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3D cell culture is gaining momentum in medicine due to its ability to mimic real
tissues (in vivo) and provide more accurate biological data compared to
traditional methods. This review explores the current state of 3D cell culture
in medicine and discusses future directions, including the need for
standardization and simpler protocols to facilitate wider use in research.

Purpose: 3D cell culture develops life sciences by mimicking the natural cellular
environment. Cells in 3D cultures grow in three dimensions and interact with a
matrix, fostering realistic cell behavior and interactions. This enhanced model
offers significant advantages for diverse research areas.

Methods: By mimicking the cellular organization and functionalities found in
human tissues, 3D cultures provide superior platforms for studying complex
diseases like cancer and neurodegenerative disorders. This enables researchers
to gain deeper insights into disease progression and identify promising
therapeutic targets with greater accuracy. 3D cultures also play a crucial role
in drug discovery by allowing researchers to effectively assess potential drugs’
safety and efficacy.

Results: 3D cell culture’s impact goes beyond disease research. It holds promise
for tissue engineering. By replicating the natural tissue environment and providing
a scaffold for cell growth, 3D cultures pave the way for regenerating damaged
tissues, offering hope for treating burns, organ failure, and musculoskeletal
injuries. Additionally, 3D cultures contribute to personalized medicine.
Researchers can use patient-derived cells to create personalized disease
models and identify the most effective treatment for each individual.

Conclusion: With ongoing advancements in cell imaging techniques, the
development of novel biocompatible scaffolds and bioreactor systems, and a
deeper understanding of cellular behavior within 3D environments, 3D cell
culture technology stands poised to revolutionize various aspects of
healthcare and scientific discovery.
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Introduction

Three-dimensional (3D) cell culture models aim to recreate
natural environments outside the body, allowing cells to grow
and interact in three dimensions (Haycock, 2011; Ravi et al.,
2015; Gu et al., 2020; Yoon, 2023). By culturing various cell types
within a 3D extracellular matrix, nutrients, oxygen, and drugs can
efficiently reach cells, closely mimicking physiological conditions
(Lee et al., 2019). Traditional two-dimensional (2D) cell culture
systems, while convenient and cost-effective, lack the ability to
accurately replicate the complex architecture and
microenvironment found in living tissues (Duval et al., 2017).
This limitation can lead to misleading results, particularly
regarding the response of cancer cells to anticancer agents, as 2D
cultures fail to mimic the true 3D tumor microenvironment (Gao
et al., 2017; Brancato et al., 2020).

The emergence of 3D cell culture systems presents promising
solutions to bridge the gap between laboratory cell cultures and in
vivo conditions (Alghuwainem et al., 2019; Diaz-Rodriguez et al.,
2019; Mofazzal Jahromi et al., 2019; Lin et al., 2020; Terrell et al.,
2020). These systems offer higher physiological relevance, closely
resembling cell behavior within the body, and provide new avenues
for cell-based research and clinical trials (van Duinen et al., 2015;
Bertucci et al., 2019; Calejo et al., 2019; Ham et al., 2019; Thelu et al.,
2020). The intricacy inherent in 3D systems presents multifaceted
challenges, notably in the selection of scaffold materials and cell
types (Ashok et al., 2020). Researchers are confronted with the
delicate decision between natural and synthetic scaffold materials, as
well as the nuanced choice between utilizing autologous or adult-
derived stem cells. Moreover, the meticulous fabrication of
nanoscale scaffolds or the creation of microscale structures with
precise architectures to support cell growth requires meticulous
deliberation.

The dynamic nature of 3D cultures, moreover, introduces
complexities in maintaining optimal culture environments over
prolonged periods (Fernandes et al., 2020). Unlike static 2D
cultures, 3D systems demand sophisticated strategies to facilitate
nutrient diffusion, oxygenation, and waste removal throughout the
entire structure. Innovations such as perfusion bioreactors and
microfluidic systems have been devised to tackle these challenges,
offering enhanced control over culture conditions, and ensuring the
sustained viability of 3D constructs.

The integration of diverse cell types within 3D culture systems
introduces yet another layer of intricacy (Ryu et al., 2019).
Replicating the heterogeneous composition of tissues and organs
in vivo often necessitates the co-cultivation of disparate cell
populations to accurately simulate physiological interactions. This
interdisciplinary endeavor mandates seamless collaboration among
cell biologists, materials scientists, engineers, and clinicians to
meticulously design and optimize 3D culture platforms tailored
for specific applications, encompassing surgical research and
regenerative medicine.

This review explores the current state of 3D culture in
medicine and discusses future directions, such as
standardization and simpler protocols, to facilitate broader
adoption in surgical research. Addressing these challenges will
be crucial for realizing the possibilities of 3D cell culture in medical
applications and beyond.

Environments

Essential cultural platforms in biomedical research have been
investigated particularly for drug discovery and anticancer
investigations (Kim et al., 2020). The rising demand for advanced
3D cell culture models has intensified the need for sophisticated 3D
cultivation techniques, from laboratory setups to industrial-scale
production (Brancato et al., 2020; Wan et al., 2020). These
bioreactors boast precise control systems, ensuring reproducible
spheroid formation, a vital aspect for studying cellular behavior and
drug responses. Beyond conventional applications, bioreactors play
a crucial role in facilitating dynamic cell interactions and responses
(Ferreira et al., 2018). They offer precise control over environmental
conditions, including temperature, pH, and nutrient supply,
ensuring optimal cell growth and function (Figure 1).
Additionally, advancements in bioreactor design enable the
integration of various monitoring and control systems for
enhanced functionality.

Utilizing established 3D culture models, researchers have made
significant strides in understanding cancer progression
mechanisms (Dumont et al., 2019; Zhang et al., 2020). These
models provide insights into morphological and cellular
changes associated with disease progression, offering valuable
platforms for drug screening and efficacy testing. Real-time
monitoring of 3D cultures allows for the assessment of dynamic
cellular behaviors, such as proliferation, migration, and interaction
(De Leon et al., 2020). This capability is instrumental in studying
complex phenomena like angiogenesis and tumor invasion,
providing insights into disease mechanisms and potential
therapeutic interventions.

Progression models enable the evaluation of treatment
responses and the identification of novel therapeutic targets,
contributing to advancements in precision medicine and
personalized therapies (Xia et al., 2019). Furthermore, these
models aid in deciphering intricate cellular signaling pathways
involved in disease progression, paving the way for targeted
interventions. Accurate measurement of structural changes in 3D
cultures requires precise labeling techniques to track cell
proliferation and migration over time (Zhang et al., 2019).
Various labeling methods, such as fluorescent proteins and dyes,
enable researchers to monitor multiple cell types simultaneously,
facilitating comprehensive analyses of complex cellular interactions
(Linsley et al., 2019).

FIGURE 1
The components for 3D cell culture are shown here. ECM,
extracellular matrix.
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3D constructs

Compared to traditional 2D cell cultures, 3D scaffolds provide a
more realistic environment for cellular growth and interaction
(Gupta et al., 2019). Crafted from diverse materials, these
structures offer controlled porosity, permeability, surface
chemistry, and mechanical properties, closely resembling the
native extracellular matrix (ECM) that supports cellular
organization in tissues (Bayir et al., 2019; Huang et al., 2020).
This porous network not only supports cellular growth but also
facilitates nutrient and oxygen diffusion, essential for maintaining
cell viability and function (Terrell et al., 2020).

Fabricating these scaffolds entails various techniques, each
tailored to achieve specific structural and mechanical properties
(Ashok et al., 2020). Freeze-drying, for instance, utilizes sublimation
to create a porous scaffold from a frozen solution, while
electrospinning produces fibrous scaffolds through the
application of electrostatic forces (Fan et al., 2019). The
applications of 3D scaffolds are vast, spanning both tissue
engineering and cell culture research. In tissue engineering, these
scaffolds serve as a scaffold for the regeneration of damaged organs
and tissues. By seeding scaffolds with appropriate cells and growth
factors, researchers aim to facilitate tissue repair and functional
restoration.

Beyond tissue regeneration, 3D scaffolds play a pivotal role in
advancing our understanding of disease mechanisms and cell
biology. By providing a more physiologically relevant
environment, these scaffolds enable researchers to study cell-cell
interactions, drug responses, and disease progression with greater
accuracy. 3D scaffolds stand as indispensable tools in tissue
engineering and cell culture for studying cellular behavior and
advancing regenerative medicine.

Cells

Stem cells, particularly pluripotent stem cells (PSCs), have
garnered immense interest due to their ability to generate various
cell types and their potential in regenerative medicine
(Costamagna et al., 2019; Turco and Moffett, 2019). They offer
promising avenues for medical innovation, including drug
discovery, cell therapy, and tissue regeneration (Artero Castro
et al., 2019; Srivastava and Kilian, 2019). Utilizing advanced 3D cell
platforms, researchers have made significant strides in
understanding cell signaling and tissue development,
particularly in fields.

Culturing cells in 3D models has emerged as a vital tool,
providing results that closely mimic natural conditions and
aiding in the translation of research findings into clinical
applications (Alagarsamy et al., 2019; Balak et al., 2019; Chen
and Schoen, 2019; Gibbs et al., 2019; Gopalakrishnan, 2019;
Meivar-Levy and Ferber, 2019; Roberts et al., 2019; Nguyen et al.,
2020; Raimondi et al., 2020). These models offer a more realistic
representation of cellular behavior, ensuring better predictability
when moving from the laboratory to real-world settings.
Autologous, allogeneic, and xenogeneic cells are employed, with
autologous cells preferred to mitigate the risk of rejection (Collins
et al., 2020).

Adipose-derived stem cells (ASCs) have emerged as a significant
player in regenerative medicine, offering several advantages over
other sources such as bone marrow-derived mesenchymal stem cells
(MSCs) (Ryu et al., 2019). ASCs, found within adipose tissue, boast
higher yields and greater resistance to senescence, making them an
attractive option for therapeutic applications (Seo et al., 2019).
However, challenges persist in standardizing isolation methods
and understanding their precise characteristics. The unique
characteristics of ASCs vary depending on the tissue type and
isolation method employed. Techniques like power-assisted
liposuction have shown promising results in yielding high-quality
ASCs, underscoring the importance of optimization in isolation
protocols. Research continues to elucidate ASC behavior and
identify specific markers to distinguish them from other cell
types accurately.

Despite the progress made in harnessing the potential of stem
cells and ASCs, several hurdles remain to be addressed.
Standardization of isolation methods, precise differentiation
instructions, and clarification of cell characteristics are crucial
areas requiring further investigation. Nevertheless, the ongoing
research holds significant promise for revolutionizing medical
treatments and offering hope to patients with various
degenerative diseases and injuries (Sthijns et al., 2019).

Medical applications

Transitioning from traditional 2D cell culture systems to more
advanced 3D approaches represents a significant step towards
understanding cellular behavior within a physiologically relevant
context (Ndyabawe and Kisaalita, 2019; Jensen and Teng, 2020). 3D
culture methods offer a more accurate representation of in vivo
conditions, bridging the gap between conventional cell culture
systems and the intricate physiology of living organisms
(Figure 2). This advancement is particularly crucial in the
medical research, where cellular interactions and the
microenvironment play pivotal roles in tumorigenesis
(Chaicharoenaudomrung et al., 2019).

These benefits in tissue engineering and regenerative medicine
enable 3D culture to be considered for various clinical applications
(Table 1). The previous studies showed the development of 3D
bioprinted skin tissue, adipose microtissues, and bone scaffolds,
demonstrating substantial improvements in cell viability,
differentiation, and functionality (Gholipourmalekabadi et al.,
2018; Yan et al., 2019; Yang et al., 2021; Li et al., 2024). Studies
on esophageal, gastric, and intestinal organoids provide insights into
stem cell potential and disease modeling, revealing the intricate
processes of tissue development and regeneration (Spence et al.,
2011; DeWard et al., 2014; McCracken et al., 2014). The generation
of vascularized liver buds, lung organoids, and pancreatic organoids
underscores the progress in creating functional human tissues for
therapeutic applications, offering promising avenues for treating
related diseases (Takebe et al., 2013; Dye et al., 2015; Boj et al., 2016).
The researches on heart defect, prostate cancer, optic cup formation,
inner ear sensory tissue, and lingual epithelium organoids
emphasize the importance of organoid systems in understanding
disease and developing personalized treatments. They suggested
innovative approaches in heart patch, musculoskeletal tissue
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FIGURE 2
The pictures show: (A) a defect after oncologic surgery, and (B) a 3D bioprinted scaffold (PCL/PLA, MediFab Inc.) for reconstruction. PLA, polylactic
acid; PCL, polycaprolactone.

TABLE 1 The clinical application of 3D cell culture in medical areas.

Researcher (year) Cell Condition Application References

Gholipourmalekabadi M. (2018) ASC Burn Skin Gholipourmalekabadi et al. (2018)

Yang F. (2021) ASC Cancer surgery Adipose tissue Yang et al. (2021)

Yan Y. (2019) MSC Trauma Bone Yan et al. (2019)

Li J. (2024) MSC Trauma Cartilage Li et al. (2024)

DeWard A. D. (2014) Primary cell Barrett’s esophagus Esophagus DeWard et al. (2014)

McCracken K. W. (2014) iPSC Stomach cancer Stomach McCracken et al. (2014)

Spence J. R. (2011) iPSC Inflammatory bowel disease Intestine Spence et al. (2011)

Takebe T. (2013) iPSC Cystic fibrosis Liver Takebe et al. (2013)

Dye B. R. (2015) iPSC Cystic fibrosis Lung Dye et al. (2015)

Boj S. F. (2015) Primary cell Pancreas cancer Pancreas Boj et al. (2016)

Fisher B. (2023) iPSC Heart defect Heart Fischer et al. (2023)

Gao D. (2014) Primary cell Prostate cancer Prostate Gao et al. (2014)

Eiraku M. (2011) ESC Retinitis pigmentosa Retina Eiraku et al. (2011)

Soucy J. (2025) ESC Glaucoma Eye Soucy et al. (2025)

Koehler K. R. (2014) ESC Amblyacousia Inner ear organ Koehler and Hashino (2014)

Hisha H. (2013) ESC Tongue cancer Tongue Hisha et al. (2013)

Millman J. R. (2016) iPSC Diabetes mellitus β cell Millman et al. (2016)

Nanduri L. S. Y. (2014) Primary cell Hyposalivation Salivary gland Nanduri et al. (2014)

Lee V. (2014) Cell line Burn Skin Lee et al. (2014)

Baltazar T. (2022) ESC Skin cancer Skin Baltazar et al. (2023)

Salas-Silva S. (2023) iPSC Liver disease Liver Salas-Silva et al. (2023)

Enbergs S. (2024) Cell line Trauma Muscle Enbergs et al. (2024)

ASC, adipose-derived stem cell; MSC, mesenchymal stem cell; iPSC, induced pluripotent stem cell; ESC, embryonic stem cell.
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engineering, cartilage repair, and ophthalmopathy treatment,
focusing on the potential of stem cell-derived tissues and hybrid
scaffolds in regenerative medicine (Eiraku et al., 2011; Hisha et al.,
2013; Gao et al., 2014; Koehler and Hashino, 2014; Fischer et al.,
2023; Soucy et al., 2025). Some studies explore the possible usage of β
-cell generated from human pluripotent stem cells to cure diabetes
mellitus, the potential of salivary gland stem cell therapy for treating
xerostomia, and the development of bioprinted human skin
substitutes (Lee et al., 2014; Nanduri et al., 2014; Millman et al.,
2016; Baltazar et al., 2023). The researches on liver organoids derived
from primary human hepatocytes and the creation of hybrid
scaffolds for musculoskeletal tissue demonstrate the ongoing
efforts to enhance the complexity and functionality of engineered
tissues (Salas-Silva et al., 2023; Enbergs et al., 2024).

One of the primary advantages of 3D culture over 2D systems is
the preservation of critical extracellular matrix components and cell-
cell or cell-matrix interactions (Ravi et al., 2015; Gonzalez Diaz et al.,
2019; Tomas-Bort et al., 2020). These interactions are essential for
various cellular processes, including differentiation, proliferation,
and the expression of specific phenotypic traits. By maintaining
these critical elements, 3D culture systems provide researchers with
a more holistic view of cellular behavior, allowing for more accurate
predictions of in vivo responses to various stimuli and treatments.

Studies have demonstrated that 3D tissue cultures can offer
novel insights into tumorigenic mechanisms that may not be
apparent in conventional 2D models (Liu et al., 2019; Roberts
et al., 2019; Bahcecioglu et al., 2020; Zhang et al., 2020). The
three-dimensional arrangement of cells in these cultures closely
mimics the architecture of tumors in vivo, facilitating the study of
complex processes such as invasion, metastasis, and drug resistance.
Additionally, 3D culture systems enable the examination of dynamic
cellular behaviors, such as migration and morphogenesis, which are
challenging to replicate in 2D environments (Yamada and
Sixt, 2019).

Moreover, 3D culture methods offer enhanced biomarker
expression, providing researchers with valuable tools for studying
cellular functions and interactions (Ravi et al., 2015). By accurately
recapitulating the native cellular microenvironment, these systems
enable the investigation of signaling pathways and regulatory
mechanisms that are crucial for understanding disease
progression and treatment response (Gonzalez Diaz et al., 2019).
This improved biomarker expression also enhances the sensitivity
and specificity of assays, leading to more reliable
experimental results.

In addition to their utility in basic research, 3D culture systems
hold promise for applications in drug development and personalized
medicine (Linsley et al., 2019; Brancato et al., 2020; Fernandes et al.,
2020; Fisher and Rao, 2020). These systems can serve as cost-
effective screening platforms for identifying potential therapeutic
agents and predicting their efficacy and safety profiles. By
incorporating patient-derived cells into 3D cultures, researchers
can tailor treatment strategies to individual patients, improving
the likelihood of successful outcomes and minimizing
adverse effects.

Overall, the transition from 2D to 3D cell culture represents a
paradigm shift in biomedical research, offering researchers a more
physiologically relevant model system for studying cellular behavior
and disease mechanisms (Gopalakrishnan, 2019). By preserving

critical cellular interactions and microenvironmental cues, 3D
culture methods offer a more accurate representation of in vivo
conditions. These technologies hold the potential to revolutionize
medical fields, from cancer biology to regenerative medicine, paving
the way for new diagnostic and therapeutic strategies.

Limitations

Limitations in 3D cell culture models present significant challenges
both in terms of usability and standardization (Kim et al., 2020).
Cultivating cells in three dimensions demands a certain level of
expertise due to the necessity of forming cell aggregates, which
complicates tasks such as exchanging culture medium and
maintaining extracellular matrix integrity, leading to potential issues
with cross-contamination during experimentation (Brancato et al.,
2020). Addressing these challenges may necessitate the development of
culture vessels that facilitate convenient medium exchange, thereby
simplifying the experimental process (Gleave et al., 2020).

Standardization of analysis poses another significant challenge
in the context of 3D cell culture models (Zhang et al., 2020). The
three-dimensional nature of cell aggregates in 3D culture models
introduces variability in the diffusion and penetration of these
reagents (Czaplinska et al., 2019; Collins et al., 2020; Foglietta
et al., 2020). Currently, common methods involve staining and
measuring the size of cell aggregates, but these fail to accurately
represent the activity of cells within these aggregates (Ashok et al.,
2020). Efforts are underway to precisely measure cellular activity
within aggregates using techniques such as tissue clearing or
confocal microscopy (Ji et al., 2019; De Leon et al., 2020;
Foglietta et al., 2020). However, standardization of these
techniques remains elusive.

Continued research and development efforts are imperative to
address these challenges and standardize the technology. Once these
issues are resolved, 3D cell culture models, with their excellent
biocompatibility, hold tremendous promise for applications in
precision medicine, the pharmaceutical and biotechnology
industries, and basic research. With further refinement and
standardization, these models could revolutionize various fields
by providing more physiologically relevant platforms for drug
discovery, toxicity testing, disease modeling, and surgical
application, ultimately leading to improved outcomes for patients
(Ashraf et al., 2019).

Conclusion

3D cell culture models offer a promising approach to studying cell
behavior in vitro, providing a more physiologically relevant
environment compared to traditional 2D cultures. Despite the
challenges, advancements in 3D cell culture technology hold great
potential for revolutionizing medical research and clinical practice.
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