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Introduction: The prosthetic hand has been aimed to restore hand functions by
estimating the user’s intention via bio-signal and providing sensory feedback.
Surface electromyogram (sEMG) is a widely used signal, and transcutaneous
electrical nerve stimulation (TENS) is a promising method for sensory feedback.
However, TENS currents can transmit through the skin and interfere as noise with
the sEMG signals, referred to as “Artifact,” which degrades the performance of
intention estimation.

Method: In this paper, we proposed an adaptive artifact removal method that can
cancel artifacts separately across different frequencies and pulse widths of TENS.
The modified least-mean-square adaptive filter uses the mean of previous
artifacts as reference signals, and compensate using prior information of TENS
system. Also temporal separation for artifact discrimination is applied to achieve
high artifact removal efficiency. Four sEMG signals—two from flexor digitorum
superficialis, flexor carpi ulnaris, extensor carpi ulnaris—was collected to validate
signals both offline and online experiments.

Results and Discussion: We validated the filtering performance with twelve
participants performing two experiments: artifact cancellation under variable
conditions and a real-time hand control simulation called the target reaching
experiment (TRE). The result showed that the Signal-to-Noise Ratio (SNR)
increased by an average of 10.3dB, and the performance of four TRE indices
recovered to the levels similar to those without TENS. The proposed method can
significantly improve signal quality via artifact removal in the context of sensory
feedback through TENS in prosthetic systems.
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1 Introduction

Research on bionic hand has been carried out for upper limb amputees to restore
dexterity and functioinality in daily life. Accurately estimating user intention is important
for the control performance of prosthetic hand, and one of the most widely used bio-signals
for this purpose is surface electromyography (sEMG) which is electrical potential measured
on skin surface that occur when muscles are activated (Jiang and Farina, 2014). Since sEMG
sensors are placed directly on the surface if the target muscle, there is a strong correlation
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between muscle activation and the sEMG signal obtained (De Luca,
1997; Chowdhury et al., 2013).

In the field of human-robot interaction (HRI), characteristics
mentioned above make sEMG signals significantly important,
particularly for intention estimation. Usually sEMG used to
predict movement of various joints such as the shoulder (Tigrini
et al., 2023a; Tigrini et al., 2023b), elbow (Buongiorno et al., 2018),
and lower limbs (Dimitrov et al., 2020; Schulte et al., 2022).
Additionally, it is utilized in the control of exoskeletons (Kang
et al., 2019; Gui et al., 2019), and also for analyzing muscle fatigue
(Cifrek et al., 2009; Moniri et al., 2020) which is valuable for the
evaluation of other systems. For intent estimation in prosthetic
control, sEMG signals are particularly dominant. Numerous studies
have focused on classifying predefined hand gestures using sEMG
(Parajuli et al., 2019; Samuel et al., 2019; Earley et al., 2016), or an
predicting proportional force estimation (Fougner et al., 2012;
Hogan, 1976; Nielsen et al., 2010; Cho and Kim, 2020), making it
an essential tool in the advancement of prosthetic hand.

In addition to methodologies for precise intent estimation and
advancements in prosthetic hardware development, several studies
have been conducted to enhance prostheses to make them more
human-like. One focus is the sensory feedback strategy that provides
the user with information from the prosthetic hand (Sensinger and
Dosen, 2020). Unlike natural hands, the prosthetic hand does not
inherently provide sensory information such as force, position, or
tactile sensations. Prosthetic hand users have emphasized the
importance of developing effective feedback methods (Lewis
et al., 2012; Biddiss and Chau, 2007) to enhance control
performance (Holmes and Spence, 2004). Some studies have
reported that such sensory feedback contributes to the
improvement of control performance in prosthetic devices in
terms of adaptation speed (Earley et al., 2021) or accuracy
(D’Anna et al., 2019). To address this need, various sensory
feedback methods have been developed, and one of the most
widely employed techniques is electro-tactile stimulation using
transcutaneous electrical nerve stimulation (TENS). TENS stands
out due to its capability to generate multiple sensations by adjusting
parameters such as frequency, pulse width (PW), amplitude, and
waveform (Szeto and Riso, 2018). Also, it has high spatial efficiency
with low sensory overload (Stephens-Fripp et al., 2018).

Several studies have been conducted to utilize the advantages of
TENS for sensory feedback of prosthetics. First, strategies for controlling
pulse amplitude were proposed to improve grasping performance. A
comparison of a method for controlling amplitude according to grip
force and a method for providing additional notification at contact and
release (Mastinu et al., 2020), a strategy for connecting the angle of the
prosthetic to the vibrotactor and matching finger force to amplitude
(Vargas et al., 2021) were proposed, and both showed high grasping
performance. Also Valle et al. (2018) compared task performance while
encoding linear amplitude or frequency modification. Like amplitude
change, pulse width is also a parameter that greatly affects the intensity
of stimulation. There are results showing that changes in frequency and
pulse width lead to changes in the types of human sensation Ara et al.
(2014), and Zhang et al. (2022) compared the degree of human sensory
recognition according to these two variables. Multi-modal methods
have been proposed to transmit different types of TENS by a single
electrode to transfer multiple information at the same time (Choi et al.,
2017), and a prosthetic application strategy according to multi-modal

feedback were validated (Cho et al., 2023). Furthermore, a comparison
is made between the closed loop control performance in response to
variations in both frequency and pulse width (Dideriksen et al., 2020).
Thus, a great deal of research is being done on methods to alter the
TENS parameters in order to enhance the control performance of
prosthetic hands.

However, both sEMG signal and TENS are in the close
frequency bandwidth which is below 500 Hz (Shaw and Bagha,
2012). Because of this, the current of TENS is transmitted through
the skin and causes significant noise in the sEMG signals which is
referred to as an “Artifact.” To mitigate the interference of artifacts
to estimate user intention by sEMG, both physical and software-wise
approaches have been researched. Authors in Jiang et al. (2014) tried
to adjust physical components such as electrode placement,
waveform type, and using concentric electrodes with opposite
phases and validated that the artifacts can be reduced. On a
software-wise, authors in Hartmann et al. (2014) proposed that
signal blanking in the presence of artifacts through signal processing
can improve pattern recognition accuracy. A similar strategy was
presented in that the recognition performance can be enhanced by
time-division interval between the recording windows and
stimulation windows (Dosen et al., 2014). However, despite these
approaches increasing the estimation performance, the sEMG signal
is lost while the feedback is stimulated. Consequently, the estimation
phase becomes dependent on the stimulation phase, leading to
performance inconsistency, and the stimulation phase itself has
inherent limitations.

To overcome this limitation, The models for artifact cancellation
through signal processing have been explored. One research utilized
empirical mode decomposition and series notch filters (Pilkar et al.,
2016). Also, using independent component analysis algorithm to
remove EEG artifact on EMG is proposed in various ways such as
adding source of EMG (Li et al., 2021) or utilize with wavelet
transform and blind source separation (Lu et al., 2024). These
methods shows high restoring performance with real sEMG
signals, but it can only be applied to a single frequency of TENS
and hard to be used in real-time application.

Jiang et al. (2014) proposed an adaptive filter using another
reference electrode referred to as a real-time passive electrode, and
they showed that the Signal-to-Noise Ratio (SNR) can be increased.
In another research (Mendrela et al., 2016), they presented the Sign-
sign Least-Mean-Square (LMS) for the cancellation of the artifact in
neural signals, and it was validated in in vivo conditions. Both
models are based on the adaptive filters for artifact removal,
however, noise cancellation level regardless of sensor placement
and their performance in intention estimation using sEMG require
further verification.

In this paper, we propose a modified adaptive filter to separate
artifacts caused by sensory feedback from sEMG signals with
minimized signal loss. The primary goal of this research is to
acquire sEMG signals generated by muscle contractions
selectively, and validate the performance in the intention
estimation. The artifact cancellation while maintaining the sEMG
signal is a challenge, especially when the TENS parameters such as
frequency and PW vary continuously during the use of the
prosthetic hand. This method has several implications for
systems using TENS. First, the proposed method enables the use
of a sensory feedback strategy with varying frequency and pulse
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width. This is because the comparability cost is low and removal is
possible in real-time. In addition, while most existing methods
mixed clean EMG and artifact to verify the results, this study
increased the reliability of the results by using signals containing
actual artifacts. Finally, by adding online experiments for real-time
implementation and simultaneous use with intention estimation, it
was shown that it can be used for prosthetic intention estimation in
the future. As the filter should robustly adapt to these parameter
variations, the sEMG signals can remain independent, guaranteeing
the consistency of the estimation performance. To validate the
proposed method, we designed various feedback scenarios (FS)
that have different TENS parameters over time. Additionally,
real-time performance was validated through the target-reaching
experiments (TRE) simulating the manipulation of the prosthetic
hand. The main contribution of this research is presenting the
adaptive artifact cancellation filter and validating its performance
in prosthetic hand control by using restored sEMG. Since the
proposed method utilizes only one sEMG signal and is capable of
real-time implementation, it can be applied to various fields of
human-robot interaction (HRI) requiring signal processing. In
particular, it is applicable when providing sensory feedback
during the control of fingers, elbows, and exoskeletons through
sEMG signals as mentioned above. Through the verification of the
method, it is anticipated that prosthetics, traditionally controlled in
an open-loop, can be controlled in a closed-loop. Furthermore, the
method is expected to be applicable in similar noise-prone
situations, such as repetitive occurrences of noise like heartbeats.

2 Materials and methods

2.1 Artifact in sEMG signal

Figure 1 shows the sEMG signal acquired from the same subject
and sensor, with and without 100 Hz TENS. By comparing graph (i),
it is confirmed that the artifact magnitude level is higher than the
muscle signal, making it difficult to discern the muscle signal. In (ii),

with a shortened time, the artifact cannot be precisely separated
because muscle signals are captured simultaneously. Also, the square
biphasic form of TENS is transformed as it passes through the arm, a
transformation influenced by factors such as sensor location, arm
posture, TENS parameters, etc., Additionally, the duration of the
artifact is approximately 3 ms, which varies depending on each
channel, PW, etc., but lasts shorter than 10 ms, which is the
minimum operation cycle of the developed TENS board. This is
because the maximum PW of TENS that a person can generally
tolerate is around 500us. In this study, the residual time of the
artifact was set to 5 ms (r = 50 samples) to utilize this information in
the process described later. The bottom graph in the picture is the
FFT result of each time domain graph. Given the TENSwith a period
of 100 Hz, the 100 Hz harmonic components have large values.
Through this, it can be expected that the change in the signal will be
significantly dependent on the frequency and PW of the TENS.

2.2 Least mean square adaptive filter

In this paper, an adaptive filter based on Least Mean Square (LMS)
(Widrow and Hoff, 1988) is modified. Figure 2 shows the overall
structure of the system, with the most crucial process being the
calculation of the estimated noise (â) from the reference signal (y)
through the adaptive Filter (B ∈ R1×n), which is shown in Formula 1.
The calculated â is then subtracted from the input signal(x) as shown
in Equation 2 to create the assumed signal (ŝ). The process bywhich the
assumed signal ŝ becomes similar to the desired signal s through the
previously mentioned calculation is related to the update of B, the
coefficient of the adaptive filter. The LMS method, one of several
algorithms used for coefficient update of adaptive filters, is computed as
Equation 3 through the Wiener-Hoff equation (Bueckner and Center,
1961). This is a method that updates B to minimize e by using the
assumption of setting a reference signal with a low correlation with the
desired signal and a high correlation with noise. Therefore, when using
an adaptive filter based on LMS, selecting the correct reference signal is
important. To adhere to the principles of correlation, we implemented
three key modifications. First, based on the knowledge that sEMG has
zero-mean gaussian distribution, we utilized multiple past artifacts to
restore artifacts well (Sections 2.3–4). Second, we designed the system to
cancel artifacts from frequency/pulse width varying feedback (Section
2.5). Finally, we separate artifact residual time range to selectively cancel
and rapid convergence of filter coefficients.

â t( ) � BT t( ) · Y t( ) � ∑n−1
i�0

bi t( ) × y t − i( ) (1)

ŝ t( ) � x t( ) − â t( ) � s t( ) + a t( ) − â t( ) ≃ s t( ) (2)
B t + 1( ) � B t( ) + 2μ · ŝ t( ) · Y t( ) (3)

2.3 Delayed references from sEMG signals

As mentioned in the previous section, the most critical aspect of
using an adaptive filter based on LMS is determining the reference
signal. In this study, to select a signal with a higher correlation to
noise, the past artifacts of the same channel was stored and used as a
reference signal. This approach ensures that signals measured in the

FIGURE 1
sEMG contaminated by Artifact. (A) Without TENS (B) 100 Hz,
400us biphasic TENS applied and collected in sEMG sensor (i) Time
domain, (ii) Short time period for capture artifact, (iii) Fourier transform
of time domain result.
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same channel will produce similar artifacts compared to artifacts
that appear in other channels. This is because the system between
TENS and artifacts changes depending on channel location. The
delayed artifact mentioned in the above process is stored during the
residual time mentioned in Section 2.1 and used later, one entire
artifact stored in this way is called an artifact sequence (AS ∈ R1×r).

2.4 Multi artifact sequences for
reference signal

If the reference signal is asmentioned in Section 2.3, it includes both
s(t) and a(t) components. In other words, this signal simultaneously
contains the muscle signal and the artifact component to be removed
from the input. To reduce performance degradation due to this, rather
than using a single AS as a reference signal, the average of nASwas used
as a reference signal. For this purpose, AS were stored in the system as
shown in the lower left corner of Figure 2. The assumption of the above
method is that the sEMG signal has a mean of 0 and follows a Gaussian
distribution. This means that even if the muscles are activated at the
same level, the raw sEMG signal does not have a constant level
proportional to it. This leads that if n random sEMG signals are
added, the probability that this sum will be zero increases
significantly as n increases. For the result, the sum of n AS will
effectively restore the shape of the artifact as shown in Formulas 4,
5 by deleting muscle signals.

if s ~ N 0, σ2( ), n → ∞0E s[ ] � 0 (4)

∑n
i�1

x i( ) � ∑n
i�1

s i( ) +∑n
i�1

a i( ) ≃ ∑n
i�1

a i( ), (5)

2.5 Varying pulse width compensation

In order to utilize a sensory feedback system through TENS,
various information is provided to the user using multiple
frequencies and PW of TENS. Because these parameters are
controlled by the system, they are prior information known
before the artifact occurs. Since the amplitude of the artifact

increases with increasing PW, compensation can be applied to
make the adaptive filter robust against varying PW. For this
purpose, a specific AS and the PW were stored together, and the
previous AS was adjusted using the PW of the currently authorized
TENS, as shown in Equation 6. In this study, an α value was
empirically set in the range of 100–150.

ASpw2′ � ASpw1 ×
pw2 + α

pw1 + α
(6)

2.6 Filter separation for varying frequency
and update phase

The frequency of TENS is controlled by an MCU internal timer,
ensuring precise operation at precise time intervals. Consequently, filter
can receive frequency information from the TENS system and predict
the starting point before artifacts occur. In other words, the filter can
distinguish whether input sample is in the artifact residual time range or
not(1< k< r). Through this separation, cancellation can be performed
only when artifacts occur, regardless of the frequency of TENS. Also, the
filter coefficient B is updated only during the residual time, facilitating
relatively rapid convergence of the filter coefficient. During the residual
time, the reference signal is calculated as in Equation 7 using the
previous AS, and then the AS is updated as in Equation 8.

y t( ) � 1
n
∑n
i�1

ASi k( ) × pw + α

pwi + α
[ ] (7)

ASi+1 k( ) � ASi k( ), i � 1, . . . , n − 1
AS1 k( ) � x t( ){ (8)

3 Experimental setup

3.1 Placements for sEMG acquisition and
stimulation

The placement of sEMG sensors and TENS pads is illustrated in
Figure 3. Each sEMG sensor comprises two wet-type electrodes

FIGURE 2
System block for artifact cancellation.
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(Kendall, Covidien, Ireland). Two sensors are attached near the
wrist, targeting the finger flexor muscles, while another two are
positioned above the elbow, targeting both the wrist flexor and
extensor muscles (Figure 3D). This configuration not only validates
the robustness of the proposed method for various electrode
positions but also allows for the independent utilization of two
muscles in the forthcoming experiments. The remaining two
electrodes are attached to the elbow, and all electrodes are
connected to a self-developed signal acquisition board,
incorporating signal filters and common noise removal.

For TENS, CWN2505 pads (CQMS Co., South Korea, square
shape, 50 × 50 mm) commonly used in physical therapy were
employed. Two pads deliver a minimal current to provide
sensory input. Pads are attached between the biceps and triceps
to ensure the transmission of electrical stimulation through the high
radial nerve. TENS is delivered through the developed TENS board
(Cho et al., 2023), featuring a voltage divider, DC converter, and the
generation of square biphasic pulses determined by the input
frequency and PW.

3.2 System communication configuration

The system configuration is established as illustrated in Figure 3,
and all experiments are conducted with the main PC serving as the
central hub. Communication from the main PC to the
microcontroller (TMS320F28379D, Texas Instruments,
United States) involves essential variables of electrical
stimulation, such as frequency and PW, following various FS.
The microcontroller communicates these variables to the TENS
board (Figure 3A), which controls TENS through pads attached to
the human skin. The sEMG signals are filtered by a signal acquisition
board (Figure 3B) and transmitted to the main PC via the DAQ
board (PCIe-6363, National Instruments, United States). We
designed ergonomically shaped hardware for measuring the
flexion force of three fingers (Figure 3C). This design includes
the attachment of load cells (CBFSC-10, CASKOREA) to the tips

of each finger, enabling the measurement of force when the user
naturally clenches their fist. Subsequently, the output from each load
cell undergoes amplification before being transmitted to the main
PC through the same DAQ board.

4 Experimental protocol

4.1 Subject

Twelve healthy participants (aged 23–29 years) were recruited in
this experimental study. None of the participants had a history
related to any neurological or skin diseases. We gave a sufficient
explanation about the experimental protocols and precautions, and
participants filled out a consent form. Experimental protocols were
approved by the KAIST Institutional Review Board (KAIST IRB
No.KH 2023-231).

4.2 Threshold and load cell preparation

The threshold of sensation varies among individuals and can be
influenced by the positioning of the TENS pads. Therefore, it is
crucial to assess the boundary for the parameters of TENS such as
PW before its application. Due to the utilization of a fixed amplitude
for TENS, the PW is the most significant parameter affecting the
subjects’ sensations. If the PW is too short, the subjects may not
recognize that they are receiving TENS. On the other hand, if the
PW is too long, it can cause muscle tremors or spasms, leading to
discomfort. To search those boundaries, the PW was increased by
10 us in each step to measure both the Sense Threshold (ST), where
the subjects initially perceive the TENS, and the Pain Threshold
(PT), corresponding to the threshold at which the TENS becomes
discomforting. The measured values were applied to the subjects,
with the exclusion of the lower and upper 20 % of the safety range
for stability in the experiment. Since there are also differences in grip
strength among participants, we calibrated the measurement range

FIGURE 3
Experiment setup for subject and system configuration. (A)Developed TENS board circuit based on switching circuit and Howland current pump (B)
sEMG acquisition board with DRL circuit (C) Force guide to maintaining finger force (D) Four sensor placement in forearm.
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of the load cells and normalized the measured values. Through
adjustment of the gain in the load cell amplifier, the force sensor
registers zero when participants exert no force and reaches one when
70% of the maximum voluntary contraction (MVC) is applied. This
ensures that participants consistently exert a similar level of force,
thereby enhancing the accuracy and reliability of the experiment.
Each procedure was conducted with participants in a comfortable
seated position, their arms elevated and supported on a desk while
maintaining a natural grip on the force sensor placed on the support.

4.3 Artifact cancellation in various
feedback scenarios

This experiment aimed to evaluate the efficacy of the proposed
method alongside other approaches for artifact removal in various
FS. Each experiment for all conditions and models involves a paired
set recording, with subjects either at rest or flexing their fingers.
Figure 4A explains the paired set recording. Both recording had a
duration of 20 s. In the rest recording (Paired set 1), subjects
conducted the experiment with their arm and fingers comfortably
relaxed. In the flexing recording (Paired set 2), a virtual load cell
guide was provided to the user. The period from 2 to 19 s represents
the signal acquisition phase. The time before and after this phase
serves as the guide phase. In the initial guide phase, the monitor
provides a visual cue signaling the start of the acquisition phase for
the subject. Subsequently, within the next second, a linearly
increasing guide, ranging from 0 to 1 in the force sensor’s
monitor, is presented to instruct the subject to gradually clench
their fist to a specific force level (70 % MVC, value: 1.0). Subjects
maintained this force level with the visual clue in the acquisition
phase (2–19 s) and released the force in the last second. All subjects
sufficiently practiced to adeptly increase and sustain forces in both
phases before the data acquisition.

The paired set recordings were performed in multiple trials
introducing diverse scenarios with different frequencies and PW to
validate the consistent removal of artifacts across various conditions. A
total of five FS were tested, encompassing FS1) no stimulation, FS2)
frequency variation: continuous increase of TENS period from the

minimum period of 0.01 s, FS3) frequency variation: seven frequencies
within the range typically perceptible by humans, FS4) PW variation:
seven different PW within range from ST to PT, FS5) frequency and
PW variation: combined FS3 and FS4 (Figure 4B). Seven frequencies
were selected based on the types of sensations that humans can
distinguish below 100 Hz. Ten recordings, via two types of paired
set and five types of FS, were repeated once for each participant within
the same order: paired set 1 (without TENS), FS1 to FS5, paired set 2
(with TENS), FS1 to FS5. Minimum 1 min rest is given between
every recording.

4.4 Cancellation from simulated sEMG signal

To verify the two methodologies-use of multiple AS and PW
compensation, a simulation test in which ground truth exists was
conducted using signals acquired from the subjects. FS1 (without
stimulation) while flexing finger was assumed to be a raw sEMG
signal. In addition, other four FS while resting as assumed to be a
simulated artifact. FS2 and FS3 were applied by changing the
number of AS in the proposed method (Section 2.3). FS4 and
FS5, in which PW was changed while recording, were designed
to compare performance difference between with/without applying
(Formula 6) in Section 2.4.

4.5 Real-time control experiment

We implemented the Target-reaching Experiment (TRE) which
is a real-time control simulator with visual feedback (Figure 4C). It
was referred from (Cho and Kim, 2022) and implemented in the
Labview environment for all models to be compared. This
experiment involves manipulating a bar based on measured
sEMG values, aiming to precisely control its movement towards
an arbitrary target. We utilized sEMG signals obtained during the
wrist flexion and extension. Due to its opposing movements
controlled by the two muscles, when one muscle is activated, the
opposing muscle remains nearly inactive, creating an independent
muscle activity highly correlated with wrist intention. To address the

FIGURE 4
Offline/Online experiment protocol for validation (A) Paired set 1/2 experiment for rest/flexion. Load cell guide is given in visual feedback. (B) sEMG
(including artifact) variation from different feedback scenarios, (C) TRE configuration for real-time validation.
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perturbation of the raw sEMG signals and use it as a control input, a
second-order Butterworth low-pass filter (1 Hz cutoff frequency) was
applied to get the envelope of the sEMG. Themotion range of the bar was
configured to span from amaximum of 2 in the wrist flexion direction to
a minimum of −2 in the extension direction. The experiment comprised
sixteen tasks, with target positions ranging from 1.7 to −1.7 in
0.2 increments, excluding 0.1 and −0.1. Success was defined as the bar
remaining within a 0.2 range above and below the target value for 0.5 s.
Any deviation beyond this range over 10 s was considered a failure. This
experimental setup aims to evaluate control performance using sEMG
signals after the cancellation of artifacts. Throughout this Experiment, the
frequency andPWofTENSwere randomly given. Selected frequency and
TENS was same with the selection in Section 4.3.

Before the experiment began, participants were given sufficient
time to practice the TRE test in without feedback environment to
become familiar with the task. However, to minimize instances
where participants might adapt and solve problems despite the
presence of artifacts, no practice time was given during the
feedback conditions. A total of five methods were implemented
in the following order: 1) Without feedback/With feedback-2) Non
Cancellation, 3) Proposed, 4) RE, and 5) FB. Each method was
carried out in a randomized sequence for the mentioned 16 tasks.
Five minute break was provided between each method to allow
participants to rest and prevent sensory adaptation.

4.6 Performance indices

4.6.1 Verify delayed signal and pulse width
modulation

The preceding simulated sEMG signal is a process to compare the
artifact removal performance according to various delays and the
presence or absence of PW compensation. Unlike the actual
situation where the sEMG signal and artifact are acquired
simultaneously, there is a ground truth (raw sEMG signal). In other
words, to compare artifact removal performance, the difference between
the filtered result and the ground truth can be compared, and in this
study, normalized root mean square error (NRMSE) was used.

4.6.2 Artifact cancellation performance
In the process of acquiring sEMG signals, physically separating

muscle signals from artifacts is inherently challenging, making the
definition of ground truth difficult for cancellation performance
validation. To assess the performance comparison, the SNR serves as
a quantitative metric. Qualitative evaluations are also conducted by
demonstrating results in both the time and frequency domains to
show the precise recovery of signals.

SNR is computed using the rest condition of each set as intrinsic noise
and the force condition as the signal. The presence of artifacts causes an
increase in the magnitude of both the signal and noise. Consequently,
artifact is expected to result in a decrease in the SNR value. Therefore, we
can observe variations in the SNR value increase, depending on how well
artifact cancellation methods perform, including both the proposed
method and the comparison methods. When the filters operate
effectively, the SNR value can generally be restored to the level of the
non-stimulation condition. Moreover, within the same force condition
for each channel, we expect diverse levels ofmuscle signals. Consequently,
the SNR increase will be evaluated for each channel independently.

4.6.3 Indices of the real-time control simulation
We employed four performance indices to compare online

performances in the TREs, as referenced in Cho and Kim (2022).
The selected indices include completion rate, completion time,
trajectory efficiency, and overshoot. Trajectory efficiency is
defined as the ratio between the actual trajectory length and the
optimal length, represented by the direct linear distance from the
initial to the end position. This measure serves as an indicator of
signal stability while subjects control the bars in the TRE. Also the
overshoot is the number that pass through the target.

5 Results

5.1 Restoring simulated signals

In the simulation experiment, the NRMSE value between the
raw sEMG signal and the restored signal was calculated for each
variable. Figure 5A shows the NRMSE calculated based on the delay
in FS2 and FS3 scenarios, while Figure 5B illustrates the change in
NRMSE with the presence or without PW compensate. Both graphs
show the average values of 10 subjects, excluding the maximum and
minimum values for each experiment and channel. The results of
NRMSE showed a general trend of decreasing NRMSE with an
increasing number of AS. However, the results were nonlinear, and
there were cases where NRMSE increased as the number of AS
became higher. This is expected to be due to reasons such as changes
in posture over time. When performing one-way repeated ANOVA
according to the number of AS, the most statistically significant
difference from the case using one AS was generally distributed
between five and ten, and also the largest NRMSE decrease was
calculated at 10 As (6.57%). Afterward, ten AS were used in this
study. In the case of PW compensation, applying the proposed
method results in a decrease in NRMSE ranging from a minimum of
7.3% to a maximum of 19.4% across each experiment and channel.
This confirms that using PW compensation in the proposed method
helps to remove artifacts in situations where PW changes.

5.2 Artifact cancellation from sEMG signal

Figures 6, 7 presents the results of offline signal processing acquired
from channel 4 of one of the subjects. The horizontal axis is divided into

FIGURE 5
NRMSE difference according to proposed method (A) NRMSE
difference by number of AS. Channel 1/2/3 use left y-axis and Channel
4 use right y-axis, (B) NRMSE difference for with/without PW
compensate, decreased ratio is shown.
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paired sets, with each set displaying both time-domain and frequency-
domain signals simultaneously. The top of the vertical axis represents
FS1 (Without TENS). However, as this signal doesn’t precisely match

the signal obtained below, it serves as a standard reference rather than
the ground truth. The second row on the vertical axis is the raw sEMG
acquired during FS5. The graphs below show the results of processing

FIGURE 6
sEMG signals of Paired Set 1, FS5 from one participant. Every signals were expressed in both time/frequency domain. (A) sEMG signal without TENS
(reference), note that this is not Ground Truth, (B) Raw sEMG signal with TENS, (C–E) restored sEMG signal from three different method.

FIGURE 7
sEMG signals of Paired Set 2, FS5 from one participant. Every signals were expressed in both time/frequency domain. (A) sEMG signal without TENS
(reference), note that this is not Ground Truth, (B) Raw sEMG signal with TENS, (C–E) restored sEMG signal from three different method.
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raw sEMG offline through the proposed method, RE method, and FB
method, respectively. This graph is presented to qualitatively confirm
the performance of each method, and it is noticeable that the level of
artifacts is significantly reduced in the time domain. In addition,
irregular bursts occur due to changes in frequency, but it was
confirmed that they decreased to the reference signal level after
applying the proposed method. On the other hand, it can be seen
that bursts remain in the RE and FB methods.

Figure 8 is a time-frequency plot of the raw sEMG signal during
flexion situation and the signal was removed in three ways (see
Figure 7). This serves as a qualitative assessment of signal
restoration. The reference signal and the proposed method show
similar patterns across all sections. However, in the RE and FB
methods where artifacts remain, 1) 100 Hz harmonics appear at the
beginning and end sections where 100 Hz artifacts occur, and 2) blue
vertical patterns of low-frequency artifacts were presented due to the
elimination of high-frequency components. Since the proposed
method uses past five AS as references for the LMS filter, signal
delay may occur. This latency is directly influenced by the frequency
of the TENS. However, it is important to note that sensory feedback
typically involves high-frequency stimulation, which the human
body perceives as vibration (Ara et al., 2014). In general, this
frequency range falls between 50 and 100 Hz (10 20 ms), which
leads to an approximate delay of 50,100 ms. This level of delay is
considered manageable for real-time operation, and the results
presented in Figures 6–8 support this claim.

5.3 SNR improvement via artifact
cancellation methods

TENS generates artifacts in the signal and noise of the paired set at
similar levels, leading to a decrease in SNR. Figure 9 shows the average
and standard deviation of the increased SNR when applying the
Proposed, RE, and FB methods. These results are derived from data

obtained from 10 out of the 12 subjects, excluding the minimum and
maximum values. After confirming that there was a statistical difference
in the increase in SNR for each method using one-way repeated
ANOVA, the statistical difference for each method was verified
using the Tukey-Kramer post hoc test. As a result, the FB method
showed significantly lower performance across all channels in all
experiments (p< 0.05). When comparing the proposed and RE
methods, Ch3 of FS2, Ch3 of FS3, and Ch1 of FS4 didn’t reach
statistical significance (p = 0.0529, p = 0.1145, p = 0.0576), but
overall, the proposed method showed greater performance.

5.4 Target reaching experiment results

The results of TRE are shown in Figure 10. Since the leftmost bar
represents the TRE result without TENS, it serves as a measure of the
achievement goal. The proposed method shows the best results
across all categories and reaches closely to the achievement goal. The

FIGURE 8
Power spectrum after artifact cancellation by each method. The
original time domain signal is from Figure 7 paired set 2. (A) Without
TENS (Reference), (B) Proposed, (C) RE, (D) FB.

FIGURE 9
SNR increase after artifact cancellation by each feedback
scenarios (A) FS2: Continuous Frequency Modulation, (B) FS3:
Discrete frequency modulation, (C) FS4: Pulse width modulation, (D)
FS5: Frequency and pulse width modulation.

FIGURE 10
TRE performance indices result. (A) Completion rate (B)
Completion time (C) Efficiency coefficient (D) Overshoot. p-value of
without TENS and proposed method for each indices are p = 0.976,
p>0.99, p = 0.918, p = 0.938.
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mean and standard deviation of W/O TENS and proposed method
are 98.75 ± 2.64%, 96.88 ± 6.07% in success rate, 3.88 ± 0.70s,
3.84 ± 0.66sin success time. Similar values were recorded in
efficiency coefficient about 72.62 ± 6.50%, 76.33 ± 8.78% and in
overshoot about 0.34 ± 0.25 and 0.33 ± 0.30. For RE and FB
methods, the values were noticeably increased compared to the
situation where artifacts were not removed, although some
differences were observed. In the case of RE, which showed
better performance, there was a statistically significant difference
in the remaining three categories compared to the scenario without
TENS, except for the success rate category.

6 Discussion

6.1 Adaptive filter using for varying artifact
cancellation

This study aims to remove artifacts measured along with sEMG
signals when TENS is applied to users to provide sensory feedback.
Also, method and evaluations are conducted to highly focused on
the applicability to actual prosthetic system, rather than simply
evaluating the performance of artifact removal. For this purpose, an
adaptive filter was utilized, and a reference signal was employed by
modifying the system to accurately remove artifacts while preserving
the sEMG signal. In addition, we developed a system capable of
preemptively responding to changing artifacts by using primary
information such as frequency and PW. The circuit and system that
implemented the proposed method had the following implications.
First, there hasn’t been much research on artifact cancellation while
stimulation are changing, which allows for the use of a variety of
feedback techniques. These procedures will improve patients
usability and are crucial technologies for closed-loop control of
prosthetic hands. Also all designed circuits are small-sized and with
low computational cost, proposed system can be implemented in
prosthetic hand without modification. Moreover, an intention
estimate online experiment was conducted into the experimental
design and analysis to confirm real-time performance, and it verifies
the feasibility that were not verified in previous methods. Although
the real-time performance of the proposed method was validated
through online experiments, proposed method introduces a delay of
approximately 50–100 ms, which requires further quantitative
analysis. Previous studies have reported methods with delays of
88/138 ms (Smith et al., 2011) and 100–125 ms (Farrell and Weir,
2007), which are similar to the delay observed in the proposed
method. Moreover, since the method meets the commonly accepted
threshold of 100 ms for real-time operation in the field of robotics, it
can be considered sufficiently fast for real-time applications.

6.2 Comparison of other real-time
approaches

The proposed method was compared with the RE and FB
methods, which are two other methods that use adaptive filters.
The comparison was conducted based on NRMSE in simulation
scenarios, SNR improvement in real signals, and intention
estimation in TRE experiments. As a result, we confirmed that

the proposed method showed superior performance across most
experimental scenarios and multiple electrode locations. Both
validation were used in this procedure to improve reliability: a
quantitative indicator and a qualitative way for verifying the real
signals. This means that the artifact removal performance has been
improved for scenarios involving varying TENS, and the method is
robust across multiple electrodes. In TRE experiments, proposed
method has does not show significant difference with non feedback,
which allows us to speculate that it will have similar performance to
other high-performance artifact cancellation methods. However,
despite the comprehensive methodologies and experimental
validations conducted to assess the performance of the proposed
method, certain limitations remain. A notable limitation is the
absence of additional quantitative metrics for evaluation. In this
study, we aimed to remove artifacts from signals where sEMG and
artifacts were measured concurrently, unlike previous research that
often utilized synthetic signals composed of mixed sEMG and
artifacts. Due to the lack of a definitive ground truth in this
experimental setup, it is not feasible to accurately assess the
separation error. Introducing a more reliable quantitative metric,
beyond SNR, could enhance the robustness of our analysis.

In addition to the two comparison methods (RE, FB), Earley
et al. (2022) proposed two artifact cancellation techniques: one using
template subtraction and another employing the e-NLMS filter.
Both methods demonstrated significant performance improvements
after artifact removal, with the advantage of real-time
implementation. While these methods share similarities with the
approach presented in this paper, the proposed method offers
several unique contributions. First, as mentioned by Earley et al.,
the LMS filter’s performance improves when the reference signal is
highly correlated with the artifact. In this study, we utilized past
artifacts to generate a reference signal that closely resembles the
current artifact, specifically removing sEMG components.
Furthermore, by including pulse width compensation, this
method is expected to perform well in real-world applications
that require various feedback. The two methods proposed by
Earley et al. were validated offline using SNR and verified in both
offline and online settings through pattern recognition accuracy. A
detailed analysis of various parameters was conducted, with one of
the most interesting thing is the analysis of the learning rate in
template subtraction. As the range of past artifacts used increased,
SNR/NRMSE initially improved but then showed a decline, a trend
similar to the results depicted in Figure 5 of our work study
regarding the optimal number of AS. These findings confirm the
importance of appropriately selecting past artifacts for optimal
performance.

6.3 Hyperparameter search

Optimization of several hyperparameters used in this study
remains necessary. The convergence coefficient of the adaptive
filters was empirically set to the same value across all comparison
groups. For PW compensation, the α value was determined by
inspecting the signal for each user; however, a comprehensive
performance analysis was not conducted based on. Although α is
not highly sensitive to the results of PW compensation, using an
optimized value could enhance performance. Moreover,
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individual differences among users suggest that a personalized
approach to α selection could further improve outcomes.
Additionally, the simulation results were utilized to roughly
determine the number of AS to be used as reference signals.
We observed that the improvement in NRMSE diminished as the
number of reference signals increased. However, this number
may vary depending on the TENS frequency, and the values set in
this paper can serve as a general guideline.

6.4 Limitation of additional artifacts

While we have demonstrated the effectiveness of the
proposed adaptive filter for removing artifacts induced by
TENS, the current study did not account for motion artifacts,
which are prevalent in real-world applications (Nordin et al.,
2018). Motion artifacts, caused by limb movements and
electrode displacement, can significantly affect signal quality
and pose a challenge for accurate artifact removal. The proposed
method relies on a delayed signal as a reference for the adaptive
process, which suggests the potential for motion artifact
cancellation. However, further experimental validation across
a range of scenarios is required to confirm its effectiveness in
this context.

7 Conclusion

In this study, the modified adaptive filter, primarily for
reference signal, was introduced and its performance was
verified through both offline and online experiments. Multi-
delayed sEMG signals and filter separation were used to
improve filter performance, and the system utilized prior
information to proactively respond to varying frequency and
pulse width. The number of delayed signals and pulse width
compensation performances are verified by simulated signals.
Additionally, the overall performance of the proposed method
was confirmed by SNR and reconfirmed through an intention
estimation online experiment. Although the proposed method
wasn’t verified for all scenarios, we demonstrated that applying it
enables a closed-loop prosthetic hand system.
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