515N-M747S, S515D-K540M, and F667I-R728N-M747S);

• to include some mutants for which there were literature data
on the properties of interest to us [R660S: enhanced allele-
specificity and Sanger sequencing quality (Yoshida et al., 2001;
Li, Mitaxov, andWaksman, 1999) and D732N: stronger RTase
(also predicted by our model) and strand displacement
activities (Barnes, Zhang, and Kermekchiev, 2021)].

According to the obtained experimental findings, the predictive
model was refined and a third batch of mutant enzymes was
prepared for its adjustment; these enzymes included additional
new substitution positions and combinations thereof. This batch
contained 15 enzymes. For eight of them (E507K-D578E, R573K-
D578N, D578N-V783I, D578Q-D732N, E708Q-D732N, E507R-
R573K-E708Q, E507K-A570G-M747Q, and E507K-A570T-
M747Q) RTase activity enhancement was predicted by the
model. For the other seven, literature data about various useful
properties were available, e.g., increased allele specificity [R660V
(Drum et al., 2014) and E507K-R536K-R660V (Lim et al., 2022)],
cold sensitivity [I707L and E708D (Kermekchiev, Tzekov, and
Barnes, 2003)], resistance to PCR inhibitors [E708L
(Kermekchiev et al., 2009) and E742K-A743R (Yamagami et al.,
2014)], and resistance to PCR inhibitors along with concurrent cold
sensitivity [E626K (Kermekchiev, Tzekov, and Barnes, 2003)].

Results of the testing of the second and third batches of enzymes
are given in Table 2. The information on changes in physical and
chemical properties (volume, charge, aromaticity, and polarity),
resulting from different substitutions tested, is provided in
Supplementary Table S3.

In Figure 3, Spearman’s correlations between the parameters
experimentally measured for all 46 Taq pol mutants and the WT
are presented.

Overall, the correlation between predicted and experimentally
confirmed RTase activities for all enzymes was quite high (see
Supplementary Figure S2). Unexpectedly, both mutants
containing substitutions in codon 728 did not exert sufficient
RTase action. Vice versa, mutant E742K-A743R, predicted to
have low RTase activity, manifested its enhancement.

Again, the predictive model was refined based on the addition of
the new experimental findings. This enhanced model enabled in
silico screening of over 18 million mutated Taq pol variants. The
results of our final biological activity predictions for mutated Taq
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TABLE 2 Results of multiparametric experimental testing of 28 Taq pol mutants.

Enzyme RT, 90 nt
cDNA

RT, 116 nt
cDNA

RT, 201 nt
cDNA

RT, 526 nt
cDNA

k/
kwt

Fidelity,
nt/error

dT/
dU
rate

LNA3 delay,
fold

Kd,
nM

Antibody
blocking

Aptamer
blocking

Round Literature data

E507Q-D578S-
I614M

−1.01 −1.08 −0.87 8.9 0.50 1,921.59 1.39 1.87 1.17 Absent Strong II

E742K-A743R* −0.95 −0.75 0.66 3.42 0.24 4,051.98 1.13 1.43 0.51 Weak Weak III Inhibitor resistance

E507K-D732N −0.53 −0.67 0.08 12.22 0.17 3,696.37 0.97 1.91 1.69 Absent Strong II

D732N* −0.51 −0.03 5.35 N/A 0.95 4,328.99 1.15 4.12 2.60 Strong Strong II Strand
displacement, RT

D578H-M747Q −0.47 0.3 0.2 N/A 0.25 3,634.96 0.88 3.08 3.29 Strong Strong II

E507K-D578E −0.41 0.32 2.14 12.54 0.54 4,636.97 0.93 3.80 1.07 Absent Strong III

D578N-V783I −0.15 −1.54 −0.37 10.57 0.36 2,537.75 1.01 2.23 2.19 Strong Strong III

E507K-A570T-
M747Q

−0.09 −1.4 0.42 8.29 0.51 4,147.97 1.09 2.85 1.53 Absent Strong III

E507K-A570G-
M747Q

−0.01 −1.56 0.34 7.82 0.79 4,459.81 0.89 3.20 5.15 Absent Strong III

E507Q-S515N-
D578S

0.89 1.59 3.06 12.16 0.40 3,966.74 1.95 2.33 2.91 Absent Strong II

D578Q-D732N 1.23 1.46 2.92 18.32 0.21 4,334.18 1.07 5.42 0.80 Strong Strong III

E708Q-D732N 1.34 0.14 3.58 7.17 0.77 4,382.99 1.06 5.77 4.33 Strong Strong III

E507K-R536K-
R660V*

2.14 4.36 8.01 N/A 0.91 13,051.67 1.09 >40 0.79 Absent Strong III Allele specificity

S515N-M747S 2.84 1.49 3.01 8.9 0.43 4,150.20 0.68 4.47 1.93 Strong Strong II

V586N-M747T 3.05 3.81 6.69 N/A 0.48 5,192.41 0.84 3.85 14.09 Strong Strong II

E708L* 3.32 4.44 6.97 N/A 0.86 5,164.52 1.23 8.27 6.82 Strong Strong III Inhibitor resistance

R660S* 4.07 6.38 9.56 N/A 0.70 10,996.46 1.01 >30 10.64 Strong Strong II Allele specificity,
decreased transition

rate

E708D* 5.14 5.99 8.75 N/A 1.40 5,000.88 1.11 8.78 4.51 Strong Strong III Cold sensitivity

E626K* 5.26 5.47 8.87 24.13 0.25 5,228.77 0.69 12.14 5.74 Strong Strong III Inhibitor resistance,
cold sensitivity

(Continued on following page)
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TABLE 2 (Continued) Results of multiparametric experimental testing of 28 Taq pol mutants.

Enzyme RT, 90 nt
cDNA

RT, 116 nt
cDNA

RT, 201 nt
cDNA

RT, 526 nt
cDNA

k/
kwt

Fidelity,
nt/error

dT/
dU
rate

LNA3 delay,
fold

Kd,
nM

Antibody
blocking

Aptamer
blocking

Round Literature data

I707L* 6.21 5.95 11.14 N/A 0.71 7,441.63 1.61 >40 8.54 Strong Strong III Cold sensitivity

R660V* 6.96 10.07 12.58 14.01 1.04 15,402.44 1.69 >40 6.21 Strong Strong III Allele specificity

E507Q-D578S-
R728Q

7.21 10.66 11.83 N/A 0.31 6,889.79 2.28 >40 6.29 Absent Strong II

D578S-R728Q-
M747Q

8.04 8.9 9.63 N/A 0.48 5,946.68 2.10 >40 10.35 Strong Strong II

D578S-R728Q-
M747V

8.20 11.54 14.2 13.78 0.24 6,346.44 2.49 >40 13.81 Strong Strong II

S515D-K540M 9.90 11.49 13.93 N/A 0.01 28,816.50 2.03 N/A >200 Strong Strong II

R573K-D578N 11.33 14.53 N/A N/A 0.08 7,828.28 3.57 >40 4.33 Weak Weak III

E507R-R573K-
E708Q

12.18 16.14 N/A N/A 0.04 13,458.91 2.65 >40 0.96 Absent Strong III

F667I-R728N-
M747S

14.75 N/A N/A N/A 0.02 22,506.31 2.64 >40 14.38 Strong Strong II

Enzymes that exerted sufficient RTase action are labeled in red. Enzymes selected based on literature data are marked with asterisks. RTase activity was assessed as the difference in Cq values in the synthesis of each cDNA between a Taq pol mutant and the p66 RTase.

The delay caused by the presence of an LNA nucleotide in a model substrate was estimated as the difference in reaction rates between the substrate containing LNA and the control substrate (without such a modification). Round corresponds to experimental evaluation

round (see Figure 1). N/A–below detection limit.
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polymerases can be accessed at https://huggingface.co/datasets/
nerusskikh/taqpol_insilico_dms.

Altogether, our search identified 18 Taq pol mutants with
substantially enhanced RTase activity as compared to the WT. In
all cases, the cDNA synthesis ability of mutant enzymes declined
markedly with increasing target length, and this feature
disadvantageously distinguished them from native RTases. In this
regard, when analyzing the second and third batches of enzymes, we
continued to separately monitor the performance of mutants on four
RNA templates of different lengths as four independent
characteristics and to utilize two of them for training the model.
Some enzymes showed improved RTase activity on longer templates
as compared to the best enzymes from the first batch.

Fidelity of DNA-dependent DNA-
polymerase activity

Values of overall fidelity of mutant enzymes and of the WT are
listed in Tables 1, 2, and a more detailed view (absolute and relative
frequencies of different transitions and transversions) is given in
Figure 4; Supplementary Table S4; Supplementary Figure S3.

This parameter varied widely in the total collection of enzymes.
For all enzymes with enhanced RTase activity, it a) was slightly
reduced compared to theWT but is comparable to the values known
for HIV-1 RTase (Kati et al., 1993), and b) featured an increase in
ratios of transversions to transitions, especially substitutions A- > T
and T- > A. The increase in accuracy followed the opposite trend: it

FIGURE 3
Spearman’s correlations between the parameters measured for 46 Taq pol mutants and the WT enzyme. The color scale varies from deep blue for
highly negative correlation coefficients to red for highly positive ones.

FIGURE 4
Box-whisker plots representing relative summarized frequencies of transitions and transversions (left) and relative frequencies of specific
transversions (right) in DNA-dependent DNA polymerase-driven synthesis by enzymes with sufficiently enhanced RTase activity (RT, n = 18), enzymes
with extremely low RTase activity (non-RT, n = 19), and enzymes intermediate in terms of this characteristic, including the WT (Weak RT, n = 11).
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matched an increase in the proportion of transitions (R2 = 0.73). Not
only the overall frequency of transitions and transversions (see
Supplementary Table S4) but also the proportion of various
substitution types varied among the enzymes, in some cases
following rather different patterns (see Supplementary Figure S3).

Taq pol mutants with enhanced RTase
activity in single-tube TaqMan RT-PCR

The 12 selected candidate enzymes were tested as described in
the Methods section (Figure 5).

The findings were interpreted with respect to two parameters:
Cq reflects integral efficiency of RT and cDNA amplification, and
the amplitude and shape of the fluorescence curve mirror the 5′
exonuclease activity resulting in the cleavage of the labeled probe. All
the 12 candidates expectedly outperformed the WT as RTases. As
compared to the p66/WT mixture, all these candidates yielded
comparable or even lower Cq values, indicating that sensitivity
was comparable between the single enzyme mode and two-
enzyme mode of target RNA detection. The shapes and
amplitudes of the fluorescence curves as well as PCR efficiency of
the generated cDNA in the single-enzyme reactions were
comparable to those of the control two-enzyme reactions.
Nonetheless, in some single-enzyme reactions, we observed a
high level of low-molecular-weight and/or high-molecular-weight
off-products, which negatively affected the shape and slope of the
kinetic curve, especially during HPIV2 RNA detection. In our

experience, this phenomenon is characteristic of enzymes with
strong Kd and can be improved by optimizing the reaction
conditions. Indeed, an increase in KCl concentration and pH of
the reaction mixture led to a reduction in the amount of off-
products, an improvement in the shape of the kinetic curves, and
clear-cut electrophoretic bands when enzymes E507K-D732N and
E507Q-D578S-I614M were used (data not shown).

Discussion

It has long been known that WT Taq pol has in vitro RTase
activity (Jones, and Foulkes, 1989; Tse and Forget, 1990). In
numerous papers, it has been demonstrated that this activity can
be significantly enhanced by modification of reaction conditions or
by introduction of amino acid substitutions at various positions (see
refs. above). In our study, we deliberately limited the number of
analyzed amino acid positions, thereby radically narrowing the
space of possible mutants. Nevertheless, our search identified
sufficient number of Taq pol mutants having considerably
boosted RTase activity combined with a set of other desirable
characteristics. Thus, our approach aimed at generating a
comprehensive dataset to train predictive models in balancing
resource constraints showed sufficient performance to find
promising candidates.

Our attempts to leverage recent advancements in protein
modeling involving PLMs were thwarted by hardware-related
constraints. Although we managed to fine-tune only the last six

FIGURE 5
Above: Real-time RT-PCR involving various Taq pol mutants in single-enzyme reactions with a synthetic transcript containing the 116-nt hMPV
sequence (A) and the 90-nt HPIV sequence (B). Color indication:WT Taq pol, WT/p66mix, E507Q, D578N, E507Q-D578S-I614M, E507K-A570G-M747Q.
For each transcript, two dilutions were analyzed, of which the second (dashed lines) is 1/100 of the first (solid lines). Below: 2% agarose gel electrophoresis
of the reaction products (one well per dilution, the color indication as above). Left, hMPV; right, HPIV. M, marker. RFU, relative fluorescence units.
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layers of ProtT5-XL, we anticipate that the method’s efficiency may
be improved through full-model fine-tuning or the use of larger
PLMs. Parameter-efficient fine-tuning aroused considerable interest
in recent years owing to its potential to facilitate fine-tuning of larger
models, such as ProtT5-XXL, on the same hardware (Han et al.,
2024). Authors of ref. (Schmirler et al., 2024) provide evidence that
low-rank adaptation (LoRA) procedures enhance the ability of
PLMs to navigate mutational fitness landscapes, indicating that
parameter-efficient fine-tuning may further improve model
performance without excessive computational resources.

The use of more advanced or specialized architectures may also
enhance our predictive capabilities. Multimodal models like
ProstT5, which take both sequence and 3D structure data as
inputs, can provide more informed predictions. Although 3D
structural information is implicitly present in sequence-derived
embeddings, explicit incorporation of structural data can provide
additional insights. Moreover, ProteinNPT, as described in ref.
(Notin et al., 2023), learns joint representations of full input
batches of protein sequences and associated property labels,
thereby making possible a prediction of single or multiple
protein properties, novel sequence generation via conditional
sampling, and iterative protein redesign cycles through Bayesian
optimization.

When proteins are designed, it is crucial to consider multiple
properties, especially in industrial settings. As a mutation radius
increases, it quickly becomes impossible to exhaustively explore the
search space thus necessitating a search for algorithms that prioritize
candidate mutations for inference. Discrete optimization methods
such as genetic algorithms or Markov Chain Monte Carlo, as
described in (Biswas et al., 2021), are required for navigating the
vast search space and exploring enhanced enzymes that are a couple
more mutations away from the WT. This multicriterion
optimization is computationally challenging, particularly because
some properties entail trade-offs. Finding an optimal balance under
such circumstances is an unsolved problem that prevents achieving
desired characteristics in industrial applications. Furthermore,
restricting the number of amino acid substitutions analyzed per
protein to three is of course a serious limitation here, which
definitely lowers the probability of finding an optimal enzyme. A
number of examples are known where the best properties of a
bioengineered Taq pol modified to enhance RTase function have
been achieved via introduction of more amino acid substitutions,
e.g., TaqM1 (L322M-L349M-S515R-I638F-S739G-E773G) (Marx
et al., 2010) or RT-KTq (L459M-S515R-I638F-V669L-M747K)
(Aschenbrenner and Marx, 2016).

Another important topic is zero-shot methods for selecting
initial datasets when experimental data are unavailable. These
procedures typically are based on the likelihood of a sequence
according to a PLM. Authors of ref. (Meier et al., 2021) provide
details on how such approaches can be implemented effectively to
identify promising candidates for initial testing, thereby reducing
the experimental burden and accelerating discovery. Although this
strategy is outside the scope of our study (because we relied on
literature data), it is crucial for similar projects in general.

One of the significant factors that ultimately influenced the
accuracy of the predictive model, we considered the suitability of
wet-lab experimental data for training this model both in terms of
their reproducibility and with regard to the width of the range of values

obtained. We focused on methods for assessing the characteristics that
could be experimentally evaluated over a wide range of values, ranging
from negligible to high, as opposed to categorical variables (all-or-
none). Thus, for all RTs and PCRs, we chose conditions that, in our
experience and according to the literature, contribute to increased
enzymatic activity at the cost of an increased frequency of
nucleotide misincorporations: high concentration of trehalose,
dNTPs, and magnesium ions. Under these conditions, we, for
example, achieved full PCR activity from mutants S515F, H639A,
F667A, and M747D, in contrast to their performance in the study
(Raghunathan andMarx, 2019). Also, in our experiments, the wild-type
Taq was able to synthesize cDNA longer than 500 nucleotides (albeit
with low efficiency), whereas, for example, in refs. (Marx et al., 2010;
Raghunathan andMarx, 2019), it failed to extend a primer hybridized to
a complementary RNA strand for more than 2-7 nucleotides.
Accordingly, the methodology that we applied to the estimation of
RT activity via a comparison of RT efficiency among specific RNA
templates of different lengths and structures by real-time RT-PCR
turned out to be much more informative than traditional direct
recording of reaction kinetics through elongation of oligo (dT)
primers on a poly (rA) substrate. The latter option helped us to
distinguish the WT from the enzymes with sufficiently enhanced RT
activity but not to stratify them among themselves (data not shown): the
low melting temperature of oligo (dT)/poly (rA) duplex prevented
obtaining the good-quality kinetic curves at the temperatures optimal
for RTase activity of the mutants (>60°C).

These observations reinforce the robustness of our experimental
setup in detecting even marginal activities, which is valuable for
understanding the gradient of functional impact across mutations.
We should emphasize that the RT and PCR conditions we used had
default settings, i.e., we did not adapt them to the tested enzymes; this
approach could further improve the quality of the obtained data. At the
same time, a negative consequence of choosing sparing conditions
could be the loss of valuable information associated with the loss of
gradation of the property displayed by different mutants if this property
is significantly manifested in the prototype enzyme. Thus, in our assays,
all the tested enzymes were able to cleave 5′-fluorescently labeled
probes, albeit with different signal amplitudes. Although this was a
desirable outcome and a criterion for candidates to be selected, the
absence of mutations dramatically affecting 5′-nuclease activity
prevented us from using this parameter to train the predictive
model. Therefore, we cannot rule out that some of the candidates
selected with it would be devoid of this activity.

In our experiments, RTase activity enhancement in Taq polymerase
strongly correlated with broadened substrate specificity. Correlations
between different parameters, identified in the first enzyme batch,
persisted in subsequent ones (Figure 6): the enhancement of RTase
activity was accompanied by a general trend toward a diminished dT/
dU rate, lower fidelity, lower Kd values, and reduced negative effects of
LNA modifications (with the exception of D732N), whereas the
enhancement of fidelity followed the opposite trend.

The fact that this correlation was expressed for the entire
prediction space (data not shown) and did not change for the
different stages of experimental attestation indicates that we are
not dealing with a self-fulfilling prediction, but with a real pattern
that may have a mechanistic explanation. This pattern may be
beneficial for the development of tools for biotechnology and
molecular genetic studies. Thus, the increased ability to use LNA
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substrates enhances the design of oligonucleotide primers and
fluorescently labeled probes in terms of providing the necessary
specificity and adjusting annealing temperatures. In this regard, it
was desirable for us to obtain mutants that allow LNA substrates to
be processed at least no worse than the wild-type enzyme. To our
pleasure, the increase in RTase activity inmost cases not only did not
lead to a deterioration of this parameter, but also provided
additional tolerance to LNA substrates. Another useful property
also found to be associated with an increase in RTase activity–an
improved efficiency of adjusting deoxyuracyl–is useful for molecular

diagnostic tools since it allows more effective use of uracyl-DNA
glycosylases to prevent carry-over contamination, as well as fine-
tune multiplex reactions.

However, the interdependence of these properties raises the
question of whether, in principle, the combination of some required
characteristics for one enzyme is achievable if the enhancement of one
of them entails weakening of the other, and vice versa. In our study, we
faced two such trade-offs: reduced fidelity and catalytic efficiency for
longer targets in all enzymes with enhanced RTase activity, and, vice
versa, the negligible RT function in other mutants with increased

FIGURE 6
Parallel coordinate plots of the assayed Taq pol mutants and of the WT enzyme. Mean relative values of properties of non-RT enzymes (lacking
appreciable RTase activity) are highlighted in blue, and themean relative values of properties of RT enzymes (having substantial RTase activity) are shown
in red. The shaded area denotes standard deviation ranges. Relative values of the WT enzyme’s properties are presented as the black lines. The relative
values of measured properties are shown for all the assayed enzymes (A), and separately for enzymes from the first round of experiments (B), from
the second (C) and from the third round (D).
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fidelity. In our study, we did not set the goal of obtaining the Taq pol
variant with the combination of enhanced RTase activity and high
fidelity. We do not rule out that such a task can be solved by involving
other sites for directed mutagenesis. In our study, all candidates with
enhancedRTase activity had slightly reduced fidelity, but not reduced so
drastically as to prevent their use in routine RT-PCR applications. In
our experience and according to the literature, such a fidelity decrease
can be compensated by parameters of the reaction mixture
composition, such as the concentration of magnesium ions, dNTPs,
monovalent cations, or the use of additives (Eckert and Kunkel, 1990;
Xue et al., 2021).

As for the target length–dependent decline of cDNA synthesis
efficiency in all mutants, it may be explained by their low
processivity on the RNA templates, lack of strand displacement
(SD) activity, non-optimal reaction temperature, a high degree of
product inhibition, or other factors or combinations thereof. Wild-
type Taq pol is known for the extremely low SD activity compared to
the mesophilic reverse transcriptases but this activity can be
enhanced through the introduction of mutations (Ignatov et al.,
2014; Barnes, Zhang, and Kermekchiev, 2021). In our sample of
tested enzymes, only D732N displayed pronounced SD activity
(which was confirmed by our experiments; data not shown).
However, in our hands, in the synthesis of longer cDNAs,
D732N was outperformed by E507Q-D578S-I614M polymerase
that did not display SD activity. Further elucidation of the key
mechanisms underlying the length-dependent reduction in cDNA
synthesis by Taq pol mutants is needed to help identify a way to
overcome this limitation.

Judging by our results, the dissociation constant of a polymerase
and a primer-template complex could be a key parameter
responsible for the substrate specificity expansion: it was mutants
with lower Kd that showed such expansion. Moreover, although the
Kd value was not our criterion for the selection of candidates for wet-
lab experiments, the selection for Kd actually occurred coupled with
the selection for RTase activity (see Figure 3). A simple explanation
is that the stronger binding of mutant enzymes to various substrates
enables reactions with these substrates, in contrast to the WT, for
which such reactions are inhibited/prevented by the weak affinity for
the substrates. On the other hand, our analysis of the same set of
experimental data suggests that “1D” selection aimed at increasing
Kd of a polymerase and the primed template may not be effective
enough to find the best candidates for different biotechnological
tasks. This is due to the fact that effects of different “Kd-lowering”
mutations on features of interaction with one or another type of
substrate were different even among enzymes with high DNA-
dependent DNA polymerase activity. For example, E708D has
lower Kd compared to the WT but showed no improvement of
RTase activity, whereas V586N-M747T has higher Kd but
manifested moderately increased RTase activity and better
tolerance to an LNA substrate. This is not surprising because the
effects of these mutations on enzyme–substrate interactions can
have dissimilar mechanisms. For instance, the thumb domain,
which includes E507, is involved in interactions with the
upstream duplex of an overlapping substrate (Ma et al., 2000).
E507 is located in the primer–template-binding site where
mutations are expected to modulate DNA-binding affinity.
E507K stabilizes the Taq pol–DNA binary complex by forming
additional contacts with the distal portion of the primed template

(Arezi et al., 2014). S515 is important for α-helix stabilization and
makes the nucleic-acid–binding motif more robust (Blatter et al.,
2013). D578 (palm) comes into contact with a template strand
(Raghunathan and Marx, 2019). E742K and M747K (finger) could
be structurally responsible for the formation of a salt bridge with
negatively charged template phosphodiester groups located close to
aa 739 and 747 or with a nucleotide’s triphosphate group close to aa
817 (Vichier-Guerre et al., 2006). M747K introduces an additional
positive charge near the negatively charged RNA template backbone
thereby possibly helping to accept an unnatural substrate by
enhancing binding. In turn, D732N (finger) seems to be at a
distance from primer and template strands in crystal structures
(Barnes et al., 2021), and its participation in enzyme–substrate
interactions is not fully understood. I614 (finger) contacts an
incoming nucleoside-5′-O-triphosphate. Ref. (Patel et al., 2001)
indicates that Taq pol tolerates amino acid substitutions at
position I614 and that such mutant enzymes retain activity
similar to that of the WT, but fidelity is often low. In their
experiment, however, nonhydrophilic substitutions, including
I614M, did not alter the error rate during DNA synthesis.

The observed influence of tested amino acid substitutions on
Taq pol RTase activity can be illustrated with a biplot of a partial
least squares (PLS) model (Supplementary Figure S4). The PLS
model was trained to predict on the basis of mutation data whether
enzymes have RTase activity. When we analyzed some mutations’
frequencies in Taq pol mutants predicted to possess the RTase
activity, we noticed that the majority of these proteins contain at
least one of such mutations as E507K or E507R, E742Q or E742M or
E742H, M747K, I707R or I707K, A570K or A570R (see
Supplementary Table S5).

Understanding the “linkage” of effects of individual mutations
or combinations thereof on several characteristics of mutant
polymerases allows for predicting the properties of enzyme
variants, for which these characteristics are unknown or
unpublished. For example, the I704L mutation described in the
literature as leading to cold sensitivity (Kermekchiev et al., 2003), in
our experiments (in full accordance with the predictive model) also
led to higher Kd values, an RTase activity lower even compared to
the WT, diminished efficiency of dUTP incorporation, and low
tolerance to a hairpin LNA-containing substrate. All three mutants
possessing increased allele specificity according to literature data
[R660S, R660V, and E507K-R536K-R660V (Drum et al., 2014; Lim
et al., 2022)] expectedly showed elevated fidelity and a greater delay
in synthesis on the LNA templates as compared to the WT enzyme.
At the same time, a downside of this “linkage” may be unexpected
“side effects” of selection for some useful property. In our work,
these were pronounced attenuation of the negative influence of an
upstream LNA nucleotide and a decrease in a temperature optimum
during selection for greater RTase activity. We have no doubt that
the effects of amino acid substitutions and their combinations on
other useful properties of enzymes, for example, tolerance to PCR
inhibitors, DNA lesion bypass, or the ability to incorporate
fluorescently labeled monomers, can be connected and predicted
in silico. This accomplishment should make it possible to rationally
design an enzyme with a preselected combination of properties
without the need to validate in vitro a huge number of candidates.

Important limitations of the study should be mentioned. Firstly,
some key characteristics (e.g., the Michaelis constant, processivity,
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and affinity to dNTPs) were not evaluated at all. Secondly, some
identified patterns could be attributed to specific reaction
conditions. Thirdly, we evaluated only the fidelity of DNA-
dependent DNA polymerase activity because we were able to
assess this characteristic in the entire set of mutant enzymes.
Regarding the fidelity of RNA-dependent DNA
polymerase–driven synthesis, it was determined only in a small
number of enzymes (data not shown). Fourthly, we established a
purely empirical relation of individual mutations or their
combinations with properties of the enzyme without examining
the physicochemical mechanisms underlying the effects of these
mutations. That is to say, the observed decreased extension rate of all
enzymes on LNA-containing hairpins may be subject to different
interpretations [see (Di Giusto, and King, 2004; Pande, and Nilsson,
2008; Fakhfakh et al., 2015)]. And, in the fifth, we didn’t test the
most of the enzymes from the top suggested by the predictive tool,
where perhaps significant exceptions to the patterns we postulated
could be found.

Conclusion

Through a screening of a collection of 47 mutant Taq DNA
polymerases — 29 of which were selected via our proposed strategy
of multiparametric rational design—we were able to identify
18 enzymes that possess orders of magnitude higher RTase activity
on all three substrates considered as compared to the wild-type enzyme;
12 of these Taq pol mutants were selected by our AI-based algorithm.
The analyzed mutants contain amino acid substitutions affecting
21 positions in all three structural domains of Taq pol. As predicted
by our algorithm and subsequently confirmed experimentally, the
RTase activity enhancement tends to be accompanied by lower Kd

values, moderately decreased fidelity, and greater tolerance to
noncanonical substrates such as dUTP and/or LNA modifications.
Some mutants were effective in single-enzyme RT-PCRs involving
cleavage of fluorescently labeled probes or an antibody- or aptamer-
mediated hot start. These improvements made the mutants suitable for
advanced molecular diagnostic applications, particularly in high-
temperature reverse transcription and single-enzyme real-time RT-
PCR setups. Therefore, they can provide the basis for the creation of
new diagnostic tools such as pathogen RNA detection or gene
expression analysis.

We regard our results as proof-of-concept data, not as a final
solution even in relation to the problem in question, and we do not
rule out the possibility of optimizing our approach toward an
analysis of combinations of more mutations, based on the
accumulated body of empirical data and the new insights. The
fact that all mutants with enhanced reverse transcriptase activity
exhibited the two functional trade-offs (reduced fidelity and catalytic
efficiency for longer targets) highlight the challenge of optimizing
multiple enzymatic properties simultaneously, as improvements in
one function can adversely affect others. When new enzymes are
bioengineered to solve specific biotechnological problems, it must be
borne in mind that enhancing one function may entail inevitable
and multidirectional alterations of other functions, sometimes in an
unpredictable manner.

Nonetheless, in our study, deep learning models proved to be
valuable for guiding our selection of mutations, thereby highlighting

good potential of AI-driven approaches in enzyme engineering especially
in settings with a relatively small number of experimental studies.
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