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Introduction: Osteoporotic vertebral fractures are a major cause of morbidity,
disability, and mortality among the elderly. Traditional methods for fracture risk
assessment, such as dual-energy X-ray absorptiometry (DXA), may not fully
capture the complex factors contributing to fracture risk. This study aims to
enhance vertebral fracture risk prediction by integrating radiomics features
extracted from computed tomography (CT) scans with clinical data, utilizing
advanced machine learning techniques.

Methods: We analyzed CT imaging data and clinical records from 124 patients,
extracting a comprehensive set of radiomics features. The dataset included
shape, texture, and intensity metrics from segmented vertebrae, alongside
clinical variables such as age and DXA T-values. Feature selection was
conducted using a Random Forest model, and the predictive performance of
multiple machine learning models—Random Forest, Gradient Boosting, Support
Vector Machines, and XGBoost—was evaluated. Outcomes included the number
of fractures (N_Fx), mean fracture grade, and mean fracture shape. Incorporating
radiomics features with clinical data significantly improved predictive accuracy
across all outcomes. The XGBoost model demonstrated superior performance,
achieving an R2 of 0.7620 for N_Fx prediction in the training set and 0.7291 in the
validation set. Key radiomics features such as Dependence Entropy, Total Energy,
and Surface Volume Ratio showed strong correlations with fracture outcomes.
Notably, Dependence Entropy, which reflects the complexity of voxel intensity
arrangements, was a critical predictor of fracture severity and number.

Discussion: This study underscores the potential of radiomics as a valuable tool
for enhancing fracture risk assessment beyond traditional clinical methods. The
integration of radiomics features with clinical data provides a more nuanced
understanding of vertebral bone health, facilitating more accurate risk
stratification and personalized management in osteoporosis care. Future
research should focus on standardizing radiomics methodologies and
validating these findings across diverse populations.
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1 Introduction

Osteoporosis is a common degenerative skeletal condition
characterized by low bone mass and the deterioration of bone
tissue microarchitecture, leading to increased skeletal fragility and
a high risk of fractures (Compston et al., 2019). The prevalence of
osteoporotic fractures is expected to rise, potentially comprising 50%
of all fractures by 2050 (Compston et al., 2019; Zhu et al., 2023).
These fractures are significant contributors to morbidity, mortality,
and disability among the elderly (Clynes et al., 2020; Sattui and Saag,
2014). In Europe, the prevalence of osteoporotic vertebral fractures
varies between 18% and 26%. In Germany, women are 2.4 times
more frequently affected than men (Ballane et al., 2017; Bassgen
et al., 2013; Spiegl et al., 2021). The German Osteology Society’s
guideline (DVO, Dachverband Osteologie) utilizes the Genant
classification system (Genant et al., 1993) to categorize these
fractures (Spiegl et al., 2021).

Bone mineral density (BMD) assessment, typically measured by
dual-energy X-ray absorptiometry (DEXA), remains the gold
standard for osteoporosis diagnosis (Gani et al., 2024). CT-
derived Hounsfield units (HU) from vertebral bodies have shown
strong correlation with DEXA T-scores and have demonstrated
reliability in diagnosing osteoporosis (Pickhardt et al., 2011;
Pickhardt et al., 2013). Moreover, advanced imaging techniques
have been explored, revealing that bone marrow signal intensity on
T1-weighted images is inversely related to osteoporosis, aiding in the
development of MRI-based scoring systems for prognostication
(Shen et al., 2012; Ehresman et al., 2020). In addition to
traditional BMD measurements, subject-specific finite element
(FE) models have been developed for solving biomechanically
related clinical problems, including bone strength predictions
(Molinari and Falcinelli, 2022). These models reconstruct realistic
3-D patient-specific images from radiological data, applying
material properties based on Hounsfield units (HU) to FE
meshed models. Mechanical, structural, and fracture
characteristics are then assessed by applying boundary and
loading conditions. Studies have shown that FE-based analysis
can reliably predict bone strength (Anitha et al., 2019) and
fracture risk (Allaire et al., 2019; Choksi et al., 2018). Volumetric
BMD combined with FE-predicted bone strength has been
demonstrated to predict fracture risk more accurately than
DEXA-based BMD or FE-predicted bone strength alone (Wang
et al., 2012). However, despite its potential, FE analysis has not yet
become a standard clinical protocol due to concerns over radiation
exposure, processing time, and associated costs (Wang et al., 2012).

Radiomics, a burgeoning field, leverages complex algorithms to
extract detailed features from medical images, thereby enabling a
quantitative evaluation of lesion heterogeneity (Mayerhoefer et al.,
2020; Saravi et al., 2023). This approach transforms traditional
medical imaging into rich, high-dimensional datasets, facilitating
the extraction of features that are not discernible through
conventional observation. These radiomic features have shown
potential in various musculoskeletal applications, including the
assessment of vertebral bone fragility and the evaluation of
vertebral load through texture analysis (Zaworski et al., 2021;
Sollmann et al., 2021; Tabari et al., 2017; Rastegar et al., 2020;
Burian et al., 2019; Valentinitsch et al., 2019). Despite these
advancements, there is a scarcity of research specifically focusing

on the application of radiomics along with clinical features such as
age and DEXA T-scores for predicting vertebral bone fracture risk
and fracture characteristics.

Given the critical need for improved fracture risk assessment
methods, the current study aims to evaluate the predictive value of
radiomics features extracted from CT scans, in conjunction with
clinical data such as age and DEXA T-scores, for assessing vertebral
fracture risk and fracture characteristics. This study explores the use
of machine learning algorithms to identify predictive patterns in a
multimodal dataset containing clinical and imaging features (Saravi
et al., 2022). The goal is to enhance the understanding of bone health
beyond conventional clinical assessments, potentially providing a
noninvasive tool for better risk stratification and management in
patients at risk of vertebral fractures.

2 Methods

2.1 Train/test dataset

The dataset utilized for this study was derived from the “MDCT
vertebra segmentation and localization dataset”, published as part of
the Verse2019 challenge (Löffler et al., 2020). This dataset was
collected following approval from the local institutional review
board of the Technical University of Munich (proposal 27/
19 S-SR), with the waiver of written informed consent. The data
comprised CT images from two retrospective studies. The inclusion
criteria for the first study were the availability of lumbar dual-energy
x-ray absorptiometry (DXA) and a CT scan of the lumbar region,
both performed within 1 year. For the second study, inclusion
required a non-enhanced CT scan of the entire spine. Additional
patient selection criteria included being over 30 years of age and
having no history of bone metastases.

CT imaging was performed using five different multidetector CT
scanners: Philips Brilliance 64, iCT 256, IQon (Philips Medical
Care), Siemens Somatom Definition AS, and AS+ (Siemens
Healthineers). Scans were executed with a peak tube voltage of
120 kVp, a slice thickness of 0.9–1 mm, and adaptive tube load
settings. Some scans included the administration of oral and/or
intravenous contrast media. The images were collected in helical
mode, and post-contrast scans were taken either in the arterial or
portal venous phase.

A total of 104 CT image series from 104 patients were selected
based on imaging requirements and the availability of DXA T-values
from the dataset. The requirements included acquisition with a 120-
kVp peak tube voltage and sagittal reformations reconstructed by
filtered back projection favoring sharpness over noise (bone kernel),
with a spatial resolution of at least 1 mm in the craniocaudal
direction. The scans were obtained between January 2013 and
November 2017 and included indications such as acute back
pain, suspected spinal fractures, cancer staging, chronic back
pain, and postoperative examinations.

Vertebral segmentation was performed in a three-step approach.
First, CT data were anonymized and converted to Neuroimaging
Informatics Technology Initiative (NIfTI) format, reducing the
resolution to limit computational demands. The second step
involved the use of a deep learning framework for segmentation,
employing a fully convolutional neural network (CNN) to detect the
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spine, a Btrfly Net for vertebrae labeling on sagittal and coronal
maximum intensity projections, and an improved U-Net for
segmenting vertebral patches at original resolution. The U-Net
was trained on public datasets and continuously retrained with
finalized segmentation masks. Finally, the segmentation masks were
manually refined by radiologists using ITK-SNAP software
(Yushkevich et al., 2016). The segmentation results generated
using the 3D Slicer software platform were saved in NIfTI format
(.nii.gz) for further processing. The segmentation algorithm used in
this study demonstrated a high level of accuracy. It achieved a mean
vertebral identification rate of 95.6%, with an average localization
error of less than 2 mm. For evaluating the segmentation
performance, the Dice similarity coefficient was calculated,
yielding a mean score of 91.7% (Liebl et al., 2021).

2.2 Validation dataset

For the external validation dataset, we included 20 CT image
series from 20 consecutive patients diagnosed with both
osteoporotic and non-osteoporotic fractures who underwent CT
examinations and dual-energy x-ray absorptiometry (DXA) scans,
with available DXA-T values, between January 2020 and May 2023.
These patients were recruited from the Department of Spine Surgery
at Loretto-Hospital Freiburg, an affiliated hospital of the University
Medical Center Freiburg, Germany. Ethical approval was obtained
from the local Ethics Committee Freiburg, Germany (Approval
Number: 116/200). Informed written consent was secured from
all participants before their inclusion in the study.

CT imaging was performed using one CT scanner (Siemens
Somatom go.Up). The segmentation of the vertebrae was carried
out by an expert radiologist with over 5 years of experience in
image segmentation for artificial intelligence applications. The

segmentation process utilized the 3D Slicer software platform
(Fedorov et al., 2012), employing the nnU-Net framework
(Wasserthal et al., 2023). This framework, based on a U-Net
architecture, automatically configures all hyperparameters
according to the dataset’s characteristics. The initial
segmentations were subsequently refined by the radiologist
using the Segment Editor module in 3D Slicer software. An
example of the segmentation process is depicted in Figure 1.

2.3 Fracture assessment and grading

All CT scans were systematically evaluated for fractures at each
thoracolumbar vertebral level, as fractures in the cervical spine are
uncommon and typically result from non-osteoporotic causes. The
assessment was conducted by a radiologist with over 5 years of
experience. Vertebral fractures were classified according to the
semiquantitative method established by Genant et al. (1993). This
method categorizes fractures based on the percentage of height loss
at the vertebral body: fractures were classified as mild with a height
loss of ≥20% and <25%, moderate with a height loss of ≥25%
and <40%, and severe with a height loss of ≥40%.

Additionally, the type of fracture was determined and
categorized into three types: wedge fractures, characterized by the
most significant height loss at the anterior aspect of the vertebral
body; biconcave fractures, identified by central height loss with
nearly equal anterior and posterior height reduction; and crush
fractures, marked by the most prominent posterior height loss or
uniform reduction including the posterior wall. Vertebral
deformities and developmental abnormalities, such as those seen
in Scheuermann disease, were excluded from being classified as
fractures. The total number of fractures present in the
thoracolumbar spine was also documented.

FIGURE 1
Segmentation of thoracolumbar vertebrae using 3D slicer in various Views. (A) Coronal View; (B) Axial View; (C) Sagittal View; (D) 3D rendered view.
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2.4 Radiomics feature extraction

Radiomics features were extracted from the segmented vertebrae
using the 3D Slicer software platform. The complete list of extracted
features is provided in Supplementary Table S1. The features
encompass a range of categories, including first-order statistics,
shape-based (both 3D and 2D), gray level co-occurrence matrix
(GLCM), gray level run length matrix (GLRLM), gray level size
zone matrix (GLSZM), neighboring gray-tone difference matrix
(NGTDM), and gray level dependence matrix (GLDM). The
shape-based features were derived in both 3D and 2D, capturing
the geometrical properties of the volume of interest (VOI) without
considering the gray level intensity distribution. These features
describe aspects such as the size and shape of the VOI, which are
calculated solely from the original image and segmentation mask.
GLCM features characterize the second-order statistical texture of an
image region defined by a mask. They measure the frequency of co-
occurrence of pairs of pixel intensities, separated by a specified
distance (δ) in a given direction (θ). Each GLCM matrix element
(i,j) represents the joint probability of pixels having gray levels i and j
at the defined spatial relationship. GLSZM features assess the
distribution of homogeneous zones of gray levels within the image.
A gray level zone is defined as a group of connected voxels with the
same intensity. The GLSZM calculates metrics that quantify the size
and intensity variations of these zones. GLRLM features focus on the
length of consecutive runs of pixels with the same gray level, capturing
the texture patterns in the image based on the uniformity of pixel
intensity sequences. NGTDM features provide information on the
texture contrast by comparing each pixel’s gray value to the average
gray value of its neighboring pixels within a defined distance (δ). It
calculates the sum of absolute differences for each gray level, offering
insights into the local contrast and texture coarseness. GLDM features
describe the dependencies among voxels in an image. These features
quantify the number of connected voxels within a specific distance (δ)
that share similar intensity values, thus reflecting the texture’s
homogeneity and structure (Mayerhoefer et al., 2020; Parekh and
Jacobs, 2016).

2.5 Statistical analyses and machine learning
algorithms

The clinical features considered were patient age at CT scan (age_
ct), sex (sex coded as 0 for female and 1 formale), and the DXAT-value
(DXA T-value). Radiomics features, extracted from the segmented
vertebral regions, included a range of morphological and textural
characteristics (see Supplementary Table S1). Data were standardized
using the StandardScaler from scikit-learn to ensure that all features
contributed equally to the analysis, without bias due to differing scales.
Clinical and radiomics data were combined for comprehensive feature
sets used in further analyses. Four machine learning models were
selected for evaluation: Random Forest Regressor (RandomForest),
Gradient Boosting Regressor (GradientBoosting), Support Vector
Regressor (SupportVector), and XGBoost Regressor (XGBoost).
These models were chosen due to their proven effectiveness in
handling structured data and their ability to capture complex
interactions among features. For each model, a pipeline was created
comprising the standardization step and the machine learning model

itself. This pipeline was essential for ensuring that all transformations
were applied consistently across the training and validation datasets.

Hyperparameter optimization was performed using Bayesian
Optimization through the BayesSearchCV method from the scikit-
optimize library. This method was selected due to its efficiency in
exploring the hyperparameter space compared to traditional grid
search, particularly for complex models with multiple
hyperparameters. Additionally, we implemented class weighting
for models to ensure that the minority classes were appropriately
represented during training. This approach, along with stratified
cross-validation, allowed us to mitigate the impact of class
imbalance on model performance and improve generalizability.
The optimization process was set to 30 iterations, with a
stratified 5-fold cross-validation to evaluate model performance.

The hyperparameters tuned for each model included:

• RandomForest: number of estimators (n_estimators),
maximum tree depth (max_depth), minimum samples
required to split an internal node (min_samples_split), and
minimum samples required at a leaf node (min_samples_leaf).

• GradientBoosting: number of boosting stages (n_estimators),
learning rate (learning_rate), maximum tree depth (max_
depth), minimum samples to split an internal node (min_
samples_split), and minimum samples at a leaf node (min_
samples_leaf).

• SupportVector: regularization parameter (C) and the epsilon
in the epsilon-SVR model (epsilon).

• XGBoost: number of boosting rounds (n_estimators),
maximum tree depth (max_depth), learning rate (learning_
rate), subsample ratio (subsample), and column subsample by
tree (colsample_bytree).

Radiomics feature selection was performed using a tree-based
method, specifically the Random Forest model. The feature
importance scores generated by the model were utilized to
identify the most predictive features. The Random Forest model’s
inherent ability to rank features based on their contribution to the
prediction task allowed for an effective selection process. This step
was crucial in understanding which features (clinical and radiomics)
were most informative in predicting the outcomes of interest: the
number of fractures, fracture grading, and fracture shape. Model
performance was evaluated using a variety of metrics: Mean
Absolute Error (MAE), Mean Squared Error (MSE), Root Mean
Square Error (RMSE), and the coefficient of determination (R2).
These metrics provided a comprehensive assessment of the models’
predictive accuracy, error margins, and overall fit to the data. The
correlations were calculated using Pearson or Spearman methods,
based on the results of the Shapiro-Wilk normality test. A p <
0.05 was considered statistically significant. All analyses were
performed in Python.

3 Results

3.1 Descriptive statistics

The cohort comprised 124 participants, with an average age of
71.46 ± 10.46 years, ranging from 50.6 to 92.7 years (Table 1). The
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average DXA T-value was −1.61 ± 1.78, spanning from −5.5 to 3.3.
On average, 10.04 ± 4.67 thoracolumbar vertebrae were segmented
per participant, with a minimum of 4 and a maximum of 17. The
mean number of fractures observed was 2.18 ± 2.36, with counts
ranging from 0 to 12 fractures.

The distribution of participants by sex was predominantly
female (76.61%, n = 95), with males accounting for 23.39% (n =
29) of the cohort. Various CT devices were used: the Philips
Brilliance 64 was the most common (39.52%, n = 49), followed
by the Philips iCT and Siemens SOMATOM go.Up (both 16.13%,
n = 20), Philips IQon (14.52%, n = 18), and Siemens Somatom
Definition AS+ (13.71%, n = 17).

Regarding vertebral fracture grades, the majority of vertebrae
showed no fractures (78.3%, n = 975). Mild fractures (20%–25%)
were observed in 9.6% (n = 119) of cases, moderate fractures (25%–
40%) in 7.8% (n = 97), and severe fractures (>40%) in 4.3% (n = 54).
For fracture shapes, most vertebrae were unfractured (78.3%, n =
975), while 6.5% (n = 81) exhibited wedge fractures, 11.1% (n = 138)
showed biconcave fractures, and 4.1% (n = 51) had crush fractures
involving the posterior aspect (Figure 2).

3.2 Correlation analyses

The correlation analysis identified several significant
relationships between the feature variables and the outcomes:
mean grade, mean shape, and the number of fractures (N_Fx).
For the outcome mean_grade, significant negative correlations were
observed with multiple radiomics features, including Flatness
(r = −0.362, p < 0.0001), 10Percentile (r = −0.426, p < 0.0001),
Mean (r = −0.403, p < 0.0001), and Median (r = −0.404, p < 0.0001).
A positive correlation was found with DifferenceEntropy (r = 0.200,
p < 0.05). Additionally, the DXA T-value, a clinical measure of bone
density, was significantly negatively correlated with mean_grade
(r = −0.346, p < 0.0001), indicating that lower bone density is
associated with higher fracture grades.

Concerning mean_shape, negative correlations were noted with
features such as Flatness (r = −0.348, p < 0.0001) and 10Percentile

(r = −0.385, p < 0.0001). Positive correlations included Imc1 (r =
0.263, p < 0.01). The DXA T-value also showed a significant negative
correlation with mean_shape (r = −0.339, p < 0.001), suggesting that
lower bone density correlates with more severe fracture shapes.

For the outcome N_Fx, significant negative correlations were
observed with Intensity-Based Features like Mean (r = −0.410, p <
0.0001), Median (r = −0.423, p < 0.0001), and RootMeanSquared
(r = −0.338, p < 0.0001). The DXA T-value had a significant negative
correlation with the number of fractures (r = −0.336, p < 0.001),
emphasizing the relationship between lower bone density and a
higher number of fractures. Notably, age was positively correlated
with all three outcomes, highlighting its association with increased
fracture severity and prevalence. Overall, these findings underscore
the utility of radiomics features and DXA T-values in assessing and
predicting the severity and type of vertebral fractures. The complete
list of significant correlations, along with their correlation
coefficients and p-values, is detailed in Supplementary Table S2
and Figure 3, providing valuable insights for clinical assessments and
potential predictive modeling.

3.3 Predictive performance on clinical and
clinical + radiomics data

3.3.1 Number of fractures (N_Fx)
We examined the predictive performance of various machine

learning models for estimating the number of fractures (N_Fx) using
both clinical features alone and a combination of clinical and
radiomics features. The models were evaluated on train/test and
validation datasets, as summarized in Table 2.

For models using clinical features alone, the RandomForest
model demonstrated a train/test Mean Absolute Error (MAE) of
1.3984 and a Root Mean Square Error (RMSE) of 1.8380. The
validation set results were consistent, with only a slight decrease
in R2 from 0.4618 to 0.4471, indicating a moderate reduction in
model performance when applied to unseen data. Similar trends
were observed in the GradientBoosting and SupportVector models,
which showed less robust fits as indicated by lower R2 values

TABLE 1 Descriptive statistics of the cohort.

Variable Category Mean ± Std Min Max Count (%)

Age 71.46 ± 10.46 50.6 92.7

DXA T-value −1.61 ± 1.78 −5.5 3.3

Number of Segmented Vertebrae 10.04 ± 4.67 4 17

Number of Fractures 2.18 ± 2.36 0 12

Sex Female 95 (76.61%)

Male 29 (23.39%)

CT Device Philips Brilliance 64 49 (39.52%)

Philips iCT 20 (16.13%)

Siemens SOMATOM go.Up 20 (16.13%)

Philips IQon 18 (14.52%)

Siemens Somatom Definition AS+ 17 (13.71%)
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compared to RandomForest. The XGBoost model performed
relatively better, achieving a train/test R2 of 0.3792, but also
experienced a drop to 0.3680 in the validation set.

Incorporation of top radiomics features with clinical data
significantly enhanced the model performance. Notably, the
RandomForest model with combined features achieved a reduced
MAE of 1.0016 and an RMSE of 1.4457 on the train/test set, with a
corresponding R2 improvement to 0.6671. While the validation set
exhibited a slight decrease in R2 to 0.6496, the performance
remained superior compared to clinical-only models.

The XGBoost model, augmented with radiomics features, exhibited
the highest accuracy, with anMAE of 0.8948 and an RMSE of 1.2224 in
the train/test set, alongside an R2 of 0.7620. The validation results
showed a minor degradation, with a R2 of 0.7291, maintaining the
highest predictive power among all evaluated models.

The integration of radiomics features provided a notable
improvement in the model’s predictive capabilities. The
selection of these features was based on their relevance and
scores, which highlight their contribution to the model’s

decision-making process. The most significant features were as
follows (Figure 4):

1. Age at CT (age_ct): This feature had the highest importance score
(0.1576), underscoring the critical role of patient age in predicting
fracture risk. Age is a well-known clinical determinant in bone
health, influencing bone density and susceptibility to fractures.

2. Dependence Entropy: With an importance score of 0.1499,
this texture feature reflects the randomness of gray-level
intensity distributions in the radiomic analysis. It provides
insights into the structural heterogeneity of bone, which can
be indicative of bone quality and fracture risk.

3. DXA T-value: This clinical measure, scoring 0.0830, is a key
indicator of bone mineral density (BMD) and is commonly
used in clinical practice to diagnose osteoporosis. The
T-value’s inclusion in the model highlights its relevance in
assessing fracture risk.

4. Surface Volume Ratio: This shape feature, with a score of
0.0829, relates to the bone’s surface area relative to its volume,

FIGURE 2
Distribution of Vertebral Fracture Grades (A) and Shapes (B). This figure displays the distribution of vertebral fractures based on the Genant
classification and fracture shape categories, observed across the segmented vertebrae. The top graph illustrates the distribution of fracture grades, where
fractures are classified as No Fracture, Mild (20%–25%), Moderate (25%–40%), or Severe (>40%). The bottom graph depicts the distribution of fracture
shapes, categorized as No Fracture, Wedge, Biconcave, or Crush (Posterior). The count and percentage of vertebrae in each category are indicated
above each bar.
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FIGURE 3
Heatmap of Significant Correlations Between Radiomics Features, DXA T-value, Age, and Fracture Outcomes. This heatmap illustrates the significant
correlations between radiomics features, DXA T-value, age at CT examination, and three fracture outcomes: mean grade, mean shape, and number of
fractures (N_Fx). The color scale represents the strength and direction of the correlations, with red indicating positive correlations and blue indicating
negative correlations. Only the significant correlations (p < 0.05) are displayed, providing a visual summary of the relationships between various
features and clinical outcomes related to vertebral fractures.
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providing information about the geometric complexity of
bone structures. A higher surface-to-volume ratio can
indicate a higher likelihood of fractures.

5. Total Energy: Scoring 0.0817, this feature measures the sum of
the squared elements in the image array, which correlates with
the overall signal intensity. It helps in assessing the overall density
and texture of the bone, contributing to fracture risk evaluation.

6. Mean: The average intensity value (score 0.0770) represents
the central tendency of gray-level intensities, offering a
measure of the general radiodensity of the bone.

7. Median: With a score of 0.0735, the median provides a robust
measure of central tendency of gray-level intensities,
unaffected by outliers, which can be critical in assessing
the general state of bone health.

8. Run Entropy: This feature (score 0.0689) quantifies the
randomness of the distribution of homogeneous runs in
the image. It captures variations in bone texture that could
indicate areas of structural weakness.

9. Busyness: Scoring 0.0676, busyness is a texture feature that
describes the level of variation in local intensity. High
busyness may indicate more complex bone architecture,
which can be a factor in fracture risk.

10. Kurtosis: With a score of 0.0546, kurtosis measures the
“tailedness” of the intensity distribution, providing insights
into the prevalence of extreme values, which can be indicative
of anomalies in bone structure.

The integration of these features into predictive models
enhanced the accuracy and reliability of fracture risk assessments,
as demonstrated by the improved performance metrics across all
evaluated models.

3.3.2 Fracture grading (f0-g)
The evaluation of predictive models for fracture grading (f0-g) was

conducted using clinical features alone and in combination with top
radiomics features. Table 3 presents a comprehensive comparison of
these models across both train/test and validation datasets.

The RandomForest model using clinical features alone exhibited a
Mean Absolute Error (MAE) of 0.1401 and a Root Mean Square Error
(RMSE) of 0.1876 on the train/test dataset, with a strong R2 value of
0.4738. On the validation set, the model maintained a consistent
performance, with slight degradation in R2 to 0.4586, indicating a
minor reduction in predictive power when applied to new data. The
GradientBoosting model, with an MAE of 0.1671 and an RMSE of
0.2193, showed a lower R2 of 0.2811 on the train/test set, suggesting less
effective performance in capturing variance in fracture grading. The
SupportVectormodel also displayed similar patterns, withmetrics closely
aligned to GradientBoosting, and a corresponding validation R2 decrease
to 0.2092. TheXGBoostmodel performed comparably to RandomForest,
achieving an R2 of 0.4714 on the train/test set and slightly dropping to
0.4647 in the validation set, reinforcing its robustness across datasets.

The inclusion of radiomics features notably improved model
performance. The RandomForest model’s MAE decreased to 0.1067,
with an RMSE of 0.1480 on the train/test set, and a R2 of 0.6726. The
validation dataset mirrored these improvements, with an R2 of
0.6470, confirming the model’s enhanced predictive capabilities.
The GradientBoosting model, similarly augmented with radiomics,
achieved an MAE of 0.1163 and an RMSE of 0.1517 on the train/testT
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dataset, with a high R2 of 0.6558. Despite a slight reduction, the
validation R2 remained robust at 0.6299. The SupportVector model,
while showing improvement with radiomics features (train/test R2 of
0.3733), exhibited a lower R2 of 0.3547 on the validation set,
highlighting some instability in generalizability. XGBoost
demonstrated strong performance, achieving a train/test R2 of
0.6563, which only slightly decreased to 0.6377 on the validation
set, indicating a highly consistent predictive power across datasets.

The enhanced model performance for fracture grading
included key features such as Age at CT (age_ct), Dependence
Entropy, DXA T-value, Surface Volume Ratio, Total Energy,
Mean, Median, and Busyness (Figure 4). Additionally, unique

features such as Small Dependence Low Gray Level Emphasis,
which emphasizes small, low-intensity dependencies, provided
detailed texture information critical for grading fractures.
Flatness, describing the degree of flattening in the bone
structure, was also a significant predictor, relevant for
identifying specific fracture types. The integration of these
radiomics features, alongside clinical data, significantly
enhanced the predictive accuracy of the models.

3.3.3 Fracture shape (f0-s)
The assessment of predictive models for fracture shape (f0-s)

was conducted using clinical features alone and in combination with

FIGURE 4
Results of the Feature Importance Analyses. (A) Top features for number of fractures (N_Fx); (B) Top features for fracture grading (f0-g); (C) Top
features for fracture shape (f0-s).
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top radiomics features. The performance metrics for each model
across both train/test and validation datasets are detailed in Table 4.

The RandomForest model, utilizing only clinical features,
recorded a Mean Absolute Error (MAE) of 0.1485 and a Root
Mean Square Error (RMSE) of 0.1948 on the train/test set, with
an R2 value of 0.4964, indicating a moderate ability to explain
variance in fracture shapes. The model’s performance on the
validation set showed consistent metrics, with an R2 reduction to
0.4767, reflecting a typical decrease in explanatory power when
applied to unseen data. The GradientBoosting model achieved an
MAE of 0.1836 and an RMSE of 0.2340, with a relatively lower R2 of
0.2733 in the train/test set. This performance trend continued into
the validation dataset, where the R2 decreased to 0.2669. The
SupportVector model showed similar performance, with an MAE
of 0.1769, an RMSE of 0.2349, and an R2 of 0.2675, decreasing to
0.2634 in the validation set. The XGBoost model outperformed the
other clinical-only models with an R2 of 0.3415 in the train/test set,
although it experienced a drop to 0.3265 in the validation set,
maintaining the highest accuracy among the clinical-only models.

The introduction of radiomics features resulted in substantial
performance improvements. The RandomForest model’s MAE
decreased to 0.1065, with an RMSE of 0.1464, and an R2

significantly improved to 0.7157 on the train/test set. The validation
set exhibited a slight decline in performance, with an R2 of 0.6960,
indicating robust predictive power. The GradientBoosting model also
showed marked improvements, achieving a train/test MAE of
0.1115 and an RMSE of 0.1417. Its R2 increased to 0.7336, the
highest among the ensemble models. The validation set saw a slight
drop in R2 to 0.7016, but the model’s performance remained strong.
SupportVector models, enhanced with radiomics, showed
improvements, with an MAE of 0.1358, RMSE of 0.1875, and R2 of
0.5333 on the train/test set. The validation dataset confirmed a decrease
in R2 to 0.5103, which, while lower, still indicated a notable
improvement over clinical-only models. XGBoost, with the addition
of radiomics, achieved the best overall performance metrics, with an
MAE of 0.0685 and RMSE of 0.0934, along with a R2 of 0.8842 on the
train/test set. The validation performance, while slightly lower,
remained high with an R2 of 0.8437, demonstrating the model’s
strong generalizability and accuracy.

For predicting fracture shape, the significant features included
Age at CT (age_ct), Dependence Entropy, DXA T-value, Total
Energy, Median, Busyness, and Kurtosis (Figure 4). Other
features like Cluster Tendency, which measures the tendency of
voxels with similar gray-level values to form clusters, offered insights
into specific bone features and potential weaknesses. Gray Level
Variance, indicating variability within the bone structure, was
crucial for understanding complex bone shapes. The inclusion of
these radiomics features demonstrably enhanced the models’
predictive accuracy for fracture shape prediction.

4 Discussion

The primary objective of this study was to evaluate the predictive
capability of radiomics features extracted from CT scans, in
combination with clinical data, for assessing vertebral fracture
risk. We employed machine learning models to identify
significant correlations and predict outcomes such as the numberT
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of fractures (N_Fx), mean fracture grade, and mean fracture shape.
Our analysis revealed that incorporating radiomics features
enhances predictive accuracy compared to using clinical data alone.

Several key radiomics features emerged as crucial in the prediction
of fracture-related outcomes, such as mean grade, mean shape, and the
number of fractures (N_Fx). These features included measures from
various categories like texture analysis and shape descriptors, providing
a comprehensive assessment of bone quality and structural integrity.
Several Texture-Based Features were found to be relevant for prediction
modeling. Dependence Entropy, whichmeasures the randomness in the
spatial arrangement of voxel intensities, was notably significant across
all outcomes, particularly for predicting the number of fractures (N_Fx).
This feature captures the complexity of the bone’s internal structure,
indicating heterogeneity thatmight correlate with weaker areas prone to
fracture. The high importance score suggests that greater heterogeneity,
as indicated by higher entropy, is associated with a greater number of
fractures. This insight aligns with the understanding that bones with
heterogeneous texture patterns may exhibit compromised structural
integrity, increasing fracture risk.

Run Entropy, which quantifies the randomness in the
distribution of homogeneous runs within the image, was another
critical feature. A higher Run Entropy value reflects more variability
in the texture pattern, which could correspond to varying bone
quality within a single vertebral segment. This feature was
particularly relevant for predicting mean grade and mean shape,
indicating that bones with more complex texture patterns may
exhibit more severe or varied fracture shapes. Busyness describes
the level of local intensity variation and was found to be significant
for all outcomes. High busyness may indicate a complex internal
bone structure, which could relate to areas of weakness or instability.
The feature’s association with fracture outcomes suggests that more
varied bone architecture, as reflected by high busyness scores, could
be a predictor of increased fracture susceptibility.

Further, Intensity-Based Features were found to be relevant. Both
Mean and Median intensity values were negatively correlated with
mean grade, mean shape, and the number of fractures. These metrics
represent central tendencies of the gray-level intensities within the bone,
providing a measure of general radiodensity. Lower values in these
features were associated with more severe fractures, indicating that
lower bone density, as measured by these intensity metrics, correlates
with a higher likelihood and severity of fractures. Total Energy, which
measures the sum of squared voxel intensities, reflects the overall signal
intensity within the region of interest. This feature was significant in
predicting both mean shape and N_Fx, suggesting that lower total
energy, indicative of lower overall density, correlates with higher
fracture risk. The feature’s importance underscores the utility of
total energy as a comprehensive measure of bone density and health.

Moreover, Shape-Based Features were found to be relevant.
Surface Volume Ratio, indicating the ratio of the bone’s surface
area to its volume, was a significant predictor across multiple
outcomes. A higher surface-to-volume ratio can suggest a more
complex or irregular bone shape, which may be more prone to
fractures. This feature’s relevance highlights the importance of
geometric complexity in assessing fracture risk. Further, Flatness
and Maximum 2D Diameter were important features. Flatness
measures the degree of flattening in the bone structure, while
Maximum 2D Diameter assesses the largest span along specific
axes. Both features were crucial in determining fracture shape andT
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grading, with higher values potentially indicating more severe
deformities. These shape descriptors help in understanding the
overall morphology and potential weak points in bone structure.

The incorporation of these radiomics features into predictive
models not only improved the models’ accuracy but also provided a
more nuanced understanding of the factors contributing to fracture
risk. The detailed texture and shape analysis offered by these features
could complement traditional clinical measures such as DXA
T-values, providing a more comprehensive assessment of bone
health. Future research should aim to validate these findings in
diverse populations and explore the integration of radiomics into
routine clinical workflows. The development of standardized
protocols for feature extraction and analysis will be essential to
ensure consistency and reproducibility. Furthermore, the potential
for radiomics to uncover subtle bone changes not visible through
conventional imaging highlights its promise for early intervention
and personalized treatment planning.

In recent years, the application of radiomics in the skeletal
system has predominantly focused on the evaluation of bone
tumors. For instance, Chen et al. (2020) demonstrated that a
radiomics nomogram derived from MRI could effectively predict
early relapse in osteosarcoma, highlighting the potential of
radiomics in oncological prognostication. Similarly, Yin et al.
(2019) utilized radiomics features from both CT and MRI to
preoperatively differentiate sacral chordomas from giant cell
tumors, underscoring the versatility of radiomics in identifying
distinct pathological entities. The use of CT radiomics has also
been extended to the study of vertebral integrity and structural
changes. Muehlematter et al. (2019) illustrated that texture analysis
of the spine, combined with support vector machine (SVM)
algorithms, could successfully identify vertebrae with fractures.
This approach mirrors findings by Li et al. (2023), who reported
that CT radiomics, coupled with machine learning, is proficient in
detecting occult vertebral fractures that are not easily visible through
traditional imaging techniques. These studies collectively suggest
that radiomics can enhance the detection and characterization of
vertebral pathologies. Further exploring the application of
radiomics, Tabari et al. (2017) evaluated trabecular texture
analysis in patients with anorexia nervosa, suggesting that specific
radiomic parameters may provide valuable insights into bone health,
particularly in conditions associated with altered bone metabolism.
Complementing these findings, He et al. (2021) proposed that
radiomic models, based on lumbar spine MRI, could effectively
detect osteoporosis, using both T1-weighted and T2-weighted
images to extract relevant features. Additionally, the study by
Rastegar et al. (2020) leveraged bone mineral densitometry image
features, demonstrating that radiomics combined with machine
learning methods can be a novel approach for predicting
osteoporosis and osteopenia. This integration of radiomics with
traditional bone density measures opens new avenues for non-
invasive assessment of bone health. Moreover, radiomics has
shown promise in the context of multiple myeloma. One study
(Tagliafico et al., 2019) found that radiomics could improve the
radiological evaluation of multiple myeloma, distinguishing between
focal and diffuse patterns on CT. This capability enhances diagnostic
accuracy and could potentially guide treatment decisions. In the
realm of vertebral compression fractures, Chee et al. (2021)
proposed a combined radiomics-clinical model to predict

malignancy, achieving high performance in both training and
validation cohorts. The model’s accuracy underscores the
potential of radiomics to differentiate between benign and
malignant compression fractures, a critical distinction for
appropriate clinical management. Furthermore, Yang et al. (2022)
demonstrated that a quantitative nomogram incorporating clinical
fracture line features and CT radiomic features could distinguish
between acute and chronic osteoporotic vertebral fractures with high
accuracy. The integration of radiomics features into CT-based finite
element (FE) models represents a promising avenue for improving
fracture risk prediction. Radiomics offers detailed quantitative
insights into bone structure and texture that could complement
the biomechanical assessments derived from FE models. By
incorporating radiomics features, such as texture complexity and
shape descriptors, into FE analysis, it may be possible to achieve a
more comprehensive evaluation of bone strength and fracture
susceptibility. This combined approach could address current
limitations in FE models, such as the assumption of homogeneity
in bone material properties, by capturing microstructural variations
in bone tissue. Moreover, radiomics could enhance the predictive
accuracy of FE models without the need for additional radiation
exposure, as it works within the existing CT data framework. While
the feasibility of implementing this combined approach in clinical
practice would require validation, the potential for more precise,
non-invasive fracture risk assessment makes this an innovative
direction for future research. While CT-derived Hounsfield units
(HU) have traditionally been used to assess bone mineral density
and have shown strong correlations with DEXA T-scores, we believe
that their addition in our predictive model may offer limited added
value. Recent studies have shown that radiomics signatures, which
already incorporate intensity-based features such as voxel intensity
and texture patterns, provide a more comprehensive assessment of
bone morphology alterations. In fact, radiomics models have been
demonstrated to outperform HU-based models in predicting bone
structure alterations (Jiang et al., 2022). Since the intensity
parameters captured by HU are already encompassed within the
radiomics features extracted in our study, incorporating HU would
likely increase computational complexity and time without a
corresponding benefit in predictive accuracy. Therefore, we have
opted to focus on radiomics as the primary feature set for enhancing
vertebral fracture risk prediction. This study underscores the utility
of radiomics in enhancing the temporal characterization of
fractures, which is pivotal for determining the appropriate
therapeutic approach. To our knowledge, our study is unique in
examining the combination of CT radiomics with clinical features to
predict not only fracture number but also fracture grading and
shape. Further, we focussed on finding the most relevant radiomics
features for these tasks. This comprehensive approach represents a
significant advancement in the field, potentially providing a more
holistic assessment of fracture risk and structural bone integrity.
This study contributes to the growing body of evidence supporting
the use of radiomics in the evaluation of bone health, particularly in
integrating multiple outcomes for a more nuanced understanding of
skeletal pathologies.

While the present findings are promising, further research is needed
to validate these results across broader populations and diverse imaging
settings. Standardizing imaging protocols and feature extraction
methods will be critical to ensuring the reproducibility and
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generalizability of radiomics-based models. Additionally, exploring the
integration of other advanced imagingmodalities andmachine learning
techniques could further refine fracture risk prediction. The primary
limitations of this study include its retrospective nature, the reliance on a
single imaging modality (CT), and the imbalance in the distribution of
fracture grades, which could have affected the model’s performance.
Although we implemented class weighting and stratified cross-
validation to mitigate the impact of this imbalance, future studies
may benefit from advanced sampling techniques and larger, more
balanced datasets to further improve model robustness. Furthermore,
while the machine learning models used in this study offer a
comprehensive analysis of clinical and radiomics features, we did
not develop a nomogram, which could have provided a more
clinically interpretable tool. Future research may explore the creation
of nomograms if clinical usability and simpler interpretation are
prioritized over the complexity and flexibility offered by machine
learning approaches. Future studies should also consider longitudinal
designs and the inclusion of additional clinical features such as
medication use and comorbidities that could influence bone health.
Moreover, one potential area for future research, which has not yet been
explored to date, is the combination of FE methods and radiomics for
biomechanical analyses and risk stratification.

5 Conclusion

This study demonstrates that the integration of radiomics features
with clinical data significantly enhances the prediction of vertebral
fracture risk. The identified radiomics features, particularly those related
to texture and shape, provide valuable quantitative insights that
complement traditional clinical assessments. As such, radiomics has
the potential to play a crucial role in personalized risk stratification and
management of patients at risk of osteoporotic fractures.

To further enhance the practical application of these findings,
future research could explore the development of a nomogram that
integrates both clinical and radiomics features, providing a more
user-friendly tool for clinicians in routine practice. Additionally, the
combination of finite element (FE) methods with radiomics
represents an exciting and unexplored area of research that could
improve biomechanical analyses and fracture risk prediction.

The results underscore the importance of multidisciplinary
approaches combining imaging, machine learning, and clinical
expertise to advance the field of bone health and osteoporosis
research. Future studies should aim to validate these findings in
larger, more diverse cohorts and explore the clinical implementation
of these advanced imaging biomarkers.
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