Skip to main content

REVIEW article

Front. Bioeng. Biotechnol.
Sec. Tissue Engineering and Regenerative Medicine
Volume 12 - 2024 | doi: 10.3389/fbioe.2024.1489420

From Structure to Therapy: The Critical Influence of Cartilaginous Endplates and Microvascular Network on Intervertebral Disc Degeneration

Provisionally accepted
  • 1 Hunan University of Chinese Medicine, Changsha, China
  • 2 The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China

The final, formatted version of the article will be published soon.

    The intervertebral disc (IVD) is the largest avascular structure in the human body. The cartilaginous endplate (CEP) is a layer of translucent cartilage located at the upper and lower edges of the vertebral bodies. On one hand, CEPs endure pressure from within the IVD and the tensile and shear forces of the annulus fibrosus, promoting uniform distribution of compressive loads on the vertebral bodies. On the other hand, microvascular diffusion channels within the CEP serve as the primary routes for nutrient supply to the IVD and the transport of metabolic waste. Degenerated CEP, characterized by increased stiffness, decreased permeability, and reduced water content, impairs substance transport and mechanical response within the IVD, ultimately leading to intervertebral disc degeneration (IDD). Insufficient nutrition of the IVD has long been considered the initiating factor of IDD, with CEP degeneration regarded as an early contributing factor. Additionally, CEP degeneration is frequently accompanied by Modic changes, which are common manifestations in the progression of IDD. Therefore, this paper comprehensively reviews the structure and physiological functions of CEP and its role in the cascade of IDD, exploring the intrinsic relationship between CEP degeneration and Modic changes from various perspectives. Furthermore, we summarize recent potential therapeutic approaches targeting CEP to delay IDD, offering new insights into the pathological mechanisms and regenerative repair strategies for IDD.

    Keywords: Cartilage endplate, Microvessels, Intervertebral Disc Degeneration, Modic changes, Modic changes,

    Received: 01 Sep 2024; Accepted: 21 Oct 2024.

    Copyright: © 2024 Sun, Li, Duan, Liu, Yang, Sun, Chen and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence:
    Long Chen, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
    Shaofeng Yang, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.