
Multi-branch deep learning
neural network prediction model
for the development of angular
biosensors based on sEMG

Liman Yang1, Zhijun Shi1, Ruming Jia1, Jiange Kou1*,
Minghua Du2, Chunrong Bian3 and Juncheng Wang2*
1School of Automation Science and Electrical Engineering, BeihangUniversity, Beijing, China, 2Institute of
Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, China, 3Department of
Oncology, Caoxian People’s Hospital, Heze, China

Introduction:Human gait motion intention recognition is very important for the
lower extremity exoskeleton robot to accurately synchronize and respond to
the user’s natural motion. And motion intention recognition is generally
performed through sEMG. Deep learning neural networks perform well in
dealing with high-dimensional data and nonlinear relationships such as
sEMG, but different deep learning neural networks have their own
advantages in dealing with different types of data. Therefore, a multi-branch
deep learning neural network, which enables different neural networks to
process different feature items, could achieve more accurate and efficient
motion intention recognition. The purpose of this study is to 1) Establish a
multi-branch deep learning neural network model to achieve accurate gait
recognition and effective estimation of joint angles. 2) Quantify the
performance of the multi-branch deep learning neural network model in
gait recognition and joint angle prediction using sEMG.

Methodology: This study involved the collection of sEMG and plantar pressure
data during walking in human subjects. Firstly, the collected signals are filtered
and denoised to ensure the quality and reliability of the data. Calculate the time
domain features and the frequency domain features to capture the key
information of gait. Then, using the sensitivity difference of different
structural neural networks to different feature data, a multi-branch deep
learning neural network model is developed, in which the extracted features
are used as the input of the model. The output of the model includes gait cycle
and joint angle, so as to realize the accurate recognition of human gait and the
effective estimation of joint angle.

Results: The results show that the proposed method has high accuracy
in identifying human gait and estimating joint angles. The multi-branch
neural network model successfully integrates time-domain and
frequency-domain features and provides reliable prediction of gait cycle
and joint angle. The highest accuracy of gait recognition is 95.42%, the lowest
is 90.11%, and the average is 92.16%. The average error of joint angle
estimation is 3.19.
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Discussion: This study designed a human walking gait recognition and joint angle
prediction model to achieve accurate human lower limb motion intention
recognition.The model can be integrated into the sEMG sensor to design a
angular biosensors, which can predict the human joint angle in real time.

KEYWORDS

lower extremity exoskeleton, surface electromyography, gait recognition, joint angle
prediction, neural network

1 Introduction

The current global population aging is becoming more andmore
serious, resulting in an increase in age-related diseases and injuries,
such as osteoarthritis, neurodegenerative diseases (such as
Parkinson‘s disease), stroke sequelae, etc. These conditions will
lead to inconvenience of limb movement and affect the daily
living ability and independence of the elderly, followed by more
and more lower limb disorder groups (Billot et al., 2020). Because
the rehabilitation robot can provide efficient rehabilitation training,
meet the rehabilitation training needs of most hemiplegic patients,
and alleviate the shortage of rehabilitation resources (Bertani et al.,
2017), it has attracted more and more attention. Lower limb
rehabilitation robots can be roughly divided into two types: end-
driven and exoskeleton (Díaz et al., 2011). The end-driven type has
low reproduction accuracy and is difficult to adapt to the gait
trajectory of different populations. The exoskeleton has a large
number of degrees of freedom, which can flexibly and accurately
reproduce the gait trajectory of the lower limbs. Therefore, it has
become a research hotspot in the field of robotics. Exoskeleton-type
rehabilitation robots require human-computer interaction and
collaboration (Meng et al., 2015). With the development of
biological information technology, biological signals such as
electroencephalogram and electromyography have been widely
used in the interface development of human-computer systems
(Gopura et al., 2016). Since the surface EMG signal is directly
related to the contraction state of the muscle, it can be used to
monitor muscle movement in real time and identify gait (Agostini
et al., 2020). At the same time, compared with other signals, surface
electromyography signals are generated before the actual movement
of the human body. Therefore, human gait recognition based on
surface electromyography signals has higher real-time performance
and portability (Kyeong et al., 2022). Engineers use surface
electromyography to develop a feasible human-machine
system interface.

In recent years, surface electromyography (sEMG) signals have
been widely used to extract human motion information. There are
two main methods. For the first method, researchers used sEMG
signals to identify different motion patterns of human limbs.
Therefore, higher recognition rate and more motion patterns are
two goals, and feature extraction methods and classification
algorithms are the focus of research (McCool et al., 2015; Mesa
et al., 2014; Lloyd and Besier, 2003; Zhang et al., 2012; Ardestani
et al., 2014). However, only a limited number of motion modes can
be identified from the sEMG signal, and the recognition result is
only used as the switching signal of the robot. This can only enable
the rehabilitation robot to perform trigger training (Chen et al.,
2023). Although it can meet the training requirements, to a certain

extent, the safety and comfort of this control cannot be guaranteed.
In addition, the traditional trigger control may only ensure that
patients can learn the trigger behavior, but not the whole
rehabilitation action (Maciejasz et al., 2014). The purpose of
rehabilitation training is not only to maximize the number of
repetitions, but also to maximize the concentration of patients’
attention and efforts (Marchal-Crespo and Reinkensmeyer, 2009).
In contrast, the second method is to use sEMG signals to continue to
estimate motion variables, which can achieve smooth motion
control. Many methods have been proposed to establish the
relationship between sEMG signals and motion variables. For
example, the forward biomechanical model is constructed and
calibrated, and the joint torque is calculated using sEMG (Aung
and Al-Jumaily, 2012). Artificial neural networks (Rogers et al.,
2011; Tsai et al., 2014; Hermens et al., 2000) and polynomial fitting
(Han et al., 2024) are also used to map sEMG signals to joint angles
or joint torques. This can achieve a more feasible human motion
control strategy (Chen et al., 2018) -continuous control.

At present, the sEMG signal method based on continuous
motion estimation mainly focuses on physiological muscle model
and neural network model. Systems based on physiological models
include kinematic models (Borbély and Szolgay, 2017), kinetic
models (Clancy et al., 2011), and musculoskeletal models
(Buongiorno et al., 2018). HILL muscle model is the most widely
used. Although the above model has a good fitting effect on the
regression of single joint motion, it is difficult to train the model due
to a large number of physiological parameters that are difficult to
measure. In addition, when modeling multiple joints with multiple
degrees of freedom, the redundant control of human muscles makes
the model very complex (Bi and Guan, 2019).

Compared with the physiological muscle model, neural network
model is a more direct and convenient method. The strong fitting
ability of neural network makes continuous control based on
electromyography possible (Ma et al., 2024). Zhang Feng and
other researchers used BP neural network to predict the
continuous motion angle of human lower limb joints using
sEMG. The researchers tested the method under different motion
speeds and load conditions to test the effect of the method on
predicting joint angles. Based on the neuromusculoskeletal model of
Hill muscle force model, Sartori M et al. (Sartori et al., 2017)
proposed a generalized model that integrates multiple muscles-
multiple musculoskeletal units-multiple degrees of freedom. The
researchers recorded the sEMG signal from the thigh muscle group,
established the dynamic model of the multi-musculoskeletal unit,
and used the virtual annealing algorithm to calibrate the parameters.
Finally, the muscle force output by the model can be used to predict
the multi-degree-of-freedom joint torque. David et al. (Quintero
et al., 2018) proposed a method for predicting continuous joint
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angles using sEMG to control electric knee and ankle prostheses.
Zhu M and Guan X et al. (Zhu et al., 2023) proposed a new model
combining CNN and LSTM to predict the knee joint angle,
combining feature extraction and time series regression for deep
learning, making full use of the spatial and temporal correlation of
sEMG signals to make the prediction model more accurate and
effective. Such predictive signal methods can provide more accurate
control for lower limb exoskeleton robots.

Deep learning methods such as convolutional neural network
(CNN) and recurrent neural network (RNN) have excellent
performance in dealing with high-dimensional data and
nonlinear relationships such as sEMG signals. They can
automatically extract features and reduce the difficulty of feature
extraction (Hu et al., 2018). However, different types of deep
learning neural networks have their own advantages in dealing
with different types of data and task scenarios. It is difficult to
achieve satisfactory recognition results with only one neural network
architecture (Alzubaidi, 2021).

Therefore, this paper designs a multi-branch deep learning
neural network model, which takes the characteristics of sEMG
signals as input, gait and joint angle as output, and uses different
neural network architectures to process different feature items,
giving full play to the advantages of each neural network, so as
to improve the accuracy of gait recognition and joint angle
estimation. This technology can help to design more accurate
angular biosensors, which can be applied to lower limb
rehabilitation robots to provide more accurate continuous control
instructions for lower limb rehabilitation robots. By collecting the
sEMG signal of the patient in real time and predicting the joint
angle, the rehabilitation robot can adjust the training intensity and
mode according to the specific situation of the patient to achieve a
more personalized rehabilitation treatment plan. It can even analyze
the functional status of muscles through sEMG signals to help
doctors assess the degree of muscle damage and rehabilitation
process of patients.

The rest of this article is organized as follows. The multi-branch
deep learning neural network is constructed in Section 2. The effect

FIGURE 1
Position of signal acquisition sensor.

FIGURE 2
The relationship between sEMG signal, plantar pressure signal, joint angle signal and gait.
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of the model on gait recognition and joint angle prediction is
evaluated in Section 3. Finally, Section 4 concludes this article.

2 Methods

2.1 Data collection

This study analyzes the functions of various muscles in different
lower limb movements. According to relevant experiments and
previous studies of other researchers, eight muscles of the right
lower limb that are highly active in the gait cycle are selected as
signal acquisition positions to facilitate access to useful information
(Trinler et al., 2018). These muscle groups and muscles include the
quadriceps femoris, the posterior thigh muscle group, the
gastrocnemius muscle and the anterior tibial muscle. In the
analysis of lower limb movement, it is very important to obtain
gait information to determine the current stage of movement, and
the plantar force signal can reflect the gait cycle (Yang et al., 2020).
Therefore, this study completes the collection of plantar pressure
signals by placing the plantar pressure switch on the heel, fifth
metatarsal, first metatarsal and big toe of the left and right soles. In
the experiment, volunteers walked on a treadmill at three different
speeds of 3, 3.5 and 4 km/h, each speed repeated three times for
6 min. The Noraxon Desktop DTS-8 wireless sensor system is used
to collect sEMG signals and plantar pressure signals at a sampling
frequency of 1.5 KHz. In addition, the optical motion capture device
is used to record the trajectory of 16marker points of the lower limbs

of the human body, and then the angles of the hip joint, knee joint
and ankle joint of the lower limbs are obtained. The position of the
signal acquisition sensor is shown in Figure 1.

2.2 Data processing

The sEMG, plantar pressure and joint angle signals obtained by
related sensors, pressure switches and motion capture devices are
sent to the desktop receiver and stored as raw data. The collected
original signal is shown in Figure 2. The sEMG of the human thigh
muscle is channel 1 to channel 5 (CH1-CH5), which mainly plays a
role in controlling the movement of the hip joint and knee joint,
while the calf muscle of the human body is mainly related to the
movement of the ankle joint. The human gait is divided into four
walking gaits: swing period (Swing, SW), initial contact period
(Initial Contact, IC), middle support period (Mid Stance, MSt)
and terminal support period (Terminal Stance, TSt). In different
gaits during a walking cycle, sEMG at different positions show
amplitude changes. The sEMG of the thigh-related muscles undergo
more obvious amplitude changes in the early stages of SW and IC,
which is due to the concentration of strength of the thigh muscles in
themovement of the hip and knee. On the contrary, the sEMG signal
of the calf-related muscles has a relatively high frequency change
during IC, MSt and TSt which is due to the need of the calf to
provide support and ankle rotation torque. In a walking cycle, the
angular range of motion of the hip is −15° ~ 30°, the knee is
−12° ~ 45°, and the ankle is −20° ~ 8°.

FIGURE 3
Time domain and frequency domain diagram of TIA channel original signal.
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During the signal acquisition process, it is highly susceptible to
interference from external environmental factors, equipment power
supply variations, and physiological artifacts. Therefore, it is
necessary to further filter and denoise the collected signals to
obtain higher quality and more reliable signals. In this study, the
second-order Butterworth filter is selected. On the one hand, it has
smooth frequency response characteristics, which can filter the
signal smoothly (Shouran, 2020). While removing noise, it can

maintain the stability and continuity of the signal and reduce the
loss of information as much as possible. On the other hand, it can
flexibly adjust the passband and stopband width of the filter to meet
the filtering requirements of different frequencies, and it also has
certain advantages in real-time processing and large-scale data
processing.

Since the main energy frequency range of the sEMG signal is
between 0–500 Hz, a 20–300 Hz band-pass filter and a 49–51 Hz

FIGURE 4
Time domain and frequency domain diagram of signal after TIA channel filtering and noise reduction.

FIGURE 5
RF channel data distribution before standardization.
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FIGURE 6
RF channel data distribution after standardization.

FIGURE 7
Plantar pressure signal converted to four gaits.

TABLE 1 Characteristics of sEMG.

Feature name Feature type The information reflected

wave length time domain Complexity and waveform changes

Variance time domain Energy distribution and fluctuation degree

average absolute value time domain Total muscle activity intensity

root mean square time domain Muscle activity intensity

Number of zero crossings time domain Frequency change and volatility

short time fourier transform time and frequency domain characteristics local frequency information
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band-stop filter are respectively set to eliminate the interference
caused by low frequency, high frequency and power frequency
signals. Figures 3, 4 are the time domain and frequency domain
diagrams of the original and filtered noise reduction of the sEMG
signal TIA channel, respectively. The figures indicate that the signal
after filtering and noise reduction is smoother, and the 50 Hz power
frequency interference is basically eliminated.

After filtering and noise reduction, the zero standardization
method is used to standardize the signal data. While eliminating the
individual differences between different measured objects and the
deviations generated during the acquisition process, the distribution
information of the original data can be better retained. Figures 5, 6
are the distribution maps of RF channels of sEMG before and after
standardization. The figures indicate the standardized data
distribution is symmetrical. The data distribution on the left and
right sides with the mean as the center is similar and close to the
normal distribution, which is helpful for the analysis of subsequent
data characteristics and the training of subsequent human gait
recognition and joint angle estimation algorithm models.

For the plantar pressure signal, this study uses smooth filtering
technology to denoise it, and then uses the threshold determination
method to extract the gait cycle, and converts the plantar pressure
signal into four walking gaits as the label data for subsequent model
training. Figure 7 is the signal diagram before and after the plantar
pressure signal is converted into four gaits.

2.3 Multi-branch deep learning
neural network

2.3.1 Feature extraction
The sEMG signal after the above processing still contains a large

amount of data information, and directly input it into the model will
reduce the training speed and recognition accuracy. Therefore,
before the model training and recognition, the signal is usually
extracted for the purpose of obtaining effective feature information
and improving the model performance.

For sEMG, several typical characteristics such as time domain,
frequency domain and time-frequency domain can be obtained in a
given time window. Table 1 shows several commonly used sEMG
signal features in human gait recognition selected in this study (Qin
and Shi, 2020). The extracted features can be combined into vectors
directly as the input of the gait recognition model, and can also be
fused with other types of features before entering the model.

2.3.2 Time domain feature extraction
Wave length (WL):

WL � ∑N
n�2

y n( ) − y n − 1( )∣∣∣∣ ∣∣∣∣ (1)

Variance (VAR):

FIGURE 8
Changes of time domain features under continuous gait.
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VAR � 1
N − 1

∑N
n�1

y n( ) − �y( )2VAR � 1
N − 1

∑N
n�1

y n( ) − �y( )2 (2)

Average absolute value (MAV):

MAV � 1
N

∑N
n�1

y n( )∣∣∣∣ ∣∣∣∣ (3)

Root mean square (RMS):

RMS �

���������
1
N
∑N
n�1

y2 n( )

√√
(4)

Number of zero crossings (ZC):

ZC � ∑N
n�2

ζ n( )

ζ n( ) � 1, ify n( ) × y n − 1( )< 0and y n( ) − y n − 1( )∣∣∣∣ ∣∣∣∣≥ ε
0, else

{ (5)

Where, y(n) is a certain point in time signal value. Finally, the
time-domain characteristics of sEMG can be represented by a
5 × 8 matrix.

The time-domain characteristic changes of sEMG based on
Equations 1–5 in continuous gait are described in Figure 8.
Regarding waveform length, the sEMG signal of the biceps
femoris exhibits higher amplitude during the early stages of the
swing and support phases, whereas the sEMG signal of the medial
trapezius shows greater amplitude during the mid-support phase.
Concerning the average absolute value characteristics, the sEMG
signal of the medial trapezius demonstrates significant amplitude in
the mid-support phase. Conversely, the sEMG signal of the biceps
femoris shows substantial amplitude before the support phase and
during the transition from late support to the swing phase. The
variations in variance and root mean square signal characteristics
follow a similar pattern.

However, the time-domain features are weak in terms of
frequency information and time-varying, which leads to the
inability to fully capture the characteristics of the signal in some
complex scenarios. Therefore, after extracting the time-domain
features of sEMG, this study further extracts its time-frequency
domain features.

WLRF WLVLO WLVMO WLBF WLST WLTIA WLLGA WLMGA

MAVRF MAVVLO MAVVMO MAVBF MAVST MAVTIA MAVLGA MAVMGA

VARRF VARVLO VARVMO VARBF VARST VARTIA VARLGA VARMGA

RMSRF RMSVLO RMSVMO RMSBF RMSST RMSTIA RMSLGA RMSMGA

ZCRF ZCVLO ZCVMO ZCBF ZCST ZCTIA ZCLGA ZCMGA

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.3.3 Time-frequency domain feature extraction
In this study, Short-Tim Fourier Transform (STFT) is selected to

analyze the time-frequency characteristics of sEMG. The main idea
is to perform Fourier transform on each time segment of the signal,
so as to obtain the frequency components of each time segment and
understand the frequency characteristics of the signal at different
time points. Its calculation formula is Equation 6:

STFT x n( ){ } m,ω( ) ≡ X m,ω( ) � ∑∞
n�−∞

x n[ ]ω n −m[ ]e−jωn (6)

In this study, the Hann window and the 32-point overlapping
64-point STFTmethod are used to process the data. The spectrum of
each segment contains 33 different frequency bands (0–750.00 Hz)
and 6 time periods. Therefore, the spectrum of each segment can be
expressed as a matrix of 33 × 9 × 8 (frequency × time × channel).
Since the energy of most surface muscle electrical signals is mainly
concentrated in the range of 0–200Hz, only the first 9 lines
(0–187.50 Hz) of the spectrogram need to be retained. Therefore,
the dimension of each spectral graph matrix is 9 × 9 × 8 (frequency ×
time channel). The spectrum of the 8-channel surface EMG signal
processed by the STFT method is shown in Figure 9. These
processed spectrograms, together with the aforementioned
extracted time-domain features, will be used as a training data

FIGURE 9
Spectrum of single segment signal.
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set for the neural network to help the network learn to identify the
characteristics of different gait cycles and predict the corresponding
joint angles, and some will be used to test the recognition
performance of the neural network model.

2.3.4 The overall architecture ofmulti-branch deep
learning neural network

Multi-branch deep learning neural network is a complex and
efficient network structure, which can process and analyze input
data at multiple levels. Based on the extraction of time domain and
time-frequency domain features of sEMG, this study designs a
multi-branch deep learning neural network including three
branches for feature extraction and learning of different types of
data, so as to realize the recognition and prediction of lower limb
walking gait and joint angle. The input of the whole network is the
sEMG signal after preprocessing and feature extraction, which is the
time domain feature, time-frequency feature and time sequence
fragment of the sEMG signal, respectively. These three feature items
are input into three branch neural networks respectively. After the
fusion layer, it is merged into a vector and input into the
corresponding fully connected network (FC) respectively. Finally,
the human gait recognition result and the estimated angle of hip
joint, knee joint and ankle joint are obtained. Among them, the
branch for gait recognition needs to go through a layer of SoftMax
activation function, and finally calculate the probability of
recognized walking gait. The overall design of its architecture is
shown in Figure 10.

Among them, the first branch designs a one-dimensional CNN
architecture for feature learning of sEMG with timing and high-
dimensional characteristics, and its input is the timing segment of
sEMG. After a series of convolution layers, activation functions and
pooling layers, the one-dimensional CNN can learn the relevant
timing features in the sEMG signal timing segment. Then these
features are input into the three-layer gated recurrent unit (GRU)

RNN for further time series feature learning. The second branch
aims at the time-frequency domain feature of sEMG signal
spectrum, and designs a two-dimensional CNN architecture to
learn its features. The input is the spectrum extracted from the
sEMG signal sequence segment. After a series of convolutional
layers, activation functions and pooling layers, the two-
dimensional CNN can learn the relevant time-frequency domain
features in the sEMG signal spectrum, providing richer information
for the identification and estimation of joint angles.

2.3.5 One-dimensional CNN architecture design
One-dimensional CNN is commonly used to process time series

data. It has translation invariance. It can perform convolution
operations through local receptive fields, automatically learn and
extract local features in the signal, so as to effectively capture the
time series characteristics of sEMG. Therefore, for the filtered and
normalized sEMG time series fragments, in this study, a one-
dimensional CNN architecture is designed, which is composed of
two layers of one-dimensional CNN, supplemented by one-
dimensional pooling layer for efficient feature learning and selection.

Corresponding to the 8-channel timing fragment, its
convolution layer can be expressed as Equation 7:

yi,l � σ ∑N
n�1

∑i+2
j�i

wj,n,luj,n + bl⎡⎢⎢⎣ ⎤⎥⎥⎦ (7)

Where the input is defined as
Ui � [ui,1ui,2...ui,N] | i � 1, 2, ..., I;N � 1, 2, ..., 8{ }, and the
convolution kernel is defined as
Wl � [wi,1wi,2...wi,N] | i � 1, 2, ..., I;N � 1, 2, ..., L{ }. N is the
number of channels, i is the length of the time series fragment,
and L is the number of convolution kernels. A convolution kernel
with a size of 3 and a step size of 1 is selected, and bl is bias, σ is a
nonlinear activation function.

FIGURE 10
Architecture of human motion intention recognition system based on multi-branch deep learning neural network.
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A one-dimensional pooling layer is added after each one-
dimensional convolution layer to reduce the data dimension and
reduce the amount of calculation. Figure 11 is the one-dimensional
CNN structure designed in this study.

2.3.6 Two-dimensional CNN architecture design
Two-dimensional CNNs are often used to process images or

data with two-dimensional structures, which can effectively capture
the local features and patterns of sEMG spectrograms. Therefore, for
the spectrum obtained by extracting time-frequency domain
features from sEMG, this study designs a two-dimensional CNN
architecture for further feature learning.

The input of the two-dimensional CNN architecture
corresponds to the 8-channel spectrogram. The input is defined
as XI,J,C, the convolution kernel is WI,J,C,L, I is the height, J is the
width, C is the channel, and L is the number of convolution kernels.
The convolution kernel with a size of 3 × 3 and a step size of 2 is
selected, and its convolution layer can be expressed as Equation 8:

yl � σ ∑wi,j,c,lxi,j,c + bl( ) (8)

Among them, bl is bias, σ is a nonlinear activation function. A
two-dimensional pooling layer is added after each two-dimensional
convolution layer to reduce the data dimension and reduce the

FIGURE 11
One-dimensional CNN architecture.

FIGURE 12
Two-dimensional CNN architecture.
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amount of calculation. Figure 12 is the two-dimensional CNN
structure diagram designed in this study.

2.3.7 RNN architecture design
RNN is also a deep learning model. Its core idea is to learn

features through cyclic structure, and gradually learn the features
and dependencies of input sequences through cyclic processing.
Among them, the GRU is a popular variant of RNN. With its gating
mechanism, GRU successfully solves the problems of long
dependence and gradient explosion or disappearance in
traditional RNN.

The one-dimensional CNN architecture designed in this study
shows low sensitivity to time sequence when dealing with time series
fragments. RNN can effectively capture the temporal features in the
data by selectively incorporating and conveying information
through hidden state time steps.

Therefore, in order to fully explore the characteristics of time
sequence in sEMG, this study introduces a RNN after one-
dimensional CNN, and designs a three-layer GRU RNN with

one-dimensional CNN to achieve timing sensitivity and
lightweight. In addition, for the time-domain characteristics of
sEMG, the three-layer GRU RNN is used to further learn the
features with the number of features as the time step and the
number of channels as the dimension. Figure 13 is the GRU loop
network structure diagram designed in this study.

2.4 Models’ evaluation

In order to evaluate the performance of the designed neural
network, this study uses data collected from each volunteer‘s
experiment, and divides these data into 80% for model training
and 20% for model testing to evaluate the performance of the model.
The input is the feature extracted from the surface electromyography
signal, and the output is the gait cycle and joint angle. Figure 14 is
generated by periodically collecting the output of the model on the
verification set during the training period. For the change curve of
gait recognition accuracy and total loss of all learning tasks during

FIGURE 13
GRU RNN architecture.
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the training process, the prediction results of the model are recorded
at each time point to observe the gradual improvement of gait cycle
recognition and joint angle prediction in the learning process of the
model. The training achieves better results after about 40 epochs.

This study focuses on the ability of the model to recognize the
correct and identify a certain gait. Based on calculating the accuracy
and precision of each gait category recognition, the macro average
accuracy, micro average accuracy, macro average sensitivity and
micro average sensitivity are further calculated. Relevant indicators
that can reflect the performance differences of the model in each
category recognition are used to comprehensively evaluate the
performance of gait recognition. For the prediction of joint angle,
two common indicators, root mean square error (RMSE) and cross-
correlation coefficient, are used to evaluate the accuracy of joint
angle prediction. The RMSE is used to measure the difference
between the estimated value and the true value, and the cross-
correlation coefficient is used to measure the correlation between the
estimated value and the true value.

This chapter describes the method of predicting joint angle
based on sEMG signal proposed in this study. Time domain feature
extraction and time-frequency domain feature extraction are
carried out based on collected signal. The advantages and
disadvantages of time domain feature and time domain feature

are analyzed. Then, three deep learning neural network
architectures are designed based on appropriate feature
combinations, including one-dimensional CNN, two-
dimensional CNN and GRU RNN. These network architectures
can perform effective feature extraction and feature learning on
input data through convolution and loop operations for different
types of data and task scenarios.

3 Results and discussion

3.1 Gait recognition

The comparison between the continuous gait recognition of a
volunteer and the real lower limb walking gait is shown in
Figure 15. The results indicate that during the four gait cycles
in the test set, the identified gait patterns closely match the actual
gait patterns, with most errors occurring in the gait phase
transition areas. In the gait transition stage, there will be a
certain time error in the recognition of gait compared to the
real gait. The primary reason for this time discrepancy lies in
the inherent latency of the sensor data processing and the control
system’s response time. During real-time gait recognition, there is
a slight delay in detecting the transition phases due to the time
required to collect and process sensor signals, as well as the
computational time for the algorithm to classify the gait phase.
Additionally, factors such as noise in the sensor signals and the
filtering process to smooth the data can introduce further delays. In
the early stage of support, there is also a fluctuation of recognition
results. However, in general, in the process of system recognition of
walking gait, each stage is in a relatively stable state, and the phase
lead or lag is only a very small time period.

The overall situation of the relevant evaluation indicators of all
volunteer test data is shown in Table 2. Table 2 indicate that the
median of the overall accuracy of the recognition is 92.77%. The
recognition accuracy of the swing period (S0) and the end of the
support (S2) is slightly higher than that of the initial support (S1)
and the middle support (S3). The medians of the identification
accuracy in the swing period and the end of the support are 95.24%
and 94.39%, respectively, while the medians of the identification
accuracy in the early and middle stages of the support are 82.81%
and 82.62%, respectively.

In practical applications, the initial stage of support and the
middle stage of support are one of the main stages of identifying
errors. At this time, the errors mainly occur in the swing period and
the middle stage of support. From the whole study, this is because
the sEMG of these two states have certain similarity characteristics.
In the macro-average and micro-average correlation indicators,
MAP and MAS are similar, and far lower than MIP and MIS,
which indicates that in a cycle walking cycle, the state of small
sample data such as the initial and middle support needs
more attention.

3.2 Joint angle prediction

The comparison between the estimated joint angle of a volunteer
and the real lower limb joint angle is shown in Figure 16, and the

FIGURE 14
The change curve of gait recognition accuracy and total loss in
training process.
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predicted value and the actual value show a very similar trend. In the
rising and falling stages of the joint angle curve, the predicted angles
of the three joints follow the actual joint angles. In this process, the
curve will have a small range of oscillation. At the same time, the
predicted curve of the joint angle has a large fluctuation at the
maximum and minimum values. On the one hand, there is a large
deviation between the predicted value and the actual value, and on
the other hand, it is the oscillation at the maximum value. This
phenomenon can be attributed to several factors. One key reason is
the complexity of predicting joint angles during dynamic transitions,
such as the hip flexion-to-extension phase. During this phase, rapid
changes in muscle activation and load distribution occur, which can
introduce non-linearities that are challenging for the prediction
model to capture accurately. Additionally, the model may
experience difficulties in accurately representing the
biomechanical dynamics of the hip joint, especially during phases
of rapid motion, leading to oscillations or deviations in the
predicted angle.

The statistical analysis results of the joint angle estimates for all
volunteer test data are shown in Table 3. The RMSE of hip joint,
knee joint and ankle joint angles are about 2.19,3.51 and
2.57 respectively, and the relative errors are about 5.26%, 4.79%
and 7.89% of the three joint angles respectively. The cross-
correlation coefficient of the three joints were 0.99,0.99 and
0.96, respectively. The multi-branch deep learning neural
network model shows excellent performance, and the
recognition and prediction results have lower RMSE and higher
cross-correlation coefficient. It is worth noting that the predictive
performance of the ankle joint angle is lower than that of other
parts, which may be due to the complexity of the ankle joint angle
motion curve.

3.3 Limitations and future work

The human motion intention recognition and joint angle
prediction model designed in this study only performs data
acquisition and model training on three volunteers, which may
lead to under-fitting phenomena and problems in the model.
Therefore, it is difficult to establish a neural network model with
universality and good generalization ability. In the future research
process, more experimental data should be collected for analysis and
used for model training to improve the overall performance of the
identification and prediction model.

The current human lower limb motion data uses ordinary
walking data, but there is a lack of relevant data and analysis for
running, jumping, climbing and other sports. At the same time, this
study only uses a signal data source of sEMG signal, so the follow-up
research work can consider using a variety of sensor information
fusion methods to achieve more efficient and reliable humanmotion
recognition of multiple actions.

FIGURE 15
Walking gait recognition of a volunteer on one walk.

TABLE 2 Multi-classification performance matrix of walking gait
recognition.

index Category

SW(S0) IC(S1) TSt (S2) MSt (S3)

precision/(%) 95.24 ± 3.12 82.81 ± 1.32 94.39 ± 2.98 82.62 ± 1.54

accuracy/(%) 92.77 ± 2.66

PMAP 90.02 ± 1.34

PMIP 95.97 ± 2.67

PMAS 91.40 ± 1.28

PMIS 95.16 ± 2.54
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3.4 Strengths and contributions

Combining feature extraction and feature learning, a three-branch
deep learning neural network is designed by using the advantages of
different neural networks. The time-domain features, time-frequency
features and time-series segments of sEMG after signal preprocessing
and feature extraction are processed respectively. The recognition and
prediction accuracy of human gait and joint angle is high. The core of
the lower extremity exoskeleton robot based on sEMG signal control
is to obtain the motion intention of the human body through sEMG
signal decoding. Traditional machine learning methods perform well
on small-scale data sets and are easy to explain and understand.
However, they are not effective in dealing with high-dimensional
complex data such as sEMG. Feature extraction and selection often
require a lot of domain knowledge. Deep learning methods such as
CNN and RNN perform well in dealing with high-dimensional data
and nonlinear relationships. They can automatically extract features
and reduce the difficulty of feature extraction. In addition, different
types of deep learning neural networks have their own advantages in
dealing with different types of data and task scenarios. Therefore, this
study uses this feature to build a multi-branch deep learning neural
network, and designs different neural network architectures to process
sEMG. Different feature items give full play to the advantages of each
branch neural network, thereby improving the accuracy of gait

recognition and joint angle estimation, and providing accurate
control instructions for lower limb exoskeleton robots.

This chapter evaluates the effect of the multi-branch deep
learning neural network. A performance evaluation system is
built, including performance indicators such as accuracy,
precision, macro-average accuracy, micro-average accuracy,
macro-average sensitivity and micro-average sensitivity. These
indicators can measure the performance of the model from
different angles. By training and testing all the experimental data
of all volunteers, it is verified that the multi-branch deep learning
neural network has better performance. In addition, this chapter
discuss limitations and future work and strengths and contributions.

4 Conclusion

In this study, two methods of feature extraction and feature
learning are combined. Aiming at the problem of continuous
estimation of joint angle by surface electromyography signal.
Using the advantages of different neural networks, a three-branch
deep learning neural network is designed to process the time-
domain features, time-frequency features and time-series
fragments of sEMG after signal preprocessing and feature
extraction, respectively. The recognition and prediction accuracy
of human gait and joint angle is high. The prediction model can be
used to design accurate angular biosensors. Then, the prediction
model can be applied to all kinds of exoskeleton robots, and the
prediction results are used as control instructions to realize more
intelligent and more human-machine cooperative intelligent robots.
The current human lower limb motion data uses ordinary walking
data, but there is a lack of relevant data and analysis for running,
jumping, climbing and other sports. At the same time, this study
only uses a signal data source of sEMG signal, so the follow-up
research work can consider using a variety of sensor information

FIGURE 16
Joint angle estimation of a volunteer walking in one step.

TABLE 3 Multi-classification performance matrix of walking gait
recognition.

Angle RMSE/(°) Cross-correlation coefficient

θhip 2.19 ± 1.38 0.99

θknee 3.51 ± 2.14 0.99

θankle 2.57 ± 1.22 0.96
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fusion methods to achieve more efficient and reliable humanmotion
recognition of multiple actions.
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