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This scoping review summarizes two emerging electrical impedance
technologies: electrical impedance myography (EIM) and electrical impedance
tomography (EIT). These methods involve injecting a current into tissue and
recording the response at different frequencies to understand tissue properties.
The review discusses basicmethods and trends, particularly the use of electrodes:
EIM uses electrodes for either injection or recording, while EIT uses them for
both. Ag/AgCl electrodes are prevalent, and current injection is preferred over
voltage injection due to better resistance to electrode wear and impedance
changes. Advances in digital processing and integrated circuits have shifted EIM
and EIT toward digital acquisition, using voltage-controlled current sources
(VCCSs) that support multiple frequencies. The review details powerful
processing algorithms and reconstruction tools for EIT and EIM, examining
their strengths and weaknesses. It also summarizes commercial devices and
clinical applications: EIT is effective for detecting cancerous tissue and
monitoring pulmonary issues, while EIM is used for neuromuscular disease
detection and monitoring. The role of machine learning and deep learning in
advancing diagnosis, treatment planning, and monitoring is highlighted. This
review provides a roadmap for researchers on device evolution, algorithms,
reconstruction tools, and datasets, offering clinicians and researchers
information on commercial devices and clinical studies for effective use and
innovative research.
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1 Introduction

Scientists have been studying the bio-electrical properties of living tissues using several
techniques to better understand healthy tissues and facilitate the diagnosis of pathological
conditions. One of the earliest instances of electrical resistivity analysis is the study by
Stefanesco et al. (1930), which dates back to nearly a century. In the early stages, the term
resistivity was adopted instead of impedance. Another electrical impedance analysis
technique was introduced by Fatt (1964). The technique is based on the electrical and
frequency-dependent impedance changes that occur in various tissues when subjected to
excitation (internal or external). Electrical impedance technologies involve injecting
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current/voltage into the target being studied, recording the response,
and analyzing the change in properties (impedance, conductivity,
and permittivity) between the two signals through a processing unit.

Impedance analysis is considered a powerful imaging and
diagnostic tool. The technology can be used to assess muscle
health, identify diseases, create images of target organs, and
provide real-time monitoring for critical patients (Rutkove, 2009;
Cebrián-Ponce et al., 2021; Shi et al., 2021; Li et al., 2022). Electrical
impedance analysis—an effective, non-invasive, and safe tool—has
become an interesting technology for several research groups
worldwide. Moreover, the field of electrical impedance
technologies has witnessed substantial growth over the past
decade, reflecting an increasing interest in non-invasive
diagnostic and monitoring tools for various medical applications.
In electrical impedance tomography (EIT), the number of
publications related to clinical applications has increased steadily.
A bibliometric study indicates that from 2011 to 2021, the annual
output of EIT-related research articles nearly doubled, with
significant contributions from research institutions in the
United States, United Kingdom, Germany, and China (Tan et al.,
2023). This is validated by cross-checking the data with the Web of
Science database (Clarivate, 2024). Research topics spanned clinical
applications in lung monitoring, cardiac assessment, and neural
activity, indicating the versatility and expanding role of EIT in real-
time physiological monitoring (Qin et al., 2022). Likewise, electrical
impedance myography (EIM) has shown a marked increase in
publications, particularly concerning its applications in
neuromuscular and musculoskeletal health. Bibliometric analyses
identify a growth trajectory that aligns with advancements in
wearable bioimpedance devices, which facilitate EIM’s application
in both clinical and at-home settings. The total number of
publications in EIM has been projected to continuously increase
as research increasingly focuses on algorithmic enhancements and
integration with machine learning for better disease tracking and
diagnostic accuracy (Li et al., 2022). This growth in EIT and EIM
publications highlights the substantial advancements in algorithm

development, hardware optimization, and clinical validation studies,
making these technologies essential tools in modern diagnostic
imaging and monitoring. Several published review papers cover
multiple areas of bio-impedance measurement and imaging.
Bayford (2006) reviewed the evolution of EIT as a clinical tool
and covered the hardware and software development of EIT systems.
McEwan et al. (2007) reviewed the instrumentation of EIT systems
that are capable of injecting and analyzing signals at several
frequencies instead of a single frequency. Rutkove (2009)
surveyed another major application of impedance analysis, EIM,
and explained how electrical activity in tissues and its variations in
diseased tissues can be detected with EIM, leading to the diagnosis of
neuro-muscular diseases. Rutkove further published another survey
with Sanchez focusing on the studies that used EIM to assess
neuromuscular diseases and studied their progression and
response to treatments (Sanchez and Rutkove, 2017b). Finally,
Cebrián-Ponce et al. (2021) systematically reviewed the studies
on EIM applications in health and physical exercise. Shi et al.
(2021) focused their review on the progress of EIT hardware and
software for lung diseases, while Li et al. (2022) published a
systematic review of EIT for clinical lung monitoring. Another
limitation to the most recent survey papers is that they are either
software-focused (Tan et al., 2023) or hardware-oriented (Qin et al.,
2022). The main EIT and EIM survey papers published in the past
two decades are summarized in Table 1. These papers only cover
specific niche areas within the broad modalities.

Given that EIT and EIM remain very similar modalities with
different endpoints, we decided to review the evolution of both
modalities while addressing the limitations to existing survey papers.
Themain goal of this review paper is twofold: (1) to present a general
overview of the state of the art in EIT and EIM technologies for
researchers entering this field for the first time and (2) to highlight
possible areas of contribution that will improve the use of EIT and
EIM for monitoring, diagnosis, and assistance.

This survey paper contributes to answering five main questions
related to EIT and EIM.

TABLE 1 Summary of review papers.

Title Date Reference

Bioimpedance tomography (electrical impedance
tomography)

29 March 29 2006 Bayford (2006)

A review of errors in multi-frequency EIT instrumentation 26 June 2007 McEwan et al. (2007)

Electrical impedance myography: Background, current state, and future directions 18 September 2009 Rutkove (2009)

Present uses, future applications, and technical
underpinnings of electrical impedance myography

20 September 2017 Sanchez and Rutkove
(2017b)

Electrical impedance myography in health and physical
exercise: A systematic review and future perspectives

14 September 2021 Cebrián-Ponce et al. (2021)

The research progress of electrical impedance
tomography for lung monitoring

October 2021 Shi et al. (2021)

Emerging trends and hot spots of electrical impedance
tomography applications in clinical lung monitoring

31 January 2022 Li et al. (2022)

Characteristics and topic trends on electrical impedance tomography hardware publications 13 October 2022 Qin et al. (2022)

Research trends and hot spots of medical electrical impedance tomography algorithms: A bibliometric analysis from
1987 to 2021

30 November 2023 Tan et al. (2023)
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1. What are the main components that constitute any EIT or
EIM system?

2. What are the specific considerations that must be accounted
for when using EIT and EIM for different applications?

3. How is the obtained data processed for accurate analysis?
4. Which diseases have been targeted by EIT and EIM and what

are the possible ground-breaking works that these technologies
are capable of achieving in the near future for the diagnosis and
therapy of other diseases?

5. Can we use EIT and EIM for predicting diseases, tumor growths,
and muscular fatigue/injuries? What are the currently available
deep learningmodels and datasets? Do thesemodels rely only on
EIT/EIM or a fusion with other modalities?

This review paper covers articles from IEEE Xplore,
ScienceDirect, Elsevier, PubMed, IOPscience, Frontiers, and
SAGE databases. The following search terms were used in the
queries: (1) “Electrical Impedance Tomography,” (2) “Electrical
Impedance Myography,” (3) “Magnetic Resonance Electrical
Impedance Tomography,” (4) “lung diseases detection using
Electrical Impedance Tomography,” (5) “brain imaging using
Electrical Impedance Tomography,” (6) “Electrical Impedance
Tomography hardware,” (7) “bioimpedance,” (8) “Electrical
Impedance Tomography algorithms,” (9) “Electrical Impedance
Tomography forward problem,” and (10) “Electrical Impedance
Tomography inverse problem.” We initially collected 229 articles,
of which 167 were referenced in this paper. Articles were filtered out

based on a multitude of reasons, mainly articles that lacked
contribution to EIT on the hardware level, articles that were
from non-indexed journals, and articles that were out of the
scope of this paper. We also excluded articles that were already
referenced by other included papers. After completing the selection
process, a total of 152 relevant publications were reviewed, as shown
in Figure 1.

The remainder of the article is organized as follows: Section 2
presents an overview of EIT and EIM modalities and the
corresponding electrode configurations. Advancements in EIT
and EIM systems design are reviewed in Section 3, showing the
evolution of the devices over time, the major design components,
and available commercial devices in the market. Section 4 presents
the reconstruction and signal processing techniques used in EIT and
EIM, highlighting state-of-the-art algorithms. Sections 5, 6 cover the
advancements in EIT and EIM, respectively, in the diagnosis,
monitoring, and treatment planning of diseases. Section 7
explores the applications of cell-substrate impedance in
regenerative medicine and cardiology. The role of deep learning
techniques in EIM is reviewed in Section 8, where the relevant
publicly available datasets are presented. Section 9 discusses the
findings of surveying the state of the art in EIT and EIM and
highlights potential areas of research contributions to the
aforementioned fields, while Section 10 concludes the review paper.

2 Electrical impedance
methods—monitoring and imaging

Over the past decade, the focus in the bioelectronics field has
shifted toward diagnosing and analyzing different organs and body
parts using non-invasive techniques for early disease diagnosis. The
two most notable areas of focus have been EIT and EIM. Both
technologies are non-invasive techniques used for assessing the
health and function of organs/muscles by extracting information
from electrical recordings—either through imaging or electrical
properties of tissues. These techniques work by injecting electrical
signals into target tissues/organs and recording responses. Differences
in electrical properties between injected and recorded signals can be
associated with muscle health and functioning. These differences are
either processed using reconstruction algorithms to create medical
images or compared to assess the health and activity of tissues. EIT has
seen a major rise over the past 2 years, which is mostly in response to
the COVID-19 pandemic, which has overwhelmed healthcare systems
around the world and thus driven researchers into developing this
technology further (Pennati et al., 2023). EIM is mostly used for the
assessment of neuromuscular diseases and presents many advantages,
such as being non-invasive and requiring minimal cooperation from
subjects, which results in accurate and repeatable data. Both EIT and
EIM can be used for real-time applications. However, since this paper
focuses on human body-related applications, this section provides a
global overview of the procedures followed to apply both techniques.

2.1 Overview of EIT and EIM modalities

EIT is an imaging technique used to visualize the tissue’s internal
electrical properties and is widely employed in various applications

FIGURE 1
Article selection breakdown.
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such as detecting and monitoring lung diseases, cancerous tissues, and
neural and brain activities, as well as evaluating perfusion and cardiac
function (Adam and Ammaiappan, 2021). Measurements of the EIT
systems are normally taken at electrodes placed on the surface of the
body. The electrodes used can be polarized (stainless steel, conductive
fabrics, and rubbers) or non-polarized (ECG-type silver/silver chloride
(Ag/AgCl) electrodes) (Bayford, 2006). EIT is a highly sensitive
technology where slight electrode movement may have major effects
on the signal quality. To prevent motion artifacts, electrodes are
integrated into a belt or harness and fixed around target organs, and
gels and liquids are applied at the electrode–tissue interface (Zamora-
Arellano et al., 2020). However, the quality of the data measured
decreases as the measurement time is extended, which is due to the
drying of electrodes. It can also be affected by motion artifacts and
changes in the postures of the human or animal subjects under study.
The applied waveform is mostly either sinusoidal or approximated by a
square wave, with patterns to be discussed later. Injected waveforms can
vary in intensity, frequency, or nature (voltage or current injection) but
are always limited to the “electrical safety considerations,”which denote
the maximum stimulation current over all the electrodes into the body.
Safe currents are limited to a maximum of 10 mA at a frequency of
100 kHz (Lionheart et al., 2001). Finally, the obtained data need to be
processed and analyzed to calculate “application-relevant” images and
measures since it is virtually impossible to give relevant clinical
information based on raw data (Adler and Boyle, 2017). Similar to
EIT, EIM involves placing electrodes on the surface of the body,
specifically across the muscle or muscle group of interest. However,
fewer electrodes are usually needed for EIM when compared to EIT,
with 4, 8, or 16 electrodes often placed to minimize “electrode
polarization” and, therefore, conserve the signal quality. The choice
of the electrode material varies with the application and the muscle of
interest. The most commonly used ones are the Ag/AgCl electrodes;
however, dry electrodes, metal electrodes, and textile dry electrodes are
also used. The obtained data are processed and analyzed to extract
features necessary to diagnose diseases or assess muscle health. Several
factors affect injection and recording patterns, as well as electrode
numbers in both EIT and EIM. First, image reconstruction in EIT
requires a greater amount of data than myography. Overlapping-
dependent recordings (explained in further sections) resulting from
different injection and recording patterns limit the fidelity of
reconstructed images and thus the need for a higher number of
electrodes in EIT. Second, the nature of recorded signals, being
mixed summation potentials from several neighboring fibers, affects
the number of independent signals collected and the processing tools to
be used (Zamora-Arellano et al., 2020; Shiffman et al., 2008). Finally, the
configuration of electrodes plays a major role in the system’s hardware
design to avoid interference and reduce noise; therefore, we will first
discuss the available electrode configurations accompanied by injection
and recording patterns before introducing the hardware components of
the system.

2.2 Electrode configurations (injection and
recording patterns)

Different configurations have been implemented for injecting
and recording electrical signals. Early EIM systems were composed
of only a few electrodes with non-varying positions, which were used

for both stimulating and recording electrical signals (Rutkove, 2009).
Later, the four-electrode configuration became the standard, which
is characterized by the placement of the four electrodes over the
muscle of interest in a linear disposition (Figure 2A-right). It should
be noted that the sensitivity of the measurements is affected by the
surrounding tissues, including the skin, fat, and bone. The injected
signal is applied at the outer electrodes, and the produced response is
then measured by the inner electrodes as an alternating voltage
(Sanchez and Rutkove, 2017a). Higher electrode number systems are
also available for EIM, such as 8- and 16-electrode configurations. In
some eight-electrode systems, two electrodes are reserved for
injection, while the remaining six, placed linearly adjacent to
each other, are reserved for recording. This method requires
careful placement of electrodes since the injection electrodes are
far from the recording ones and the variation in spacing is critical to
the obtained data (Rutkove et al., 2005).

As mentioned earlier, fewer electrodes are required for EIM. For
EIT, studies usually opt for either 16, 32, or 64 electrodes. The
number of electrodes depends on the target accuracy required and
the size of the devices developed. Electrodes are usually placed
around the target organ, as shown in Figure 2A (left). There are four
common EIT injection methods, the adjacent or neighboring
method, the opposite method, the cross method, and the
adaptive or trigonometric method (Bera and Nagaraju, 2012).
Figure 2B shows the differences between the four. In the adjacent
method, as suggested by Brown and Seagar (1987), the current is
injected into adjacent electrodes and the potential difference can be
measured between adjacent electrode pairs. For example, if the
current is injected at electrodes (E) Ex and Ex+1, then voltages
are recorded from Ex+2 and Ex+3, then from Ex+3 and Ex+4, and so
on. The process is then repeated with current injected at another pair
and voltages recorded. Therefore, an n-electrode system will record
n − 3 recordings for each injection and, thus, a total of n(n − 3)
recordings; yet only half of these recordings are independent due to
the identical repeated boundary measurements.

In the cross method, the system should have two injection
electrodes and one reference electrode (Hua, 1987). First, in an
n-electrode system, electrode 1 is dedicated for reference and
electrodes n and 2 for injection; then n − 3 recordings are taken,
one from each electrode, with electrode 1 being the reference. Then,
the process is repeated with all other odd-numbered electrodes,
injecting between n and 4, 6, 8, . . ., while recordings are taken from
the remaining electrodes, with electrode 1 still as the reference. This
will result in (n/2 − 1)(n − 3) recordings. The same procedure is
repeated with electrode 2 as the reference and injections made
between electrodes 3 and the remaining odd-numbered electrodes
(5, 7, 9, 11 . . .), which also results in (n/2 − 1)(n − 3) recordings.
Note that not all of the recorded signals are independent. For
instance, the potential between electrodes 3 and 1 will be
recorded multiple times, depending on the injection site.

The opposite method involves placing the injection electrodes at
opposite locations, between electrodes x and n/2 + x (in an
n-electrode system), and recording from all other electrodes with
electrode x + 1 as the reference electrode (Hua, 1987). This will
result in n − 3 recordings, which are repeated n times, leading to a
total of n(n − 3) recordings, of which only half are independent. In
the adaptive or trigonometric method, the current is defined by
trigonometric functions, hence the name. Current is injected
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through all electrodes but with different current distributions. The
distributions should be homogeneous, and the injected current is a
multiple of sin θ or cos θ. Recordings are obtained from n − 1
electrodes with respect to a reference, and the distribution is then
rotated by 360/n degrees. The recordings are repeated n/2 times. A
total of (n/2)(n − 1) independent recordings is obtained using this
method. Figure 2B shows the difference in the mentioned
configurations.

Table 2 shows the pros and cons of the four previously
mentioned electrode configuration methods (Holder, 2005). The
main characteristics that form the basis for comparison are
implementation complexity and degree of sensitivity to central

and boundary changes in the readings. Moreover, if the same
number of electrodes is used across all methods (for example,
16 electrodes), both the adjacent and opposite methods will have
the highest number of independent measurements (208 in this
example), compared to a significantly lower value for the
trigonometric method (120 measurements), and the lowest
(91 measurements) for the cross method.

EIM measurements play a crucial role in quantifying the
pathological status of muscles. As depicted in Figure 3A, the
measurement process involves the initiation of a minute current
injection of a known frequency (top), with the resulting voltage
(bottom) being analyzed to evaluate the muscle’s condition. In

FIGURE 2
(A) Electrode placement configuration: in EIT (left), electrodes are placed around the area to be imaged, usually in a circular pattern, while in EIM
(right), electrodes are placed linearly at the target muscle to be analyzed and studied. This image was produced using BioRender. (B) Electrode
configurations for injection and recording pattern. The figure shows the adjacent, opposite, cross, and trigonometric injection/recording methods in an
8-electrode EIT system. Dotted arrows are for injection, other arrows are for recordings, and subscripts represent electrode numbers. This image
was produced using BioRender.

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Youssef Baby et al. 10.3389/fbioe.2024.1486789

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1486789


TABLE 2 Comparison of electrode configuration methods.

Method Pros Cons

Adjacent - Simplest implementation
- Very sensitive to changes at the boundary

- Insensitive to changes in central areas or bulk of targets

Opposite - More sensitive to central changes than the adjacent method - More complex electrode configuration
- Less sensitive to boundary changes than the adjacent method

Cross - Better sensitivity in non-peripheral regions - Least used
- Poor sensitivity at the boundary

Trigonometric - Enhanced sensitivity distribution compared to the adjacent and opposite
methods

- Complex hardware since each electrode needs an independent current
driver

FIGURE 3
(A) A muscle is subjected to an injected electrical current with a
specified frequency and amplitude (top). The muscle affects the
applied current by varying the amplitude of the measured voltage due
to its resistance and slightly adjusting the timing of the voltage
due to its capacitance (bottom). The injuredmuscle (with DMD) shows
a phase shift in themeasured voltage compared to the healthymuscle.
(B) Conductivity (top) and permittivity (bottom) variations in the
longitudinal muscle of mice that are either healthy (solid blue) or
affected by SMA at 40 weeks of age.

FIGURE 4
(A) EIT experimental setup consists of the basin filled with the
saline solution (NaCl andwater) with the red dot electrode distribution
and the phantom object. (B) Image reconstruction of the phantom
object. The red areas represent regions with higher
concentrations of the NaCl solution, indicating higher conductivity.
The blue areas represent the plastic object or regions with lower
concentrations of the NaCl solution, indicating lower conductivity.
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comparison to a healthy control, a muscle afflicted with Duchenne
muscular dystrophy (DMD) exhibits a discernible phase shift in the
measured voltage. Figure 3A illustrates a representative scenario
demonstrating the application of EIM in diagnosis; however, it does
not present actual experimental data. Further analysis can be
conducted by injecting currents at different frequencies and
collecting the voltage responses, allowing the construction of
several impedance plots. These plots display traces of tissue
resistance, reactance, phase angles, and voltage amplitude across
the frequency spectrum. In diseased versus normal tissue, changes at
the molecular level alter the electrical properties of the tissue,
resulting in shifts or shape changes in these traces, which aids in
detecting pathological cases. Figure 3B presents data on the
longitudinal muscle of mice that are either healthy or affected by
spinal muscular atrophy at 40 weeks of age (Sanchez, 2019).

EIT measurements provide a more descriptive output compared
to EIM. A typical EIT experimental setup is shown in Figure 4A,
where eight red dot electrodes are used to reconstruct the image of a
plastic phantom object shown in the middle. The basin is filled with
a saline solution (sodium chloride (NaCl) and water) to ensure
conductivity. The 64 adjacent voltage measurements are fed into the
Electrical Impedance Tomography and Diffuse Optical
Tomography Reconstruction Software (EIDORS) (Adler and
Lionheart, 2005), which displays the reconstructed image, as

shown in Figure 4B, using the Jacobian reconstruction algorithm.
The red areas represent regions with higher concentrations of the
NaCl solution, indicating higher conductivity, while the blue areas
represent the plastic phantom object or regions with lower
concentrations of the NaCl solution, indicating lower
conductivity. The resolution of the reconstructed image can be
further enhanced by increasing the number of electrodes. The
images in Figure 5 show the reconstruction of a synthetically
generated phantom object (top) using 8 electrodes (bottom left)
and 16 electrodes (bottom right). The increase in the number of
electrodes, and in turn the number of measurements, leads to an
image reconstruction with improved resolution. The phantom
object was synthetically generated using EIDORS, and more
details about this software program are covered in Section 8.

3 Advancements in the design of EIT
and EIM systems

3.1 Evolution of EIT devices

The core fundamentals of bioimpedance analysis are the
hardware components (on both the macro- and micro-level) in
addition to the technique used. Most traditional EIT setups rely on

FIGURE 5
Image reconstruction of a synthetically generated phantom object (top) using EIDORS. The reconstruction using measurements from 8 electrodes
(bottom left) has a lower resolution than the one using measurements from 16 electrodes (bottom right).
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common elements or parts in order to provide the desired outcomes.
The procedure for EIT involves passing an electric current through
electrodes placed on the target muscle or area and measuring the
resulting potential difference. The voltage data are then filtered to
extract the amplitude and phase from the injected current (Zhu
et al., 2021). Usually, EIT systems use sinusoidal excitation, which
allows them to excite the target area and collect data one frequency
at a time, using devices such as a field-programmable gate array
(FPGA) or digital signal processor (DSP) (Holder, 2005).

Bioimpedance analysis is performed using two devices: electric
impedance tomography and electric myography devices. This
section covers both modalities. Starting with the EIT devices, the
leaders in the development of EIT systems are the Sheffield Group,
with their systems ranging from MK1 to MK3.5. Before comparing
the different systems, EIT dates back to 1964, when Fatt used two
plates of electrodes to squeeze a muscle between them for
assessment. The system used consisted of black platinum
electrodes, a direct-coupled amplifier, and a network filter to
eliminate noise. Injected signals had a frequency range of
1.5 kHz–130 kHz. This system used a Wheatstone bridge for
impedance measurement, which was well-known for maintaining
high compensation at low levels of frequency (Fatt, 1964). The EIT
systems then improved from the release of the Sheffield system to the
MK1 device. The latter uses a 64-electrode configuration, which
presents a large increase in the number of electrodes compared to
the 1964 model without altering the frequency range of 750 Hz and
77 kHz. The model used a PC for data analysis, and the high number
of electrodes used facilitated complex brain analysis (Yerworth et al.,
2002). Another device that uses a similar range of frequencies and
electrode configuration is the OXBACT-5. An interesting aspect of
this device is the usage of 16 electrodes for injection and 64 for
reading data rather than the 2-by-2 configuration used in the
Sheffield MK1 system. Although this device makes use of an
FPGA for data processing, it is not bulky and, thus, can be used
in clinical applications, which is an improvement over the Sheffield
MK1 system (Yue and McLeod, 2008). The release of the
MK2 Sheffield system introduced a fixed current injection
frequency of 20 kHz and a decrease of 75% in the number of
electrodes (4 electrodes). Overall, the system was less bulky than the

first generation, much faster, and involved digital data. The
designers introduced a data acquisition system with a differential
amplifier enhancing the signal-to-noise ratio (SNR) (Oh et al., 2011).
A major change in the MK2 systems was the 50% reduction in the
current injection amplitude (2.5 mA lower than that of the MK1),
which is considered safer. The MK3.5 system, the latest addition to
the Sheffield family, switched back to acquiring analog data and
passing them through a series of analog-to-digital converters
(ADCs) to obtain a digitized input. Data were acquired using
eight electrodes. The system is well known for its high SNR and
is currently a commercial clinical monitoring device (refer to
Table 3) (Wilson et al., 2001). Another system that uses an
FPGA as a data processor is the device used by Saulnier et al.
(2007), which was developed in 2007; with approximately
72 electrodes and digital data transmission, the device is a well-
known modality for breast cancer imaging and diagnostics. This
device, which is also referred to as the ACT4 system, has
72 electrodes with an improvement over the Sheffield system,
whereby the current injection frequency ranges from 0.3 kHz to
1 MHz instead of fixed frequencies. This system makes use of
instrumentation amplifiers to reduce noise and is well known for
its flexibility (Liu, 2007). Another device that uses 32 electrodes and
a fixed frequency is that proposed by Soleimani (2006), which uses
analog-to-digital and digital-to-analog converters for data
acquisition and current injection, respectively. The design also
integrates instrumentation amplifiers that play a major role in
decreasing noise figures, thus obtaining clear images
(Soleimani, 2006).

In 2005, the Terason t3000 EIT was developed, introducing
lower frequencies, between 20 kHz and 80 kHz, for the injected
signals when compared to the previous Sheffield system. The system
also used 30 gold-plated electrodes but was hindered by long
computational time for image reconstruction (Hueber et al.,
2008). Bera and Nagaraju (2012) developed an EIT system with a
constant current injecting frequency and 16 electrodes in a circular
configuration. The system was the first to be connected to LabVIEW
using a PC and MUXs. This system also differed from others since it
integrated a voltage-controlled oscillator and a band-pass filter to
eliminate noise and amplify and vary the injected signal and its

TABLE 3 Commercial bioimpedance devices: the table summarizes EIT and EIM commercial devices and their uses along with links to their product pages
and manufacturing company.

Product Company Description Uses

Imp SFB7 ImpediMed Multi-frequency
bioimpedance spectroscopy

Clinical and research applications

SKULPT SKULPT Performance Multi-frequency EIM
Training System

Sports, training, and research

mScan & mView MYOLEX EIM Clinical trials and treatment of neuromuscular diseases

Quantum IV/V/VII RJL Systems Full body
impedance analyzer

Several clinical and research applications

PulmoVista 500 Dräger EIT Pulmonary-related patient care

ENLIGHT 2100 Timpel EIT Precision ventilation

LuMon™ System Sentec EIT Clinical pulmonary imaging

MK3.5 MALTRON EIT Clinical monitoring
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frequency (Bera andNagaraju, 2012).When developing a wireless EIT
system, Huang et al. (2016) attempted to use an improved version of
the back-projection algorithm, which required powerful machines to
provide a steady current. To reconstruct the images, the researchers
used the Maxwell equation since it satisfies the electromagnetic field
distribution of biological tissue (impedance algorithm
reconstruction). The device was tested on objects inside a
phantom, and the results showed that the objects were clearly
detected in the reconstructed images (Huang et al., 2016). Lee
et al. (2020) also developed another wireless EIT device, which has
4 different ICs, each containing an electrode array of 16 electrodes
delivering currents at 1 MHz max with 3 mA-pp. Using bandpass
filters in the design improves image accuracy and minimizes noise.
Another important EIT device is the KHU device developed by Oh
et al. (2007), which uses 32 electrodes (a standard for most devices),
but its novelty lies in its ability to inject currents at frequencies in the
range of 10–500 kHz throughout the electrodes. The device was
further enhanced into the KHU-Mark2 system, which had an
acquisition speed of of almost 100 scans/s, faster than the KHU-
Mark1 model. The enhanced performance is mostly due to the
addition of independent current sources and voltmeters (Oh et al.,
2011). The final model of this series was the KHU-Mark2.5, which
included a module for self-calibration, allowing the reconstruction of
images with better clarity than previous devices (Wi et al., 2013). One
of the newer models of EIT systems is the KIT4 model, which has a
different electrode configuration system; it consists of separate and
independent recording and injectionmodules. The recordingmodules
can acquire 80 signals simultaneously, while the injection module has
16 channels, which allow for a 2D system highly sensitive to
conductivity (Hauptmann et al., 2017).

Although EIT is not commonly used for brain imaging, the
device developed by Shi et al. (2018) mainly focused on acquiring
data through brain imaging. The device had common electrode
numbering and a circular configuration. Data transfer and
acquisition for both recording and injection used ADCs and
digital-to-analog converters (DACs), respectively. The device also
had a programmable current source so that the data acquisition
system could compensate for the shunt effect and excited current.
The current source could provide a current with an SNR of 89 dB
(Shi et al., 2018). Most EIT systems make use of a PC for data
processing, but the device developed by Zamora-Arellano et al.
(2020) made use of an Arduino and a raspberry pi for current
injection control and signal processing, and no significant
differences were noticed between their work and related works in
terms of speed and resolution. Another device that uses an Arduino
for data acquisition was developed by Zhu et al. (2021) and used 32-
to-1 analog MUXs and a current injection rate of 500 kHz, which
significantly increased the acquisition speed of the device.

3.2 Evolution of EIM devices

After covering all advancements regarding EIT, this section will
now elaborate on the advancements in EIM. As mentioned earlier, a
notable difference between EIM and EIT devices is the decreased
number of electrodes. EIM devices are commonly used to diagnose
neuromuscular diseases. For example, the study conducted by Tarulli
et al. (2006) to investigate neuromuscular diseases involved an EIM

device consisting of 4 Ag/AgCl electrodes in an inject/receive
configuration, connected to a PC for processing. The device uses a
lock-in amplifier that can provide signals ranging between 2 kHz and
2MHz (Tarulli et al., 2006). Although typical EIM systems sample at a
frequency of 50 kHz, Shiffman et al. (2008) developed an EIM system
capable of reaching up to 2 MHz, which is useful in distinguishing
healthy muscles from diseased muscles. This creates high common-
mode noise and thus requires the use of ADC with high precision to
detect small range differences. The device also uses distant electrodes
for injecting current (Shiffman et al., 2008), a common EIM injection
method mentioned earlier (Rutkove et al., 2005). To study the
bioimpedance of thoracic injury, Buendia et al. (2017) used a
bioimpedance device that makes use of four gel electrodes and a
single injection frequency of 50 kHz. This device offers quick data
configuration but does not provide a frequency range.

It is possible to combine EIM with other technologies and
observe multiple physiological parameters. For example, Ngo
et al. (2022) used EIM as another source of data collection for
EMG devices. The device proposed offered 4 channels, each
composed of 16 wet electrodes, with two outer electrodes used to
inject the EIM current data (Figure 6). The inner electrodes were
used for measurements for both devices, EMG and EIM. In addition,
for data processing, the signal was sent to a PC with Intel processing,
which is a commonality between all EIM devices. Furthermore, in
this configuration, the EMG signal was post-processed using a
second-order band-pass filter, while the EIM was pre-filtered
using a low-pass filter (Ngo et al., 2022). Another example of
multi-purpose devices is that of Hornero et al. (2013). They used
an EIM device with four dry-contact copper foil electrodes, with an
inject/read configuration similar to previously mentioned devices.
The device was developed to allow the observation of amputees.
Using the 50 kHz injection, this system is capable of monitoring
both heart and breath activity through electrical impedance
plethysmography (IPG) measurements and muscle activity
through EIM measurements, with a single long-term use system
(Hornero et al., 2013).

3.3 Design components of EIT and
EIM devices

After reviewing the most recent electrical impedance systems
developed, we attempt to summarize the main building blocks in
designing any EIM or EIT system. The basic components of any
system are as follows: (1) the injection unit that delivers current to
the target organs, (2) the interface unit that transfers the injected
current to the target and delivers recorded signals to the processing
unit, (3) the recording and processing unit, which amplifies, filters,
and enhances recorded signals, and (4) the main control unit, which
synchronizes injection and recording, transfers data to PC or post-
processes them, and, in some cases, controls the injected current.
These units are shown in yellow in Figure 7. Signal injection can be
carried out through a current source or a VCCS. In the first method,
the analog signal is generated by a constant current generator,
passed through an amplifier and buffer, and sent to the injection
electrodes either directly or through buffers for each electrode
depending on the design of the system, the noise levels, and the
used frequency. As for the VCCS, a digital signal is generated by a
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programmable clock generator, converted to an analog signal,
filtered, smoothed, and then injected either directly to the
electrodes or through another set of buffers. The programmable
clock generator is controlled through an MCU, FPGA, Arduino, or
microprocessor, depending on the choice of the designer. In systems
that use the same electrodes for injection and recording, a switching
component is required. Most systems rely on MUXs to transition
between injection and recording or, in some cases, simple relays are
used. The switching event is also controlled by the processing units
mentioned earlier (MCU, FPGA, Arduino, or microprocessor). The
recorded signals are often low in voltage and noisy in nature, and
therefore, most systems use amplifiers and filters to enhance the
quality of the obtained signal before any analysis is done. The signal
is either transferred to an oscilloscope or spectrum analyzer or
converted to a digital signal, then to a processing unit or PC, or

directly transferred to a processing unit. The factors that affect the
selection are the quality of the obtained signal, the frequency range,
and whether the end purpose is impedance analysis or image
reconstruction. It is important to mention that a wide range of
filtering techniques can be used for both the injected and recorded
signals. In the literature, the most commonly used methods rely on
instrumentation amplifiers due to the high common-mode rejection
ratios (CMRRs) they produce and their high accuracy, even with
long-term applications.

3.4 Commercial devices

Currently, there are many commercially available electrical
impedance devices. Table 3 summarizes commercial systems

FIGURE 6
Block diagram of the EIM-driven EMG system (Ngo et al., 2022).

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Youssef Baby et al. 10.3389/fbioe.2024.1486789

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1486789


available with links to the devices and their producing companies. It
should be noted that many of these companies have other
impedance devices that are either outdated or no longer
produced but have appeared previously in the literature, such as
the MK devices previous to MK3.5.

4 Reconstruction and signal processing
techniques

4.1 EIT-based algorithms

Generally, when using EIT as a medical technique for producing
images, two important factors determine the quality of the obtained
image. First, the number of electrode measurements taken, which
was previously discussed, and the type of reconstruction algorithm
used. This section will cover all types of algorithms for
reconstruction purposes and advancements and previously used
methods in the field of EIT. To start, the main point to know is the
forward problem. The forward problem can be defined as the
process of obtaining boundary voltages for current patterns and
resistance distributions. Apart from the forward problem, there is
the inverse problem that attempts to find the admittance
distributions from a finite number of boundary voltage
measurements. A representation of the process of the

reconstruction of an image using electric impedance tomography
is shown in Figure 8.

EIT reconstruction algorithms can be divided into two sections:
(1) iterative, which are optimization-based methods that iteratively
refine an initial estimate of the conductivity distribution until it
converges to a solution that best fits the measured data, and (2) non-
iterative, which are also known as direct or algebraic methods that
aim to directly solve the EIT reconstruction problem in a single step
without iterative refinement. While both algorithms involve the
inverse problem, iterative solvers require repeated calls to the
forward solution, whereas non-iterative solvers rely on pre-
computed Jacobians and/or forward solutions. One of the most
popular algorithms used to reconstruct EIT images is the
Newton–Raphson algorithm. The latter generates a Jacobian
inverse problem, which can be solved using Tikhonov
regularization (Nofrianto et al., 2021). In his study, Abdullah
(1999) attempts to solve both problems using the modified
Newton–Raphson (MNR) algorithm. Initially, this algorithm
iterates to a final solution by updating an initially guessed
admittance with respect to an error. The algorithm repeats this
process until an acceptable solution of the admittance of distribution
is achieved, and tests on computer-generated data patterns show
that the algorithm takes four iterations to converge. Figure 9 shows a
flow chart explaining the process. The results show that it is possible
to solve the inverse problem using MNR. One limitation to this

FIGURE 7
Block diagram presenting the main components in any electrical impedance devices (EIT or EIM). The basic components are a current source, an
electrode interface unit, an acquisition unit, and a control/processing unit.
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algorithm is the cost of building the data acquisition system to be
used in MNR compared to other techniques (Abdullah, 1999).

Somersalo et al. (1992) employed a distinct algorithm in their
study, focusing on the utilization of a complete electrode model
(CEM). Within their investigation, they scrutinized various
electrode models, with particular emphasis on the complete
electrode model. They delved into the imperative task of
identifying the optimal electrical property distribution within the
object and aligning it with themeasured current and voltage data. To
achieve this, they utilized the finite element method (FEM) to obtain
the numerical solution for the CEM model, while concurrently
addressing the known electrode geometry and properties
(Somersalo et al., 1992). Yong et al. (2021) evaluated the use of
the Graz consensus reconstruction algorithm for EIT (GREIT), a
linear reconstruction algorithm, for lung EIT images. One issue in
lung image reconstruction is the low spatial resolution. To solve the
issue, researchers incorporated the FEM with GREIT and classified
the obtained image using fuzzy logic based on GREIT test
parameters: amplitude response (AR), position error (PE),
ringing (RNG), resolution (RES), and shape deformation (SD).
The results were constant and uniform; thus, the images obtained
were much clearer (Yong et al., 2021). Sharma et al. (2020)
conducted a study to determine whether using a gravitational
search algorithm (GSA) in EIT image reconstruction can help in
the determination of bladder size. The results showed that the
bladder size and shape were recovered with good accuracy; thus,
their proposed theory proved to perform well (Sharma et al., 2020).
Li et al. (2014) used the FEM with an alternative mesh refinement
algorithm, which resulted in a better image spatial resolution
compared to the images generated from the Gauss–Newton method.

An alternative way of solving the EIT forward problem is to
minimize the relative error between surface potentials. An algorithm
that accomplishes this goal is the genetic algorithm (GA) and Fish
school search (FSS) algorithm. Using these algorithms, the images
were consistent, but GA gave a better image resolution (dos Santos
et al., 2018; Martin and Choi, 2015). Martin and Choi (2015) showed
that using particle swarm optimization and an artificial neural
network, images can be reconstructed faster with higher visual
fidelity than when using the Gauss–Newton method.

Initially, algorithms used for thorax reconstruction assumed that
the electrodes were placed on a circular surface, while new
algorithms utilize information about the shape of the thorax. In a

study conducted by Tarabi et al. (2021) to measure solid volumetric
scales, researchers used the FEM mesh algorithm to solve the
forward problem in EIT and then applied a modified Newton’s
One-Step Error Reconstructor (NOSER) style regulation to recover a
change in conductivity in the measured spaces. They found that this
approach reduces processing times when compared with Tikhonov
algorithm and GREIT (Tarabi et al., 2021). Using the damped least-
squares method with Cheney’s NOSER algorithm, Shi et al. (2018)
improved the stability of the reconstructed brain images. Yao et al.
(2019) developed a wearable EIT system (wEIT) and investigated a
new way of solving the forward problem using sampling. They found
that this algorithm overcomes the different drawbacks of the
iterative algorithms by obtaining the minimum angle between the
input vector and solution vector. Daneshmand and Jafari (2013)
investigated the 2D method and proposed a 3D boundary
element–finite element (BE–FE) solution for the forward
problem. To validate their method, researchers attempted to
solve a homogeneous test problem. The results showed good
agreement between the FE and BE and FE–BE methods and the
exact solution. Thus, they determined that this method can use the
advantages of both BE and FE methods and reduce the dependency
of the solution on the size of the reconstructed shape (Daneshmand
and Jafari, 2013).

A study conducted by Borsic and Adler (2012) on prior dual
interior-point methods (PDIPMs) for efficiently using the total
variation (TV) function in EIT found that TV regularization
algorithms produced sharper images of medical data than those
with quadratic regularization algorithms. Jin et al. (2012) developed
a sparse reconstruction algorithm based on the Tikhonov function.
After testing, the results showed that the proposed technique could
yield acceptable reconstruction results compared with conventional
approaches. Zhou et al. (2015) compared the performance of
different TV algorithms, such as the PDIPM, linearized
alternating direction of method of multipliers (LADMM), and
split Bregman (SB). Their results showed the fastest calculation
speed but the worst resolution. PDIPM showed the sharpest change
in conductivity reconstruction. SB had a faster convergence rate
than PDIPM and the least imaging errors (Zhou et al., 2015).

After discussing the iterative algorithms, this section highlights
the ones that are most widely used. A popular algorithm in the
literature is the back-projection Sheffield algorithm, which generates
an EIT sensitivity region and determines the required information

FIGURE 8
Image reconstruction process—block diagram.
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from the image (Putensen et al., 2019). The inverse reconstruction
using a single set of voltage measurements is a process that is very
sensitive to deviations. To avoid the previously mentioned problem,
Wagner et al. (2022) applied the FEM method and obtained images
of the spatial strain of large areas. When creating a wireless EIT
system, Huang et al. (2016) employed an enhanced back-projection
algorithm, necessitating robust hardware to maintain a consistent
current flow. For image reconstruction, they utilized the Maxwell
equation, which accurately represents the electromagnetic
properties of biological tissues (impedance algorithm
reconstruction). Testing the device on items within a phantom
demonstrated that the reconstructed images distinctly identified
the objects (Huang et al., 2016). EIT has low image resolution

compared to other imaging techniques, such as CT. To address this
issue, Gomes et al. (2020) suggested a different reconstruction
technique that involved the use of autoencoders to replicate input
electric potentials and deep neural networks with the extreme
learning machine (ELM) to apply the back-projection algorithm.
Furthermore, when testing an EIT system that decomposes body
tissue into resistive (real) and conductive (imaginary) parts, Sapuan
et al. (2020) used the linear back-projection algorithm. The
reconstruction resulted in a functional image. Functional images
are split into two images: the impedance image and the resistive
image; thus, the development of the EIT system was successful
(Sapuan et al., 2020).

The most common reconstruction technique in EIT is difference
imaging. Some common algorithms for reconstruction are the shape
constraint imposed method and the 1D D-bar method, but these
methods lead to systematic errors and uncertainties. Liu et al. (2020)
proposed reconstructing the images based on the shape
reconstruction problem and solved it via geometrical methodology.
After testing their algorithm on phantom and pig data and comparing
them with the regular linear approach, researchers found that their
approach produced greatly improved images compared to the
conventional linear approach (Liu et al., 2020). Additionally, Yuan
(2020) tested the use of an improved FEM algorithm called the filtered
back-projection algorithm. This model was constructed using
LabVIEW. This optical projection tomography (OPT)
reconstruction provides structural information such as size and
shape of the image (Yuan, 2020). To obtain a clear scan of the
chest using EIT, Bachmann et al. (2018) used a new technique that
involved reconstruction using FEMmesh analysis and then projecting
the images in a 32 × 32 array of pixels; the image obtained showed the
healthy and collapsed lungs accurately, and researchers were able to
assess acute respiratory distress syndrome (ARDS) in patients.
Another algorithm is the 2D D-bar algorithm. Hamilton and
Hauptmann (2018) showed that the 2D D-bar method for EIT
was more reliable for solving the inverse problem than the 1D
D-bar method, but the reconstructed image suffered from blurring.
Adding a convolutional neural network (CNN) helps in better image
recovery with minimal added time to the post-processing of the image
(Hamilton and Hauptmann, 2018). It is worth noting that non-
iterative algorithms are generally faster than iterative algorithms
but may not produce as accurate results as iterative algorithms.

Non-regular alternatives for solving the forward and inverse
problems can include machine learning and different software tools.
Kłosowski and Rymarczyk (2017) proposed using a neural network
that is trained using a Bayesian model; this method does not involve
any preliminary assumptions. Themethod considers each image as a
set of pixels with specific conductivity to reconstruct, which allows
for fast image reconstruction (Kłosowski and Rymarczyk, 2017).
Additionally, Fernández-Fuentes et al. (2018) developed a machine
learning model to solve the inverse problem of EIT. The results from
the proposed method were analyzed quantitatively and qualitatively
and compared with PDIPMGauss–Newton algorithm. This method
resulted in a good kappa index and an accuracy of 97.57% and
94.6%, respectively (Fernández-Fuentes et al., 2018).

Another method of solving the inverse and forward problem for
image reconstruction is using EIDORS software. This software
program was specifically designed to reconstruct images back
from EIT (Adler and Lionheart, 2006). The main focus was to

FIGURE 9
Newton–Raphson flow diagram.
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investigate the use of internal electrodes to generate 3D images from
EIT. In particular, they investigated the use of a 3D GREIT
reconstruction algorithm using EIDORS software. Their results
showed that the obtained reconstructed images using the internal
electrodes and 3D reconstruction algorithm resembled the objects
used more than the obtained images when 2D EIT was used (Stowe
and Adler, 2020). Further studies were conducted by Bera and
Nagaraju (2012) to identify chicken tissue in a phantom using
EIT. To solve the forward problem, researchers used a modified
mesh of the FEM EIDORS algorithm to suit the geometry of the
phantom. They were successfully able to reconstruct the resistivity of
the chicken tissue phantom (Bera and Nagaraju, 2012). Additionally,
Soleimani (2006) made use of MATLAB to design a 2D EIT system
for image reconstruction. This program was able to generate meshes
for the FEM model. The Raphson–Newton method was used for
image reconstruction. The system was tested with different
approaches, such as simulation and real-time measurements;
when tested with a phantom, the system generated satisfactory
results as the reconstructed images enabled the detection of the
object inside the saline solution. A limitation to this study was the
number of projections used in the back-projection algorithm, which
limited the quality of the image (Soleimani, 2006).

4.2 EIM-based algorithms

EIM is usually performed using four electrodes to maintain the
signal quality. The response of the tissues to an electric stimulus is
recorded by the electrodes. The resulting signal’s impedance Z and
phase angle θ are processed using the ratio and normalization of the
voltage and current amplitudes and phase delays. To establish a
relationship between EIM, myofiber, and physiology simulations, a
bio-physiological model that explains the EIM data is used (Sanchez
and Rutkove, 2017a). A representation could be the Cole model,
which divides the frequency dependency of EIM into four
parameters (Levenberg, 1944; Marquardt, 1963). EIM parameters
usually comprise R, X, PA, and Z. X consists of a combination of
two forms, the capacitive reactance (XC) and inductive reactance
(XL). PA is calculated using standard trigonometric equations. Z is
the complex impedance obtained by the resistance as the real part
and the capacitance as the imaginary part. Wang H. et al. (2021)
made use of the ImpediMed SFB7 multi-frequency analysis system
to process the obtained parameters from the lumbar paraspinal
muscles (LPMs) of patients suffering from chronic lower back pain
(CLBP). The results showed that the R and Z parameters were
elevated in patients with CLBP, while X was similar to the control
sample and PA was decreased. A major limitation to this study was
the small sample size as measurements were only taken from young
adults (Wang H. et al., 2021). Semple et al. (2020) conducted a study
to assess muscle changes in animals exposed to hindlimb suspension
using a pelvic harness (HLS) and a partial weight-bearing (PWB)
model that mimics partial gravity, including lunar and Martian
gravities. They performed in vivo impedance measurements on rats
and obtained the phase (LP), reactance (LX), and resistance (LR)
as the output. Multi-frequency analysis was done on the previously
mentioned parameters in a range of 100 − 500kHz. After the
analysis, they concluded that EIM can be used to detect muscle-
bearing alterations in rats (Semple et al., 2020).

Ngo et al. (2022) developed a wearable multi-frequency device to
measure muscle activity. This device combines EMG with EIM,
where the system performs measurements at a range of 2 and
200 kHz; thus, the system would derive the bioimpedance from
the signal—ZEIM(Ω). This can be used to investigate human muscle
contraction (Ngo et al., 2022). In this system, the EIM module must
detect the bioimpedance between 20 Ω and 200Ω with an injection
frequency of 140 Hz. To test the device, they scanned a human leg
test subject. The EIM module’s accuracy was measured alone and
was found to have an error of 0.8%. Thus, they concluded that the
EIM module can measure bioimpedance with an error of less than
5% at 140 samples per second (SPS); thus, it can replace SFB7 (Ngo
et al., 2022). EIM techniques expanded to involve multiple
frequencies rather than the 50 kHz frequency (Aaron and
Shiffman, 2000). Shiffman et al. (2008) designed an EIM device
that can be used at a frequency of 2 MHz. The device contains a
voltage divider and rotates the effective source away from the real
axis into the complex plane. To study the body impedance of the
thigh of a female patient, Cole and Cole (1941) made use of the
Nyquist plot of X(f) and R(f). Additionally, Kramers and Kronig
(K–K) developed the K–K relations that can rule out the discrepancy
between reactance and ‘3-element behavior’. Additionally, it states
that the difference between the initial reactance and the infinite one
is represented as the inverse of the frequency (Kronig, 1926;
Kushner, 1992).

4.3 Combination of EITwith othermodalities

In the realm of medical imaging, EIT has paved the way for a
fascinating array of hybrid modalities, such as magnetic resonance
electrical impedance tomography (MREIT) and acousto-electric
impedance tomography (aEIT), each harnessing the power of
diverse physical principles to uncover a deeper understanding of
the body’s internal structures and functions.

Using MREIT, current injected into an object results in a
magnetic flux. To reconstruct the image of the object, Hamamura
and Muftuler (2008) used the sensitivity matrix method (SMM),
which discretizes the object domain into a mesh of triangular
elements. The results showed that the MREIT was able to map
the general variation in the magnetic flux density. Martins and
Tsuzuki (2015) proposed a multi-objective optimization algorithm
based on the simulated annealing method for EIT image
reconstruction. To evaluate the proposed algorithm, researchers
performed the reconstruction experiment on a phantom filled
with three cucumbers, they compared the results of their
algorithm to the archived multi-objective simulated annealing,
and found coherence between the two (Martins and Tsuzuki,
2015). Furthermore, Kim et al. (2007) used the harmonic Bz
(z-component of the magnetic field) algorithm to obtain
postmortem canine brain images via MREIT, which revealed a
distinct contrast between the conductivity of white and gray
matter. They also conducted in vivo imaging experiments on
canine brains with and without regional brain ischemia and
found that the ischemia affected conductivity measurements (Lee
et al., 2017). In addition, researchers conducted an MREIT
experiment on a human brain, where they observed excessive
noise in the outer layer of the cranium (Kim et al., 2007).

Frontiers in Bioengineering and Biotechnology frontiersin.org14

Youssef Baby et al. 10.3389/fbioe.2024.1486789

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1486789


Moving on to aEIT, it combines ultrasound and electrical impedance
measurements to create images based on the interaction of acoustic
waves with tissue conductivity changes. This approach allows for the
visualization of electrical conductivity variations within biological
tissues. A famous type of aEIT is the Lorentz force EIT, which uses
granular spectral patterns that appear in ultrasound imaging to
distinguish and identify pathologies. A study done by Grasland-
Mongrain et al. (2015) consisted of ultrasound speckle and
ultrasound imaging on a bovine rib muscle; their results showed
a speckle pattern in the first technique mentioned, which revealed
two types of information, acoustic and electric homogeneities. The
speckle pattern observed in both techniques used showed similarity,
thus allowing them to conclude that aEIT using Lorentz force can be
used to study electric inhomogeneity structures (Grasland-
Mongrain et al., 2015). Additionally, Haider et al. (2008)
investigated the use of magneto-acousto electric impedance
tomography (MAET), and their study showed high spatial
resolution images.

5 Electrical impedance tomography

The early diagnosis of diseases is critical to achieving high
recovery rates for many illnesses. Imaging modalities such as
X-rays, ultrasound (US), magnetic resonance (MRI), and nuclear-
computed tomography (CT) are commonly used diagnostic tools.
Despite their success, many of these tools are invasive, have low
resolution that is affected by the operator’s skills, and put the patient
at risk of exposure to radiation, electromagnetic waves, or contrast
agents causing allergic reactions. Additionally, these modalities are
often bulky, require long image processing time, and some cannot be
used in the presence of pacemakers or metallic bone replacements.
EIT is a rising, non-invasive, portable imaging modality that
provides insightful information about the target organ based on
the collected bio-impedance data. This section will include studies
using EIT to diagnose diseases and monitor specific organs.

5.1 EIT for detecting lung diseases

In recent years, there have been significant advancements in the
imaging assessment of patients with different lung diseases. EIT
makes use of electric current to evaluate the distribution of current
conductivity in the thoracic activity (Tomicic and Cornejo, 2019).
To monitor the lungs using EIT, multiple measurements are taken
from a high-frequency (50–80 kHz) and low-intensity (5–10 mA)
alternating current that is distributed among an abundance of
electrodes placed on the thoracic cage of the patient. Most
impedance changes occur in the 5th to 6th intercostal spaces at
the parasternal line. This allows for the detection of different
respiratory diseases, such as acute respiratory distress syndrome.
According to Holder (2005), an increase in EIT use has been
detected in patients with chronic and spontaneous breathing
difficulties, most of which are done in small clinics, showing a
promising future for EIT in lung disease detection. The need for
continuous bedside assessment of the exact pulmonary deficiencies
in intensive care patients led Frerichs et al. (1998) to investigate
whether EIT could provide the previously mentioned requirement.

As a result, they concluded that functional EIT has a future in lung
applications since they were able to correctly localize regional
ventilation distribution. When EIT monitoring was used on a
patient admitted to the ICU, researchers obtained an
asymmetrical image of the lungs with almost no sign of
ventilation-related impedance changes; thus, they determined that
the accuracy of EIT is compromised in an ICU or operating room
(Frerichs et al., 1998). The increased frequency of respiratory failures
among intensive care patients poses the need for different
monitoring tools, such as EIT. In their study, Maciejewski et al.
(2021) assessed lung overdistension (OD) and collapse (CL) using
incremental/decremental positive end-expiratory pressure (PEEP)
trials in which they progressively increased PEEP values up to 20 cm
H2O and then decreased them stepwise by 5 cmH2O. An EIT device
was used for monitoring and determining where OD and CL occur
simultaneously (OD/CL compromise), which occurs at almost
11.6 cmH2O of PEEP. Thus, they concluded that EIT helps
assess the effectiveness and safety of mechanical ventilation in
acute respiratory failure (Maciejewski et al., 2021). Although
computed tomography (CT) scans are commonly used for
classifying ARDS, EIT has emerged as a new technology that is
capable of optimizing pulmonary monitoring, especially in patients
with ARDS (Bachmann et al., 2018). A study conducted by Gibot
et al. (2021) on avoiding alveolar collapse while personalizing PEEP
for ARDS and Sars-CoV-2 (COVID-19) patients showed a uniform
ventilation distribution, minimizing silent spaces and lowering lung
collapse and distension. The PEEP values differed from
conventional ones obtained from higher PEEP/FiO2 and PL/FiO2

but showed no significant difference in respiratory mechanics
compared to lower PEEP/FiO2 (Gibot et al., 2021). Although the
study showed that EIT allows for a personalized PEEP titration to
decrease pulmonary spaces, it still had major limitations since the
sample size was too small to generalize and only included patients
suffering from COVID-19; thus, the study lacked control subjects
(Gibot et al., 2021). Bikker et al. (2010) found that EIT-derived
parameters, such as ΔZglobal and ΔZregional, which represent the tidal
oscillation in the global plethysmogram caused by each respiratory
cycle, and P/V curves, are helpful in reducing alveolar
overdistension using different maneuvers such as PEEP-trials. It
has been shown that EIT can be used to assess the usefulness of
prone positioning in ARDS patients (Riera et al., 2013).
Furthermore, Scaramuzzo et al. (2020) conducted a study to
identify whether prone positioning helps in reducing mortality
rates in acute respiratory distress syndrome. Researchers tested
the effects of prone position on perfusion using EIT. The results
showed a marginal effect on perfusion redistribution in the lungs.
The study presented a few limitations as the EIT data were
incomplete; thus, researchers were unable to obtain definitive
conclusions from the study (Scaramuzzo et al., 2020). Tomasino
et al. (2020) obtained conflicting results when detecting ARDS in
healthy patients with a slight increase in ventilation in the dorsal
area. In another study conducted by Scaramuzzo et al. (2021), EIT
was used to detect transpulmonary driving pressure (DPL) and, in
turn, assess lung elastance (EL) in patients affected by ARDS. They
were able to successfully predict DPL and EL using EIT with 40%
accuracy. Additionally, integrating EIT generated accurate results
with the esophageal pressure (Peso) monitoring technique proved
that researchers measured the previously mentioned parameters
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using EIT and Peso on a patient undergoing PEEP titration. The EIT
and Peso-derived measures showed a bias of −1.4e−007 and a limit of
agreement (LoA) of −2.4 to 2.4 cmH2O. In other words, if we were to
measure a patient’s respiratory parameters using both EIT and Peso-
derived methods, we could expect the two measurements to be very
close to each other on average, but there could be individual cases
where the difference between the two methods is as large as
2.4 cmH2O (Scaramuzzo et al., 2021). Although EIT can be
considered an accurate tool for ARDS bedside monitoring, this
study excluded patients suffering from COVID-19. Thus, the
previously mentioned technique cannot be applied to COVID-19
patients with ARDS (Scaramuzzo et al., 2021). Using EIT imaging,
total liquid ventilation (TLV) showed promising results in replacing
regular mechanical ventilation and avoiding lung injury. The main
limitation to this study was the use of saline injection, which affected
the electrical properties of the lungs (Sage et al., 2018). Yuan et al.
(2021) examined the effect of position change from bedside to a
wheelchair in patients suffering from respiratory failure. EIT proved
to be an efficient tool in monitoring the regional ventilation
distribution changes, where it accurately detected the increase in
ventilation in the dorsal region of the lungs during the change in
position from the bedside to wheelchair (Yuan et al., 2021). Apart
from ARDS detection, EIT continuous monitoring allows for the
detection of lung perfusion (PE). Wang X. et al. (2021) showed that
EIT could detect prominent ventilation defects. Additionally, EIT
data matched the data provided by a CT pulmonary angiography.
Xu et al. (2021) elaborated on the methods for assessing PE using
EIT. The authors explained the pulsatility method, which is widely
used in the literature, and the conductivity contrast saline (bolus)
method and its progress in the field. They have found that the bolus
method showed strong diagnostic efficiency as it could detect
imbalanced ventilation in patients affected by COVID-19. The
limitations to this study include (1) the lack of details to provide
a vertical location of perfusion and (2) the lack of optimization in the
reconstruction algorithms (Xu et al., 2021). Patients with chronic
obstructive lung disease (COPD) develop ventilation
inhomogeneity, which is usually detectable using a CT scan. A
study done by Frerichs et al. (2021) on 52 patients, 38 with COPD
and 14 healthy test subjects, using EIT to detect ventilation
inhomogeneity showed that EIT can determine the pathologically
increased ventilation heterogeneity in COPD. In addition, it was
proved that EIT can detect the forced full expiration maneuver, the
forced full inspiration maneuver, and quiet tidal breathing (Frerichs
et al., 2021). Bluth et al. (2019) investigated the replacement of PET
scans with EIT monitoring in patients suffering from respiratory
disorders to track lung perfusion. Saline solutions were used for
perfusion, simulating real clinical values. It was shown that EIT
overestimated the perfusion in some regions and underestimated it
in dependent regions (Bluth et al., 2019). Sun et al. (2020) showed
that EIT is a reliable method to assess de-recruitment in lung volume
VDER using the multiple pressure-impedance curves derived from
monitoring data. A study by Shono et al. (2017) on the importance
of EIT monitoring in preventing ventilator-induced lung injury
(VILI) showed that EIT data allowed doctors to administer
muscle relaxation to a patient exerting great inspiratory effort
during mechanical ventilation. Costa et al. (2008) proved that
EIT can reliably detect the development of pneumothorax at the
bedside in real-time. EIT can detect pneumothorax within three

ventilator cycles with 100% sensitivity. Mechanical ventilation due
to the use of positive pressures may itself lead to pneumothorax
(Morais et al., 2017). Although EIT still requires more validation to
be fully supported by researchers as an alternative to other imaging
techniques, the literature clearly shows its potential to become a
standard monitoring tool for personalized ventilatory care and
patient safety (Maciejewski et al., 2021).

5.2 EIT for cancer diagnosis

Studies have shown that the electrical properties of malignant
cancerous tissues differ from those of healthy tissues. Thus,
bioimpedance analysis is a suitable candidate for cancer
detection, especially in breasts or the prostate (Wu et al., 2021).
Cancer imaging with bioimpedance analysis devices, specifically
EIT, has mainly focused on static imaging, which requires stricter
requirements on the data acquisition system in terms of error and
channel-to-channel accuracy (Holder, 2005). In the case of prostate
cancer, the most common detection method is transrectal
ultrasound (TRUS), yet this method has limited accuracy (Wan
et al., 2013). To tackle the previously mentioned deficiency, Borsic
et al. (2010) developed an ultrasound-coupled transrectal EIT
(TREIT). Using the TREIT method, researchers were able to
identify the difference in electrical properties between benign and
malignant tissues. They state that TREIT may be an effective tool for
identifying large tumors in the coarse mesh. This study has some
limitations: the sample only included men aged 30, and only a few of
them had cancer. Thus, more studies are needed to investigate this
new technology. When it comes to breast cancer detection, the
standard method for diagnosis is X-ray mammography (Muftuler
et al., 2004). Hubbard et al. (2011) found that during a 10-year
screening period, almost 7%–9% of patients received false-positive
results. Additionally, research has shown that mammography misses
1 in 8 breast cancers in patients, and Nelson et al. (2016) found that
this number increases in female patients aged between 40 and
79 years. A complete EIT system can complement current
screening protocols by providing a compact and portable device
(Wu et al., 2021). To elaborate on the previously mentioned
technology, Lee et al. (2020) developed a 9.6 mW/CH 10 MHz
wide-band EIT IC for breast cancer detection. Researchers tested
their model on a breast cancer phantom constructed with carrots
and agar and obtained high-precision images of the phantom with
small phase errors of 1.2° during reconstruction. Additionally, the
prototype allowed for successful preliminary detection of breast
cancer (Lee et al., 2020). Akhtari-Zavare and Latiff (2015) tested the
effectiveness of the electrical impedance computerized
mammography (MEIK), an EIT system for breast cancer
detection. The study was conducted on 88 patients with different
breast complaints. MEIK results were compared to mammography
(MG) and ultrasonography (USG) techniques. The authors found
no difference in the sensitivity of detection between EIT, MG, and
USG (Akhtari-Zavare and Latiff, 2015). Rotational EIT (rEIT) is
described and shown to produce spatially accurate absolute
reconstructions with improved image contrast and an improved
ability to distinguish closely spaced inclusions compared to EIT.
Murphy et al. (2016) explored rEIT for breast cancer imaging. To
perform the experiment, researchers used a breast-shaped tank
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made of saline solution to simulate experimental conditions.
Researchers found that absolute imaging for breast cancer can be
achieved using rEIT. Additionally, extensive research is being
conducted to apply this method to prostate cancer diagnosis
(Murphy et al., 2016). Studies show that the electrical impedance
of malignant tissues could be 20 to 40 times lower than that of
healthy tissues. MREIT relies on a pre-existing MRI scanner, a
constant current source, and a reconstruction algorithm (Woo and
Seo, 2008). When biological materials are exposed to an external
electric field, changes in their electrical properties become a source
of magnetic field disturbances, which can be detected by the MR.
Muftuler et al. (2004) investigated the clarity of the image of the
tumor location usingMREIT. The results showed that usingMREIT,
malignant tumors, specifically breast cancer, were identified with
good spatial resolution. Temporary brachytherapy, known as HDR,
is a radiation procedure treatment for prostate cancer. To maximize
its performance and target the epicenter, an imaging technique is
added to the procedure. Tan and Rossa (2021) presented EIT as the
assisting imaging technique of choice. To assess the performance of
EIT, the researchers tried detecting a large aluminum cylinder in
different media. EIT was able to detect the cylinder in media of
distilled water, sodium chloride, and gelatin, which were used to
mimic human tissues. They were able to successfully identify bovine
meat and chicken meat placed at different depths inside the
medium. They concluded that using EIT, prostate cancer can be
successfully detected, and HDR was proven to be an effective
radiation treatment for it (Tan and Rossa, 2021).

6 Electrical impedance myography

Muscle tissue properties undergo changes due to factors such as
gender, activity level, aging, and neuromuscular diseases. While
exercise can strengthen muscles, aging can decrease their number
and size (Distefano and Goodpaster, 2018). Neuromuscular diseases
can cause muscle weakness and loss of muscle mass (Iolascon et al.,
2019), which can also affect muscle conductivity and impedance.
These changes can be easily detected through the use of EIM.
Nescolarde et al. (2014) successfully used EIM to classify lower
limb muscle injury among football athletes. Similarly, Kortman et al.
(2013) used EIM measurements to group participants into
categories based on factors such as gender, age, and sex. On the
other hand, the portability of EIM made it a potential candidate for
wearable devices and prosthetics (Wu et al., 2018).

6.1 EIM for prosthetics

The development of new ways to improve prosthetic control has
been a topic of great interest in recent years. While EMG has
traditionally been the most common approach for prosthetic
control, recent research has explored an alternative approach
using EIM. Cho et al. (2020) conducted an experiment to test
whether the EIM signal could be used to control robotic hand
prosthetics. The experiment involved attaching four-channel
electrodes to the arms of 10 healthy men aged between 24 and
31 and repeating a set of 7 patterns that included movements such as
flexion, extension, hand close, hand open, pronation, supination,

and rest. The data collected from the experiment showed that EIM
can be used for upper limb prostheses as the accuracy of the acquired
data was similar to that obtained from an experiment using an EMG
signal. However, it is important to note that EIM has some
limitations as it is a signal that includes impedance from skin
and fat, making it non-specific to muscle-tissue impedance.
Additionally, EIM is sensitive to the movement of other body
parts (Cho et al., 2020).

Hahne et al. (2021) also highlighted this characteristic of the EIM
signal, noting that it is affected by any change in the arm position.
They conducted a similar experiment to the one by Cho et al. (2020),
performing a series of hand motions at three different positions. The
results showed that the combination of EMG and EIM can
successfully imitate the required movement of the arm as the EIM
signal provides complementary information to the EMG signal. Ngo
et al. (2022) also explored the idea of combining both EIM and EMG
signals as this approach provides stronger measurements of the
muscle’s condition. However, their study focused on developing a
device to evaluate the muscle’s condition, force, and torque, rather
than using it for prosthetic control.

VavrinskỲ et al. (2018) focused on combining different signals,
including EMG, mechanomyography (MMG), and EIM, to monitor
muscular activities. Their experiments showed that EIM can be used
as a means for robotics or prosthetic control as it is sensitive to
isotonic signals and insensitive to isometric signals. Son et al. (2018)
conducted three experiments to detect muscular activation with
eight healthy participants aged between 23 and 29. The participants
had electrodes wrapped around their forearms and went through an
isometric muscle experiment, an isotonic experiment, and a
frequency response experiment. The results showed that the EIM
procedure can be directed toward prosthetic or exoskeleton robots
for reading muscle action (Son et al., 2018). In another important
finding, Cho et al. (2020) designed a robotic prosthetic hand that
estimates kinematic changes in human hand states based on the EIM
signal. Their design is invulnerable to common noise and external
noise sources as it functions at a completely different frequency. This
means that extensive filtering is not required, as in previous studies
(Cho et al., 2020).

Recently, Cho et al. (2022) developed a robotic hand prosthetic
named MSC hand. This prosthetic features multiple grasping speeds
and a grasping force of 45N and is controlled by surface
electromyographic signals. The movements of each finger are
controlled by taking the signal of the corresponding electrode
and processing it through a learning-based network that predicts
how the finger should move. This study is an improvement over the
one by Hahne et al. (2021) as the robotic hand now features a 3-
degree of freedom (DOF) model, instead of a 2-DOF model.
However, the study has a major limitation, in that it was only
tested on healthy participants with fully intact arms. Since the
characteristics of the EMG signal change in time and frequency
after hand amputation, the study was unable to fully verify the
functionality of the design for amputees (Hahne et al., 2021).

6.2 EIM for neuromuscular diseases

EIM is a technique that has been used for years to assess age-
related diseases such as sarcopenia, which is the involuntary loss of

Frontiers in Bioengineering and Biotechnology frontiersin.org17

Youssef Baby et al. 10.3389/fbioe.2024.1486789

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1486789


skeletal muscle mass and strength and is considered a disease of the
elderly (Santilli et al., 2014). As muscle function regresses with age, it
is crucial to monitor this regression using clinically practical
techniques that are easy to use. EIM has been studied for about
two decades and has proven efficient in monitoring muscle health in
a variety of conditions, including neuromuscular diseases, making it
a practical tool to evaluate studies of aging.

Clark et al. (2021) conducted a study focused on proving the
benefits of using EIM to monitor muscle health by demonstrating its
sensitivity to microscopic changes as well as the loss of muscle
function. To get their results, they conducted an experiment in
which an electrical current was applied via two outer surface
electrodes, and the voltage was measured via two inner electrodes
across a healthy muscle in comparison to a sarcopenic muscle. This
study highlights the different parameters presented by the EIM
measurements, further validating the benefits of using this technique
to assess changes in muscular properties affected by age (Clark
et al., 2021).

EIM has also shown its sensitivity in measuring different
muscular diseases, such as Duchenne muscular dystrophy
(DMD), a condition that affects boys between the ages of
2–4 years. DMD symptoms begin with subtle weakened lower
extremities that develop into the inability to walk. This condition
affects nearly 1 in 3,000male births. Rutkove and Darras (2013) used
EIM measurements along with US for DMD patients and showed
that EIM measurements can differentiate between healthy and
diseased children while including age as a factor that affects the
results. Moreover, EIM measurements were compared to MRI
measurements, where the results were similar, categorizing EIM
as a technology that surpasses standard clinical measures.
Furthermore, other studies have also addressed age-related topics
using EIM. Aaron et al. (2006) showed that EIM measurements
differ with age. The conclusion was based on an experiment
comprising 100 healthy individuals aged between 18 and
90 years, where EIM was used to measure across the quadriceps
and the tibialis anterior of the individuals. The outcome of this study
reflected a “quadratic reduction,” having a steeper declining curve
for patients over 60 years old. The study also highlights the gender
role, where the correlation was stronger in men (Aaron et al., 2006).

Likewise, Kortman et al. (2013) accentuated the changes in EIM
with age while factoring in the effects of gender on the
measurements targeting skeletal muscles. It has been proven that
men face a clearer reduction in “lower extremity values” than
women. Kortman et al. (2013) also emphasized the role of age
when dealing with upper and lower extremity muscles. The
experiments showed a higher reduction of the lower extremity
muscles than the upper extremity ones. In addition, more recent
studies have also focused on using EIM measurements to evaluate
muscle changes. Arnold et al. (2017) and Hobson-Webb et al. (2018)
study the effects of using EIM to detect muscular changes with age.
Their studies were focused on using EIM for other purposes, such as
the surveillance of muscular properties in mice, which showed a
difference compared to aged animals (Arnold et al., 2017). Hobson-
Webb et al. (2018) further illustrated that EIM may represent a
reliable method to discern muscular deficit in older patients. The
conclusion was reached after experimenting on 27 older adults with
an average age of 72 years, where the measurements were consistent
and reliable.

The usage of EIM goes beyond acute diseases and can also be
used in chronic diseases, such as CLBP, a multifactorial disease with
a lifetime duration of 75%–84%. CLBP is caused by abnormal
movement of spinal segments that leads to pain in the spinal
section. EIM has become a popular tool in assessing chronic
diseases, and Wang H. et al. (2021) aimed to assess the electrical
properties of the LPM in patients with CLBP and control patients.
The results of the study showed that patients with CLBP had
increased Z and R values and decreased PA values, while the X
values were similar between the different test groups. Lukaski (2013)
found that the size of the back muscle affected EIM measurements.
This study had some limitations, such as the small sample size with a
huge difference in age between the subjects, in addition to the
anatomical structure of the lumbar crest, which did not allow EIM
scanning in the transverse direction. Researchers concluded that the
properties of LPM differed between CLBP patients and healthy
subjects, indicating that patients with CLBP have fewer muscle fibers
and an increase in fatty infiltration and connective tissue formation
(Wang H. et al., 2021).

In an earlier study conducted by Wang et al. (2019), EIM was
used to detect CLBP in 133 patients, 47 with CLBP and 86 healthy
subjects. Researchers concluded that EIM may be helpful in the
evaluation of patients with LBP, as the three main impedance
variables, namely, resistivity, impedance, and phase, showed
unique values and behaviors between healthy subjects and
patients with LBP. Li et al. (2016) conducted a study on
19 patients to assess the changes in EIM at different levels of
biceps brachii contractions during exhaustive exercise. The results
showed a significant increase in resistance during high levels of
contractions and a decrease in resistance during fatigue. The study
also found a 60% increase in resistivity between a muscle at rest and
a contracted one, suggesting that R can describe the architecture and
metabolic figure of a muscle (Li et al., 2016). Shiffman et al. (2003)
suggested that these changes might be related to the twofold
phenomenon. Li et al. (2016) also found obvious fatigue in their
test subjects, assessed through the accumulation of metabolites and
intracellular fluids, as well as low resistance values. Additionally,
researchers found that at 100 kHz, lower resistance and reactance
were observed when compared to 50 kHz because the reactance and
impedance of the membrane depend on the frequency of the current
applied (Li et al., 2016).

Esper et al. (2006) examined the use of EIM in assessing
amyotrophic lateral sclerosis (ALS) and inflammatory myopathy
(IM), two commonly known chronic diseases. The experiment
consisted of ALS and IM patients, as well as normal subjects,
with a total of 6 men and 5 women being ALS patients,
5 women and 2 men being IM patients, and 46 normal subjects,
consisting of 24 women and 22 men, all aged between 25 and
79 years. The goal of the study was to examine the multi-frequency
patterns of EIM signals in patients compared to normal subjects.
The study concluded that the multi-frequency EIM patterns varied
among patients and normal subjects, but researchers were not able
to differentiate between patients with myopathic and neurogenic
diseases. However, researchers found that EIM signals could identify
the severity of the disease (Esper et al., 2006).

EIM is a tool used to continuously monitor paralysis patients,
with the most common cause being spinal cord injury (SCI). Li et al.
(2017b) conducted two studies to assess the changes in electrical
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properties of muscles after SCI using EIM. The first study evaluated
the biceps brachii of 17 patients with SCI and 23 control subjects.
Researchers found a significant decrease in muscle reactance (X) and
phase angle (θ) at frequencies of 50 kHz and 100 kHz in the SCI
group. As a result, they concluded that EIM changes could be used to
document changes in muscle in SCI patients as it requires no effort
and is simple to conduct. In the second study, Li et al. (2017a)
examined a new EIM technique to evaluate the hand muscles of
16 SCI patients and 18 control subjects. The thenar, hypothenar, and
the first dorsal interosseous were evaluated, and the results were
similar to those of the previous study. Researchers found lower
reactance and phase angle in SCI patients than in the control
group. They concluded that these changes in electrical properties
could be due to changes in the membrane integrity and fat
infiltration.

Hu et al. (2021) used myotonometry and EIM to evaluate the
changes in muscle mechanical properties in patients with SCI. The
study involved 36 subjects, 18 with SCI and 18 healthy subjects.
Researchers evaluated the mechanical parameters of the muscle
using the myotonometer, including oscillation, dynamic frequency,
and stiffness. They also measured the electrical properties of the
muscle using EIM, including reactance, resistivity, and phase angle.
The results indicated a decrease in frequency, stiffness, and
maxForce in the SCI group. Differences in R and XC were also
observed between the SCI and control groups. Additionally,
relaxation time and creep were significantly higher in the SCI
group. Researchers observed a significant correlation between
stiffness, maxForce, and XC. Their findings support the
effectiveness of quantifying muscle mechanical and electric
properties using EIM and myotonometers (Hu et al., 2021).

Although the scope of this paper focuses on human-centered
applications, it is worth noting that EIM has also been applied to
animals. For example, Kowal et al. (2022) evaluated EIM parameters in
dogs with degenerative myelopathy (DM), revealing its effectiveness in
distinguishing muscle changes and monitoring long-term disease
progression. In advanced DM stages, EIM detected chronic low
motor neuron signs. However, the study found no correlation
between EIM phase values and gait scores, suggesting EIM’s
limitations in identifying early-stage muscle diseases. Additionally,
Hakim et al. (2017) demonstrated the utility of EIM in diagnosing
muscle dystrophy in dogs. These findings underscore the potential of
EIM beyond human applications although such animal studies fall
outside the primary focus of this paper.

7 Electric cell-substrate impedance and
applications in regenerative medicine
and cardiology

Electric cell-substrate impedance (ECSi) has become a pivotal
technology in assessing cellular behaviors and tissue interactions for
regenerative medicine and cardiovascular applications. The
development of ECSi has been accelerated by advances in both
single- and multi-frequency impedance sensing, which allows
detailed monitoring of cellular adhesion, proliferation, and
interaction with conductive substrates, laying the groundwork for
its use in complex tissue models (Li et al., 2024). Recent innovations,
such as 3D bioprinting and biohybrid-engineered conductive

patches, further underscore ECSi’s relevance in supporting and
monitoring cell functionality in regenerative medicine,
particularly for cardiovascular applications (Hwang et al., 2024).

7.1 Principles of electric cell-
substrate impedance

ECSi operates by measuring impedance changes that occur as
cells adhere to and interact with electrode arrays. These changes
provide real-time insights into cellular properties, including
adhesion strength and barrier function, without invasive labels.
By coupling ECSi with high-density microelectrode arrays (HD-
MEAs), researchers can track the spatial and temporal dynamics of
cell behavior at a higher resolution. In particular, this technology has
facilitated new studies on cardiomyocyte maturation and
contractility under mechanical or electrical stimuli, which are key
to advancing cardiac disease modeling and drug screening (Schmidt
et al., 2024; Li et al., 2024).

7.2 Applications in cardiac
regenerative medicine

The integration of ECSi with 3D bioprinting has facilitated the
creation of physiologically relevant cardiac models. High-density
microelectrode arrays, such as those developed for re-entry
arrhythmia analysis, provide dual-modality monitoring of field
potentials and contraction strength across large cardiac cell
cultures. This allows for precise drug testing in hiPSC-derived
cardiomyocytes and the evaluation of arrhythmogenic potential.
Such setups enhance the predictivity of in vitro cardiac models,
making them valuable for both regenerative research and
translational applications (Schmidt et al., 2024; Hwang et al.,
2024). Furthermore, engineered conductive cardiac patches,
which incorporate advanced materials like platinum and
graphene, have shown promise in post-infarction therapy. These
patches facilitate cellular coupling and synchronous contraction in
damaged cardiac tissues, demonstrating the regenerative potential of
ECSi-based systems (Chen et al., 2024).

7.3 Engineered platforms for drug screening
and disease modeling

ECSi is also instrumental in high-throughput drug screening
within heart-on-a-chip platforms. Integrated with microfluidics and
biosensors, these systems enable real-time monitoring of cellular
responses to pharmacological agents by tracking contraction and
electrophysiological stability in cardiomyocyte cultures. For
instance, recent microfluidic devices employing ECSi and
electrochemical impedance spectroscopy (EIS) have successfully
mimicked human cardiac physiology, offering a predictive
alternative to traditional animal models for cardiotoxicity testing
(Dou et al., 2023; Criscione et al., 2023). Moreover, ECSi-based
biosensors provide key information on dynamic cellular signals such
as calcium flux and contractility, which are essential for evaluating
both cardioprotective and regenerative drugs (Li et al., 2024).
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8 Deep learning integration in electrical
impedance analysis

Deep learning technology is rapidly evolving and being utilized
in various industries, such as healthcare and medical technology.
Deep learning in healthcare extends beyond data analysis and
handling complex datasets. The technology is also being used in
the radiology department through imaging and computer vision
techniques. Additionally, deep learning is integrated into EIM, EIT,
and EMG technologies to achieve improved image resolution and
predict potential injuries. Many studies have been conducted to
develop machine learning methods to assess and manage risk. These
methods are evaluated by dividing the datasets into three categories:
the training set, the validation set, and the testing set, which are
acquired based on the specific technology used. Therefore, it is
essential to obtain available datasets and examine how deep learning
is used in conjunction with EIT and EIM to advance the
understanding of this area (López-Valenciano et al., 2018).

8.1 Datasets available for EIT measurements

Across the literature, datasets have been collected for different
purposes and used in various experiments. Significantly, EIDORS
provides researchers with a wealth of resources to facilitate EIT
research (Adler and Lionheart, 2005). Among these resources,
EIDORS offers an extensive collection of tutorials and examples,
spanning topics from fundamental image reconstruction to
advanced techniques like dual models and unexpected effects.
These tutorials not only empower researchers with knowledge
but also provide practical guidance for implementing EIT
effectively. Moreover, these tutorials can serve as valuable tools
for generating custom datasets. For instance, researchers can utilize
techniques such as the FEM demonstrated in these tutorials as a
prime example of dataset generation. By gaining proficiency in EIT
through EIDORS tutorials, researchers can apply their expertise to
construct datasets using FEM, aligning datasets with their unique
investigative needs. This multifaceted support ensures that EIDORS
not only enhances researchers’ understanding of EIT but also equips
them to create datasets that align precisely with their research goals.

Other datasets were collected by different research groups; one
such dataset was collected by Jimbles and tdowrick (2018), which

involves multi-frequency EIT measurements taken from 26 stroke
patients. The aim was to create a dataset that could be used to
develop EIT imaging methods specifically for stroke patients. The
data were collected by placing 32 ECG electrodes and choosing a
total of 31 injections, resulting in 992 measurements taken at
17 frequencies ranging between 5 Hz and 2 kHz. Jimbles and
tdowrick (2018) later released an updated version of the dataset
with structural improvements but with the same goal of collecting
EIT data from stroke patients.

Another dataset focuses on the D-bar method, an image
reconstruction method used in the EIT system to solve the
inverse problem. This method is necessary since the
reconstruction process is nonlinear. The purpose of this dataset
is to present MATLAB routines for smooth symmetric conductivity
(Mueller and Siltanen, 2012). A second dataset, also focused on the
D-bar method, was developed by Mueller and Siltanen (2012) and
includes MATLAB routines for a discontinuous heart-and-lungs
phantom. Both datasets include computational MATLAB files taken
from the same book.

Furthermore, a study conducted by Hauptmann et al. (2017)
utilized a saline-filled tank to collect EIT measurements. The
resulting dataset is divided into three parts: the first contains
data on the current and voltage patterns of the tank with various
targets, the second consists of photographs of the tank and targets,
and the third is composed of MATLAB code for reading the data.
EIT measurements were taken using stainless steel rectangular
electrodes, with the tank filled to the top level of the electrodes.
A total of 1,264 measurements were taken, resulting from
79 pairwise current injections and a voltage measurement
between all adjacent electrodes for each injection. The publicly
available datasets are summarized in Table 4.

8.2 Exploring deep learning applications
in EIT

A primary challenge in EIT is the inverse problem of
reconstructing conductivity distributions from boundary
measurements, which is highly susceptible to noise and lacks
uniqueness. Deep CNNs, such as the U-Net and attention-based
models, have demonstrated strong performance in addressing these
challenges. By leveraging convolutional layers to capture spatial

TABLE 4 Summary of available datasets.

Data set Data
type

Who adopted it? Citation

UCLH stroke EIT dataset patients-part 1 Measured Cited by 52 different articles oriented toward multi-frequency EIT for stroke
patients

Jimbles and tdowrick
(2018)

EIT-team/stroke EIT dataset Measured Updated version of the original dataset
It has 428 views and 80 downloads

Jimbles and tdowrick
(2018)

EIT with the D-bar method: smooth and radical
case

Synthetic Cited by 551 other references with multiple topics ranging from a deep learning
aspect to EIT and D-bar methods

Mueller and Siltanen
(2012)

EIT with the D-bar method: discontinuous
heart and lung phantom

Synthetic Cited by 551 other references as the previous dataset Mueller and Siltanen
(2012)

Open 2D EIT data archive Measured Cited by 30 different articles where most of the articles were oriented toward the
integration of EIT measurements with deep learning

Hauptmann et al.
(2017)
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features, CNNs enable the reconstruction of intricate tissue
conductivity patterns and improve robustness against noise. For
example, recent studies have employed attention-based deep CNNs,
enhancing the reconstruction quality by focusing on critical regions
within the impedance data, thus reducing artifacts and increasing
the accuracy of image reconstruction (Yi et al., 2022; Wang
et al., 2023).

The integration of deep learning techniques with EIT has
garnered significant attention for its potential to overcome some
of the inherent challenges associated with traditional EIT methods.
Wei et al. (2019) focused on incorporating deep learning with EIT to
address imaging challenges, particularly in recovering challenging
inclusions like triangular, rectangular, or lung-shaped targets. They
proposed two methods, an iterative-based inversion method and a
CNN-based inversion method. The results showed that
incorporating both methods with EIT improved the
reconstruction of targets with sharp edges and corners. These
approaches proved to be fast, stable, and capable of producing
high-quality EIT imaging. Similarly, Ren et al. (2021) have also
explored the integration of deep learning techniques into EIT,
focusing on the dynamic image reconstruction challenges. They
proposed a novel deep neural network framework, known as RCRC,
to tackle the complexities associated with real-time conductivity
reconstruction. This framework comprises a reconstruction
network, a CNN encoder, a recurrent neural network (RNN)
model, and a CNN decoder (thus referred to as RCRC),
collectively designed to facilitate efficient filtering, smoothing,
and prediction of dynamic conductivity reconstructions. The
results of the experiment have successfully shown that RCRC can
accurately recover dynamic conductivity images from EIT noisy
voltage sequences (Ren et al., 2021).

In the context of image reconstruction in EIT, Li et al. (2021)
proposed employing CNNs to address the challenges associated with
image reconstruction. The motivation for utilizing CNNs in EIT
stems from the inherent nonlinearity and under-qualification of the
inverse problem, for which deep learning offers the capability of self-
learning nonlinear mappings. The proposed method has yielded
promising results. Ren et al. (2019) also highlighted the challenges
posed by the inverse problem in EIT, particularly its impact on
spatial resolution and modeling errors. Consequently, their study
introduced a two-stage deep learning (TSDL) method, comprising a
pre-reconstruction block and a CNN. The pre-reconstruction block
is tailored to acquire regularization patterns from the training
dataset, facilitating an initial target reconstruction. Subsequently,
the CNN performs post-processing on the pre-reconstruction
output, employing a multilevel feature analysis strategy to
effectively mitigate modeling errors. The study’s outcomes
underscore the TSDL method’s capacity to attain high-accuracy
shape reconstructions and its robustness in the face of measurement
noise and modeling errors.

The applications of EIT have also been highlighted in the
manufacturing processes. However, the present challenges related
to the inverse problem pose difficulties in real-time applications. To
tackle these challenges, Aller et al. (2023) systematically compared
six machine learning algorithms and investigated the impact of
different EIT configurations. The findings of this research reveal that
tree-based models, particularly gradient boosting, exhibit notable
performance levels, surpassing even the commonly employed neural

networks in handling EIT data. The study achieved an impressive
99.14% accuracy in detecting internal artifacts and a root mean
square error of 4.75 in predicting internal conductivity distributions
(Aller et al., 2023). Apart from using deep learning with EIT to
improve image reconstruction, Smyl and Liu (2020) introduced a
pragmatic approach based on deep learning for optimizing electrode
positions. Achieving high-quality measurements necessitates a
strategic placement of electrodes. The study’s findings reveal that
the optimized electrode positions consistently outperform the
conventional uniformly distributed layouts in all tested scenarios.
Additionally, the use of these optimized positions leads to reduced
errors in EIT reconstruction and enhances the discernibility of EIT
measurements (Smyl and Liu, 2020).

The complexity of extending EIT from 2D to 3D further
compounds the challenges associated with impedance imaging.
To address this, researchers have explored learning-based 3D EIT
reconstruction methods, such as transposed convolutional networks
and graph neural networks. These models effectively handle the
increase in data dimensionality, allowing for detailed 3D
reconstructions essential for applications like lung and cardiac
monitoring. In addition to spatial fidelity, these models provide
robustness in heterogeneous conductivity scenarios, better reflecting
realistic tissue properties than conventional methods (Tanyu
et al., 2023).

8.3 Exploring deep learning applications
in EIM

For EIM, DL models have been used to interpret muscle
impedance data for applications in neuromuscular diagnostics
and rehabilitation. Techniques such as RNNs and long short-
term memory (LSTM) networks are particularly effective in
analyzing time-series data, capturing temporal dependencies that
are essential in monitoring muscle activity and fatigue over time.
Additionally, DL models trained on extensive EIM datasets can
differentiate between pathological and normal muscle states,
providing valuable diagnostic insights and enabling real-time
feedback in wearable EIM applications (Frerichs et al., 2023).

In recent years, the integration of deep learning with various
technologies, such as EIM, has garnered significant attention.
Pandeya et al. (2022) conducted a study focused on EIM as a
“primary diagnostic technique” due to the combination of
“multi-frequency resistance, reactance, and phase values.” The
experiment involved measuring the impedance of four types of
mice and wild-type animals, including 80 diseased mice and 33 WT
animals, at different frequencies ranging from 8 to 1,027 KHz; this
range was chosen to ensure that the measurements were not affected
by electrode contact artifacts or inductive and parasitic capacitance
artifacts. The range was determined to have a total of 29 frequencies,
resulting in 174 values due to 29 frequencies with 2 electrode
orientations and 3 datasets while having N = 113 samples.

Random forest (RF) was the algorithm of choice due to its ability
to handle high-dimensional datasets. The results indicated that the
approach of combining several features (“multi-frequency
resistance, reactance, and phase values”) was better at classifying
the diseased than a single frequency value (Pandeya et al., 2022).
Moreover, EIM, a technology used to determine neurological
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diseases, has been utilized to classify different types of female breast
tumors using machine learning techniques. Kabir and Ahad (2020)
worked on this topic by classifying two breast tumor types, “benign
and malignant,” using an ANN while having a 3D model of the
female breast. The voltage was measured at a frequency of 500 kHz,
and the EIM criteria, i.e., resistance (R), reactance (X), and phase
(θ), were extracted. A 3 × 1156 matrix was used for the input data,
while a 2 × 1156 matrix was used for the target matrix, with the
matrix operation carried out using the neural network toolbox of
MATLAB v2019b. The results showed a 97.7% accuracy, proving the
research theory that EIM parameters could be used as a classification
technique to identify different types of breast tumors, even with
varying breast shapes (Kabir and Ahad, 2020).

Furthermore, Srivastava et al. (2012) focused on disease
assessment and used EIM with ML, along with quantitative
muscle ultrasound (QMUS), to classify muscles with spinal
muscular atrophy (SMA). An experiment was conducted on
46 participants, including 21 normal subjects, 15 SMA type
2 subjects, and 10 SMA type 3 subjects. The new model yielded
higher area under the curve values than using each technology
separately. Thus, ML allowed for the recognition of the difference
between diseased (muscles having type 2 or type 3 SMA) and non-
deceased muscles. In the same context, Alix et al. (2020) used EIM to
evaluate the tongue muscles of patients with ALS by designing a
system of two electrode plates placed on the patient’s tongue. They
collected data from the EIM system for both ALS patients and
healthy patients, comparing the results to validate the proposed
system. The study used a machine learning approach to select the
most relevant information from the results and reduce the
dimension of the impedance data.

Likewise, Schooling et al. (2021) focused their research on using
EIM to assess ALS. However, NTF was used in this study. NTF stands
for non-negative tensor factorization and is an ML method that
presents advantages that are relevant to the study at hand. Some of
them are that it is capable of dealing with absent data, even though 70%
of it would bemissing. Furthermore, the use of NTF enables the output
to be physically interpretable. Based on the conducted experiment
involving healthy subjects andASL patients, the hypothesis of the study
was verified, which proved that NTF can successfully classify disease
severity, allowing for clinical interpretations.

Cheng et al. (2022) employed EIM with machine learning to
obtain the total mass of thigh muscles (MoTM), recording EIM
parameters and subject characteristics such as age, weight, and BMI.
They used ridge regression (RR) and support vector regression
(SVR) to measure MoTM in 96 subjects and obtained better
results than previous studies in terms of the regression coefficient
and root mean square error (RMSE).

The application of EIM with machine learning is not limited to
disease evaluation and diagnostic improvements. Barioul et al.
(2020) explored the possibility of using this technological
combination to identify a certain amount of American Sign
Language (ASL). They recorded the change in impedance of the
forearm due to several gestures and applied an extreme learning
machine (ELM) classifier to data collected from 11 healthy subjects.
The study found that a frequency range of 1 kHz–4 kHz was reliable
for gesture recognition and resulted in an accuracy of 92.6% for
training and validation data and an accuracy of 70.17% for
testing data.

9 Discussion and recommendations

EIT and EIM are promising non-invasive techniques that have
the potential to revolutionize healthcare applications. In this survey
paper, we have reviewed the potential applications of EIT and EIM
in healthcare and identified several areas of contribution to research.
In addition, we have discussed the role of deep learning in advancing
research in these fields.

Impedance devices generally face two main challenges. The first
challenge is related to their use in clinical applications. Branco et al.
(2023) tackled the use of bioelectrical impedance analysis (BIA) as a
method to determine body composition for oncology patients. BIA
consists of measuring the resistance (R) and reactance (Xc), which
are used to determine the impedance (Z). This impedance is then
used to approximate the total body water (TBW). Thus, BIA allows
estimating two main body composition models, the fat mass (FM)
and the fat-free mass (FFM). By assessing bioelectric impedance
vector analysis (BIVA)—which provides insights into hydration
levels and cell mass—and phase angle (PhA), which reflects cell
membrane integrity, valuable conclusions can be drawn about
cancer-specific characteristics, such as its type and progression
stage (Branco et al., 2023). However, the measurements taken by
BIA are influenced by multiple clinical settings, leading to
inconsistent results. These varied measurements are caused by
the utilized measurement methodologies, patient preparation
techniques, and a wide range of equipment used. The efficiency
of BIA is also affected by individual factors such as limb length,
menstrual cycle phase, physical activity, and nutritional condition. It
was shown that the accuracy and precision of BIA measurements
were poorer for obese/edematous individuals. Therefore, evaluations
must be conducted under the same circumstances, taking into
consideration possible sources of error (Branco et al., 2023).

The second challenge is related to the operating frequency of the
impedance device. Padilha Leitzke and Zangl (2020) tackled the
main difference between using EIT and electrical impedance
tomography spectroscopy (EITS). EIT presents an ill-posed
problem since it has difficulties using boundary measurements to
achieve a single reliable solution. This leads to a difficult, accurate
reconstruction of materials. Therefore, EITS is introduced as a
multi-frequency approach that allows the differentiation of
materials based on their frequency-dependent electrical
properties. Through that approach, accurate material
reconstruction is possible. The main difference between EIT and
EITS is the multi-frequency approach since an EITS system
operating at a single frequency is considered an EIT system,
which reintroduces the ill-posed problem of EIT (Padilha Leitzke
and Zangl, 2020).

Furthermore, Mansouri et al. (2021) discussed the difference
between three different types of electrical impedance tomography,
namely, conventional EIT, dual-frequency EIT, and multi-frequency
EIT. Conventional EIT consists of using a single frequency (typically
50 kHz) to create an image based on two measurements taken at
distinct times. However, it presents limitations related to reference
stability, especially for long-term applications. Therefore, dual-
frequency EIT is introduced to reduce the stability error
presented by conventional EIT. This is done by applying currents
at two distinct frequencies, which allows the distinction between
tissue types and the detection of changes in conductivity related to
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the applied frequency. Multi-frequency EIT, on the other hand,
consists of applying sinusoidal currents at different frequencies to
get a more accurate tissue distinction since various tissue types react
differently based on the frequency applied. Thus, through this
method, errors presented in single-frequency systems are lowered
(Mansouri et al., 2021).

One of the key areas of contribution to EIT research is the
development of new imaging techniques. EIT has the potential to
provide detailed images of the body’s internal structures and
functions, and research in these fields could focus on developing
new imaging techniques that are more accurate, sensitive, and
specific. For example, researchers can use deep learning models
to improve image segmentation and classification, which can lead to
more accurate identification of abnormal tissues or structures.
Furthermore, advances in sensor technology and data processing
algorithms have the potential to improve the quality and resolution
of EIT images, enabling clinicians to diagnose and monitor a wide
range of health conditions more effectively.

Another important area of contribution is improving diagnostic
capabilities. EIT and EIM can be used to diagnose a wide range of
health conditions, including neuromuscular disorders, respiratory
diseases, and tumors. Research in these fields could focus on
developing new diagnostic tools and algorithms that can detect
and diagnose diseases more accurately and efficiently. Machine
learning and deep learning can be used to analyze large datasets
and develop predictive models that can improve diagnosis accuracy,
which can ultimately lead to better patient outcomes. For example,
deep learning models can be used to classify and predict
neuromuscular disorders based on EIM data, with promising
results reported in recent studies (Shi et al., 2021).

Furthermore, EIT and EIM can be used to guide treatment
planning and monitor the effectiveness of treatments. Research in
these fields could focus on developing new algorithms and
techniques that can optimize treatment planning and improve
outcomes for patients. For example, EIT can be used to monitor
lung function and optimize ventilation strategies in patients with
respiratory failure, while EIM can be used to monitor muscle
function and guide rehabilitation in patients with neuromuscular
disorders (Pandeya et al., 2022). Machine learning and deep learning
can be used to develop predictive models that can identify patterns
in muscle activation and assess muscle function, which can help
clinicians monitor disease progression and treatment effectiveness.

In addition, EIT and EIM have a wide range of potential
applications in healthcare, and research in these fields could
focus on investigating new applications and potential uses. For
example, EIT can be used to monitor gastric function and detect
gastrointestinal disorders, while EIM can be used to monitor cardiac
function and detect early signs of heart disease. Machine learning
and deep learning can be used to integrate data from multiple
sources and develop comprehensive diagnostic tools that can detect
and diagnose complex diseases.

EIT and EIM generate large amounts of data that require
sophisticated analysis techniques. Research in these fields could
focus on developing new data analysis methods that can extract
meaningful information from the data more efficiently and
accurately. Machine learning and deep learning can be used to
analyze large datasets and identify meaningful patterns, which can
ultimately improve our understanding of disease processes and

treatment outcomes. For example, deep learning models can be
used to predict patient outcomes based on EIM data, enabling
clinicians to develop personalized treatment plans that are
tailored to each patient’s unique needs.

The fields of EIT and EIM hold vast potential for contributions
to healthcare applications. Machine learning and deep learning can
be powerful tools in advancing research in these fields, enabling
more accurate data analysis, prediction, and modeling. As such,
researchers in these fields should continue to explore the potential of
machine learning and deep learning techniques in improving the
accuracy and efficiency of EIT and EIM imaging, diagnosis,
treatment planning, and monitoring. Moreover, the collaboration
between researchers in EIT and EIM, as well as experts in machine
learning and deep learning, could facilitate the development of novel
algorithms, tools, and techniques that can improve our
understanding of the underlying biological processes and provide
better healthcare solutions for patients. Furthermore, advancements
in wearable technology present significant potential for the
integration of EIT/EIM with deep learning in real-time
monitoring for the patient’s status during everyday activities.

It is important to note that while EIT and EIM hold great
promise, there are still several challenges that need to be addressed.
For example, the complexity of the human body and the variability
of physiological signals can lead to noise and artifacts in EIT and
EIM data, which can affect the accuracy of image and data analysis.
Additionally, the clinical translation of EIT and EIM techniques
requires validation and standardization across different clinical
settings and patient populations. These challenges highlight the
need for further research in EIT and EIM and the potential of
machine learning and deep learning to address these challenges and
improve healthcare outcomes. The integration of reinforcement
learning (RL) for optimizing impedance measurements is an
emerging area in EIT and EIM. By dynamically adjusting
measurement parameters, RL models adapt in real time to
improve signal quality, thus enhancing diagnostic reliability in
clinical environments. Additionally, the convergence of AI with
real-time processing platforms is likely to expand impedance
analysis capabilities in point-of-care diagnostics, supporting
applications ranging from respiratory monitoring to
neuromuscular health.

In summary, EIT and EIM are promising techniques with the
potential to revolutionize healthcare applications. Machine learning
and deep learning offer a powerful toolset to advance research in
these fields and address some of the challenges associated with EIT
and EIM. Continued research in EIT and EIM and collaboration
between experts in these fields and in machine learning and deep
learning can lead to the development of new imaging techniques,
diagnostic tools, and treatment planning strategies that can improve
healthcare outcomes for patients.

The main gaps in the literature and possible future research
directions are listed below.

• Standardized protocols for BIA should be developed to
improve consistency across clinical settings, considering
patient-specific factors like physical condition, preparation,
and measurement techniques.

• Multi-frequency EIT techniques, such as EITS, should be
advanced to address the ill-posed nature of single-frequency
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EIT, improving material differentiation and accuracy in tissue
reconstruction.

• Deep learning-based methods for EIT and EIM should be
explored to enhance image segmentation, classification, and
resolution, thereby improving accuracy in diagnosing and
monitoring various health conditions.

• Robust diagnostic algorithms, potentially using deep learning
models, should be developed to increase the predictive
accuracy of neuromuscular, respiratory, and other disease
diagnoses through EIT and EIM data analysis.

• Adaptive algorithms for treatment planning should be created,
particularly using machine learning to tailor therapeutic
strategies in real time, such as monitoring lung function for
ventilation optimization or assessing muscle function during
rehabilitation.

• Novel applications of EIT and EIM should be investigated in
areas beyond current clinical uses, including the early detection
of cardiac and gastrointestinal disorders and integration of
multi-source data for more comprehensive diagnostic insights.

• Advanced data analysis techniques should be developed to
handle the large datasets generated by EIT and EIM,
incorporating machine learning to identify significant
patterns that could improve understanding of disease
progression and inform personalized treatment plans.

• Interdisciplinary collaboration should be promoted among
researchers in EIT, EIM, and AI to design innovative tools and
algorithms, addressing challenges in real-time data processing and
increasing accuracy in complex physiological signal analysis.

• Research should be expanded into wearable technology to
enable real-time monitoring of EIT and EIM data during daily
activities, using machine learning to improve the integration
of these techniques into wearable health monitoring systems.

• The noise and artifacts introduced by physiological variability
in EIT and EIMmeasurements through advanced filtering and
adaptive noise reduction techniques should be addressed.

• EIT and EIM across varied clinical settings and diverse patient
demographics should be validated and standardized to ensure
reliability and effectiveness in clinical translation.

• RL should be integrated into EIT and EIM systems for
dynamic measurement optimization, allowing real-time
adaptation to enhance signal quality and diagnostic reliability.

• The convergence of AI should be pursued with real-time
processing technologies to expand EIT and EIM
applications in point-of-care diagnostics, supporting
conditions such as respiratory monitoring and
neuromuscular health.

10 Conclusion

This review provides an overview of the two emerging electrical
impedance technologies: myography and tomography. In this paper,
we explain how injecting a current into the target tissue and
recording the response at different frequencies can be used to
obtain insightful information about the tissue—whether through
constructing images or studying the tissue’s electrical properties.

FIGURE 10
Use of EIM and EIT in disease diagnosis and clinical monitoring.
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The review describes the basic components and methods involving
these technologies while focusing on hardware parts, electrode
selection, and electrode/injection configuration. We highlight key
trends in the literature that serve as guidance to researchers who are
interested in contributing to this field. For example, electrodes were
used exclusively for either injection or recording in EIM, while in
EIT, electrodes are used for both depending on the injection method
used. The number of electrodes used increased with EIT, especially
when high precision was required. Injection methods varied in
quality when considering boundary conditions and the
background noise, but all obtained impedance values were within
the range. Ag/AgCl electrodes are most commonly used with all
systems, and voltage injection was replaced by current injection due
to the latter’s resistance to electrode wear out/drying and electrode
impedance change upon long-term electrode use.

Furthermore, some trends have emerged alongside advances in
fields such as digital processing and integrated circuits. A shift from
analog to digital acquisition was observed in most EIM and EIT
technologies, along with a transition from fixed regular current
sources to voltage-controlled current sources. VCCSs are crucial in
EIT and EIM systems as they allow incorporating several frequencies
in the same device; thus, a VCCS with programmable and easily
adjustable frequency and amplitude is preferred over regular
constant sources. We also present the most powerful processing
algorithms and reconstruction tools for both EIT and EIM while
focusing on the strengths and weaknesses of each algorithm.
Advances in EIM and EIT allowed the deployment of several
devices in the market for individual and clinical use. We
summarize commercial devices and present clinical uses for
electrical impedance: EIT as a powerful imaging modality for
detecting cancerous tissue and monitoring patients with
pulmonary difficulties and EIM as a tool to detect and monitor
the progress of neuromuscular diseases (Figure 10). Finally, we
highlight the role of machine learning and deep learning in
advancing the diagnosis, treatment planning, and monitoring of
different diseases through the use of electrical impedance. Based on
the findings of this review, the future of EIT/EIM-based research
holds great potential. One of the viable research tracks is to integrate
electrical impedance and deep learning in wearables to track the
muscular activity of athletes and predict injuries. This presents a
major turning point in sports on a medical and financial level.

This review charts a comprehensive guide to the field of
impedance analysis. Research teams aiming to develop
impedance devices will find valuable information on the
evolution of these technologies, along with diagrams illustrating
the fundamental components of any electrical impedance device.
Those focused on impedance analysis will benefit from a

comprehensive review of cutting-edge algorithms, reconstruction
techniques, and available datasets. Moreover, clinicians and
researchers integrating EIM and EIT into their studies will have
access to a curated selection of commercial devices and an extensive
body of previous clinical research, serving as a basis for potential
future contributions.
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