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Introduction: Biomechanical simulations can enhance our understanding of
spinal disorders. Applied to large cohorts, they can reveal complex
mechanisms beyond conventional imaging. Therefore, automating the
patient-specific modeling process is essential.

Methods:We developed an automated and robust pipeline that generates and
simulates biofidelic vertebrae and intervertebral disc finite element method
(FEM) models based on automated magnetic resonance imaging (MRI)
segmentations. In a first step, anatomically-constrained smoothing
approaches were implemented to ensure seamless contact surfaces
between vertebrae and discs with shared nodes. Subsequently, surface
meshes were filled isotropically with tetrahedral elements. Lastly,
simulations were executed. The performance of our pipeline was evaluated
using a set of 30 patients from an in-house dataset that comprised an overall
of 637 vertebrae and 600 intervertebral discs. We rated mesh quality metrics
and processing times.

Results: With an average number of 21 vertebrae and 20 IVDs per subject, the
average processing time was 4.4 min for a vertebra and 31 s for an IVD. The
average percentage of poor quality elements stayed below 2% in all generated
FEM models, measured by their aspect ratio. Ten vertebra and seven IVD FE
simulations failed to converge.

Discussion: The main goal of our work was to automate the modeling and FEM
simulation of both patient-specific vertebrae and intervertebral discs with
shared-node surfaces directly from MRI segmentations. The biofidelity,
robustness and time-efficacy of our pipeline marks an important step
towards investigating large patient cohorts for statistically relevant,
biomechanical insight.
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1 Introduction

Diagnosing spinal disorders and their underlying causes has
long posed a substantial challenge, as recently evidenced again by a
study that revealed significant discrepancies in diagnoses from
different MRI centers based on one single MRI (Herzog et al.,
2017). To offer individual prevention strategies, estimate personal
risks or plan patient-specific therapies, more information needs to
be derived from medical images. One important step in this process
is the analysis of spinal biomechanics, which can, for instance, be
done by experimental measurements or numerical simulations such
as multi-body simulation (MBS) and the finite element method
(FEM). While experimental setups are often limited to few subjects,
numerical simulations can more easily be realized patient-
specifically, as well as in large datasets. The latter aspect bears
the potential to deliver new pathophysiologic insights (Lerchl
et al., 2024), for instance, relating certain spine characteristics to
IVD degeneration. This could eventually result in better prediction
of disease progression. However, analyzing large datasets requires
two key components: patient-specificity and automation.

During the last decade, valuable achievements have been made
towards this goal. Automated medical image segmentations have
profited from the rise of machine learning (Sekuboyina et al., 2021;
Moeller et al., 2024) and started to serve as a basic prerequisite for
numerical models. Considering MBS, Lerchl et al. published an
automated pipeline for the calculation of compression and shear
forces between vertebrae in musculoskeletal models, including
individualized body weight, spinal alignment, and the attachment
points of ligaments and muscles (Lerchl et al., 2022). Geometries
were derived from computed tomography (CT) images using
machine learning (Lerchl et al., 2022; Sekuboyina et al., 2021). In
contrast to the surface meshes defining rigid bodies in the MBS,
FEM meshes require solid 3D meshes to calculate the inner stress
and strain in vertebrae or intervertebral discs (IVD). The methods to
derive patient-specific FEM meshes from medical imaging data can
broadly be divided into voxel-based mesh generation, mesh
morphing or surface mesh filling. Multiple approaches have been
presented in the past decade, which apply one of these methods in
conjunction with different grades of automation (Castro-Mateos
et al., 2015; Castro-Mateos et al., 2016; Malandrino et al., 2015;
Clouthier et al., 2023; Campbell and Petrella, 2015; Campbell et al.,
2016; Caprara et al., 2021; Lavecchia et al., 2018).

In voxel-based models, segmented voxels directly serve as
hexahedral elements of an FEM mesh (Castro-Mateos et al., 2016).

Mesh morphing is based on the deformation of an FE template
mesh towards landmarks (Campbell and Petrella, 2015; Lavecchia
et al., 2018; Caprara et al., 2021; Fasser et al., 2022) or complete
surface meshes (Castro-Mateos et al., 2015; Caprara et al., 2021;
Fasser et al., 2022) that were identified in individual medical images.
The morphing process inherently involves striking a balance
between accuracy and mesh quality. Non-conforming anatomies
of IVDs and vertebrae can only be adapted by template meshes
through large deformations. However, large deformations result in
poor mesh quality, likely leading to convergence issues during the
final FEM simulation (Malandrino et al., 2015). To minimize the
displacements between a template and target mesh, recent
approaches used statistical shape modeling (SSM) for their
generation (Clouthier et al., 2023; Campbell and Petrella, 2015;

Caprara et al., 2021; Castro-Mateos et al., 2015). However, ensuring
sufficient mesh quality remains one of the main challenges in
morphed patient-specific spine models.

These limitations do not apply to the filling approach, in which
surface meshes are derived directly from segmentations in an initial
step, which is often done by applying the marching cubes algorithm
(Lorensen and Cline, 1987). AcquiringMRI scans involves capturing
multiple slices of one to 3 mm thickness from various perspectives,
partly leading to limited spatial resolution and voxels with
heterogeneous properties. This inherent characteristic is
translated directly to the generated surface meshes, limiting their
accuracy and demanding subsequent smoothing (Molinari and
Falcinelli, 2021). In the literature, limited information is provided
on applied smoothing protocols. However, low resolution or
artifacts like stair steps have been compensated using overall
vertebra smoothing (Mönch et al., 2010; Mönch et al., 2013).
This results in a loss of detail, whereby features like vertebra
edges or osteophytes are smoothed to the point of disappearance,
which we here refer to as oversmoothing. Consequently, calculated
FEM stresses might underestimate actual stresses, potentially
leading to the overlooking of wedge fracture predictions (Nispel
et al., 2024). To avoid over-smoothing and enable accurate
biomechanical results, selective smoothing algorithms have been
introduced in recent studies (Nispel et al., 2024). Once smoothed,
surface meshes are filled with volume elements, which is usually
done manually and involves computer-aided design (CAD) software
(El Bojairami et al., 2020; Lavecchia et al., 2018; Zadpoor and
Weinans, 2015). Although for the morphing approach, efforts
have been made towards automated, patient-specific model
generation, no algorithm has yet been published to automate the
filling approach.

With MRI images being more challenging to segment
automatically, inter alia due to their subtle contrast variations,
automatically generated spine FE models are mainly based on
CT. They thus often include an approximation of the IVD
shapes, neglecting anatomical characteristics such as bulge
(Campbell and Petrella, 2015; Lavecchia et al., 2018; Caprara
et al., 2021). In addition, material parameters for the IVD, which
vary significantly depending on the degree of degeneration, cannot
be extracted from CT images. Recent achievements in fully
automated MRI segmentations opened the door to geometrically
accurate patient-specific FEM models for vertebrae and IVDs
including varying material definitions for soft tissue (Moeller
et al., 2024; Graf et al., 2023).

However, the derivation of both IVDs and vertebrae poses
another challenge: Contact modeling becomes more complex if
the contact surfaces of both bodies are not equivalent or do not
share nodes. This diminishes computational efficiency, potentially
resulting in less accurate outcomes (Papadopoulos and Taylor, 1992)
and hinders coupled MBS and FEM simulations (Nispel et al., 2023).
To better understand the challenges of realizing shared contact
surfaces, it is important to note that smoothing typically involves
specific node translations for each body and can only be applied to
bodies separately. Thus, smoothing steps need to be implemented in
a specific order and with respect to the preservation of the adjacent
body’s node positions (El Bojairami et al., 2020).

In summary, methods either automate the process using the
morphing approach or rely on the filling approach in combination
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with a manual procedure. To the best of our knowledge, there is
currently no existing approach that automates the filling approach.

Addressing the need for automated approaches to realize large
dataset investigations, we here present the first pipeline to create
and simulate patient-specific FEM models of vertebrae and IVDs
with shared-node contact surfaces from MRI segmentations in a
completely automated manner. Note that the focus of this work is
on methodological development, particularly in automating
model creation. As such, complex material models or
biologically related parameters such as varying loading
conditions or patient-specific weights are deliberately excluded
from this study. The FEM simulation presented here serves solely
to verify that the pipeline produces models capable of converging
under simplified conditions, laying the groundwork for future
biological model validation.

2 Methods

We implemented an automated pipeline that takes segmented
MRI images of the spine as an input and provides FEM simulation
results as an output (Figure 1). All steps were automated using
Python as a baseline programming language. We used an in-house
dataset that included 30 patients. The data contains MRI images of a
1 × 1 mm resolution in the sagittal plane and a 2.5–3.5 mm slice
thickness. The implemented pipeline can broadly be divided into the
following substeps: Generation of surface meshes from MRI
segmentations, smoothing, mesh filling, volume meshing, FEM
modeling and FEM simulation (Figure 2). FE models can be used
in a plug-and-play manner to simulate either single bodies,
functional spinal units (FSU) or complete spine models. To
demonstrate the functionality of the FEM models, we included
the automated execution of FEM simulations as the final
substep. Therefore, we defined an exemplary load and
material model. Note that this work focused on the

automation aspect and the resulting FEM stresses and
displacements were not interpreted biomechanically. Given
that a manual approach would not significantly affect the key
pipeline steps—mesh smoothing, volume body creation, or FEM
meshing—and that the manual process is highly user-
dependent, making precise time comparisons challenging, we
chose not to include a traditional manual control group in this
study. In what follows, we present a detailed description of
the substeps.

2.1 MRI to surface mesh

The MRI image segmentation masks were created using
SPINEPS, an open-source deep learning approach. Refer to
Moeller et al. for details on the segmentation approach (Moeller
et al., 2024). In brief, the network segments 14 spinal structures,
including vertebrae and IVDs with a dice score above 0.9,
respectively. The resulting segmentation masks are visualized in
Figures 2B, C. The masks were subsequently edited by removing
partial volume segmentations, which were classified by a threshold
number of four linked voxels. Segmented partial volumes often lead
to sharp edges in the derived surface meshes during smoothing. In
vertebrae and IVDs, they were identified by their voxel volume and
subsequently removed.

To convert the segmented geometries into a surface mesh, we
applied the marching cubes algorithm (van der Walt et al., 2014)
with an ascending gradient direction and a step size of 1. Note that
for the scope of this work, we considered the segmented endplates to
be part of the IVDs by combining their labels during the application
of the marching cubes algorithm. As a result, we gained a
triangulated mesh of each vertebra and IVD. The resulting
meshes of two vertebrae and one IVD (FSU T10-T11) are
exemplary shown from the transverse and sagittal view, as well
as in an isoparametric angle in Figure 2D.

FIGURE 1
Flow chart of the developed pipeline, starting at the MRI scan and resulting in FEM models of the patients’ IVDs and vertebrae. In between, the
following substeps are carried out: two distinct smoothing algorithms, surface mesh filling, volume meshing, and the inclusion of interface nodes in
implementing an FEM model of the vertebra and IVD, respectively.
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2.2 Smoothing

To eliminate inaccuracies such as stair steps, we applied
anatomically constrained smoothing algorithms to the surface
meshes of vertebrae and IVDs. Vertebrae were smoothed with a
focus on preserving anatomical edges and geometrical
characteristics like osteophytes. Shared-node contact surfaces of
adjacent vertebrae and IVDs were realized by adaptively
smoothing IVDs in a subsequent step. However, both approaches
can be divided into three parts: preprocessing, main smoothing and
postprocessing.

For vertebrae, preprocessing consisted of mesh repairing steps
such as closing holes and concatenating nodes, which were executed
using the trimesh Python package. Those steps were required due to
inaccuracies in the marching cubes algorithm.

For the selective smoothing step, the mesh vertices of the
vertebra were compared to the mesh vertices of the two adjacent
IVDs to determine those located on the contact surface, which we
here refer to as interface vertices. Contact was assumed for distances
below a certain threshold, which was iteratively defined by optical
observation. Thresholds ranged between 0.6 and 0.8, depending on
the spinal level.

Subsequently, selected interface vertices of the vertebra mesh
were smoothed separately using the Laplacian smoothing algorithm
(Sorkine, 2005). The smoothed selected vertices are returned to the
vertebra mesh before the Taubin smoothing algorithm (Taubin,
1995) was applied to the whole vertebra mesh in a postprocessing
step using PyMeshLab (Cignoni et al., 2008). Refer to Nispel et al. for
detailed information on the development process and the
performance of the smoothing protocol (Nispel et al., 2024).

For the IVDs, preprocessing included Taubin smoothing,
Laplace smoothing and mesh repairing steps, which were equal
to the ones applied to vertebrae meshes mentioned above. A final
dilation step was included to compensate for the volume loss that
typically occurs when using Laplace smoothing filters. The
subsequent, adaptive smoothing process was aimed at positioning
the vertices of the IVD contact surface equivalently to the vertebrae
vertices of the contact surface. Simultaneous to the selective
smoothing, interface vertices of the IVD were determined using
the smoothed, adjacent vertebrae meshes and the above-mentioned
distance thresholds. Each interface vertex in the IVD mesh was then
replaced with the respectively nearest vertex of the adjacent vertebra
mesh. Arisen edges at the borders of the contact area were smoothed
in a postprocessing step, which consisted of a Taubin filter and mesh
repairing functions. Figure 2E visualizes the final smoothing results
for the exemplary FSU.

Note that through this approach, the selected interface vertices
represented the anatomical contact surfaces in both IVDs and
vertebrae (Figure 3).

2.3 Mesh filling

To convert the surface meshes into solid volumes, we applied a
surface reconstruction algorithm that transformed the vertices and
faces of the triangulated mesh to a continuous surface using the
FreeCAD Python interface (Riegel et al., 2024). During this step, a
CAD file was created from the meshes. Subsequently, reconstructed
surfaces were converted into solid models. In this solid
representation, the coordinates of the surface mesh vertices were

FIGURE 2
Visualized processing steps in the presented pipeline. (A) Exemplary MRI scan. (B) Segmentation derived from the SPINEPS network (Moeller et al.,
2024). (C) 3D representation of the segmentation including a highlighted FSU to demonstrate the initial surface mesh result (D), the smoothed surface
meshes (E), and the FEM results of vertebra (F) and IVD (G).
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retained. This step was carried out equivalently for
vertebrae and IVDs.

2.4 Volume meshing

The resulting solid CAD geometries were subsequently
processed using the ABAQUS Python interface. Two equal
subprocesses, one for the vertebrae and one for the IVDs, were
carried out. The subprocesses primarily involved the consecutive,
homogeneous meshing of the generated CAD geometries. We used
tetrahedral elements (C3D10), as they are able to represent the
vertex positions of the initial surface mesh. Geometries were seeded
with a global seed size of 1 mm, along with a deviation factor and a
minimum element size, both set to 0.1 mm. The created, meshed
part was stored in an ABAQUS input file, including the name of the
respective vertebra or IVD.

2.5 Volume mesh to FEM model

To accurately represent the anatomical loading situation within
a simulation framework, load should be distributed only among the
nodes that are in contact with the adjacent body. To realize this, we
included the definition of node sets in the generation of the FEM
models. Each part, vertebra or IVD, therefore contained two node
sets, one for the superior surface and one for the inferior surface,
respectively. To define the node sets for the vertebrae, we first parsed
the volume nodes that were generated in the volume meshing

step. Note that the indices of the vertices changed during the
conversion of the surface mesh to the volume mesh. Iterating
through the interface nodes defined in the smoothing step
allowed us to find the respective nodes in the volume mesh by a
comparison of their rounded coordinates. The corresponding
volume node indices were appended to the respective node set.

For both, vertebrae and IVDs, we additionally included two
node sets containing one superior and inferior reference node,
respectively. The reference node was defined by averaging all
surface nodes and determining the closest node to the
resulting average.

To finalize the simulation definition of the FEM parts, we
implemented an automatic inclusion of the remaining simulation
parameters, namely material parameters, boundary conditions,
loading and constraints.

For each standalone FEMmodel of either a vertebra or an IVD, a
kinematic coupling constraint was implemented to create a rigid
body at the superior surface. The coupled surface was defined using
the superior surface node set, which represented the biological
contact area of the vertebra or IVD and its respective adjacent
IVD or vertebra, respectively. The reference node was taken from
the previously defined reference node set. For all vertebrae and
IVDs, we simulated a flexion moment of 7.5 Nm (Dreischarf
et al., 2014). The moment was applied to the reference node of the
superior endplate surface. As a boundary condition, the inferior
node set was restrained in all six degrees of freedom (DoF).
Figures 4A, B show the FEM simulation models including
boundary conditions, constraints and load cases for an
exemplary vertebra and IVD.

FIGURE 3
(A) Gray, solid vertebra and adjacent IVD displayed as a turquoise grid mesh. (B) The respective, selected interface nodes of the IVD model are
highlighted. A section without interface points at the left side of the IVD indicates that the adjacent vertebra is not in contact with the disc in this area. The
remaining stair step artifacts are still included in the non-contact areas of the model due to the limited spatial resolution of the MR image dataset in the
left-right direction.
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Since this work focused on the automation methodology in the
first place, simplified material definitions were employed for the
FEM simulation. Unlike the complex IVD physiology, which
includes a gel-like core and multiple layers of concentric fibers,
all parts were meshed uniformly in this work, including a uniform
material definition. Linear elastic, isotropic material parameters
were calculated based on the literature, both for vertebrae
(Bouzakis et al., 2004; Zhou et al., 2000; Bruno et al., 2014) and
IVDs (El Bojairami et al., 2020).

To finalize the FEM simulations, we defined a static analysis and
appended the simulation files as separate entities to a batch file for
automatic execution. Simulation results (Figures 4C, D) were
visually inspected.

2.6 Evaluation of the pipeline

The whole pipeline was executed on an i7 CPU machine with
8 cores, 64 GB RAM and a Windows operating system. We utilized
Python versions 3.8 and 3.10, the latter in an Anaconda
environment, as well as ABAQUS for the FEM simulation. The
pipeline execution was limited to running on a single core to
standardize the computational process.

To quantify the performance of our pipeline, we analyzed the
mesh quality of the generated FEM meshes. This was done by
parsing the tetrahedral elements of the meshes and querying their
aspect ratio. We considered the aspect ratio to be the relation of the
elements’ maximum and minimum edge lengths. Elements with an
aspect ratio >5 were considered of poor quality (Campbell and

Petrella, 2015; Lavecchia et al., 2018). Note that, as a guideline, FEM
meshes are typically aimed at less than 10% poor-quality elements to
minimize the potential impact on simulation accuracy and
convergence (Neves et al., 2018). For each generated FEM part,
the percentage of poor quality elements was calculated. For the
processed dataset of 30 patients, we averaged the percentage of poor
quality elements for each vertebra and IVD, respectively.

For further performance evaluation, we reviewed the number of
FEM models for which solver convergence was achieved during
simulation, contrasting successful attempts with those that failed. In
addition, we visually evaluated the reasons for the failed attempts.

Finally, we compared the calculation time needed for each part
of the pipeline: MRI to surface mesh, smoothing, filling, volume
meshing, volume mesh to FEM Model, and lastly, the FEM
simulation. We thereby distinguished between the duration
needed for the vertebrae and the IVDs. The resulting durations
were statistically evaluated across the 30 subjects that were analyzed.
We addressed failures in the pipeline by identifying and registering
the respective vertebra or IVD and subsequently conducting visual
analysis to determine the cause of failure.

3 Results

We implemented a pipeline that is able to automatically
calculate FEM results of vertebrae and IVDs in large cohorts.
The pipeline is based on an automated segmentation of vertebrae
and IVDs in MRI images (Moeller et al., 2024). From this, surface
meshes were derived and selectively smoothed to mimic the

FIGURE 4
FEM simulationmodel of an exemplary vertebra (A) and IVD (B). The kinematic coupling constraint on the superior endplate surface is indicated with
the yellow lines pointing towards a reference node at the center of the surface. A flexion moment was applied at the center of the surface. The inferior
surface is constrained in all six DoF, indicated by the orange and blue symbols. (C, D) display the same two models after simulation, which is
complemented by the color grading indicating the von Mises stress.
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biological endplate shapes, compensating for image resolution
inaccuracies. Hereby, we take advantage of the MRI
segmentations by including both bone and soft tissue. Smoothed
surface meshes were then automatically transformed to FEM
volume meshes, which contain individual node sets of the
superior and inferior contact surface to the adjacent vertebra or
IVD, respectively. FEM models were available as a combination of
nodes and elements. In our study, these models were supplemented
with boundary conditions, loading and material definition to create
and simulate FEM models. Using this pipeline, we processed all

30 patient MRI scans, resulting in a total of 637 vertebrae FEM
simulations and 600 IVD FEM simulations.

3.1 Mesh quality

Vertebrae and IVD meshes differed significantly in their
numbers of nodes and elements (Table 1). On average, vertebrae
meshes contained approximately 229.500 elements, 4.5 times more
than the average IVD mesh.

Across all created FEM models, both vertebrae and IVDs, the
average percentage of poor quality elements remained below 2%,
well within the 10% guideline defining a good quality mesh
(Figure 5). Evaluations were conducted label-wise across the
entire dataset, with each label corresponding to a specific spine
level. Consequently, vertebra labels ranged from 4 to 25, while IVD
labels ranged from 4-5 to 24-25.

Specifically for vertebrae meshes (Figure 5A), 98.6% of models
contained even less than 5% elements of poor quality. The highest
proportion of poor quality elements, reaching 13%, was observed in

TABLE 1 Number of nodes and elements for all IVD and vertebra FEM
meshes generated by the pipeline.

Nodes Elements

mean max min mean max min

IVDs (n = 593) 9.811 36.494 939 50.414 196.357 3.756

Vertebrae (n = 637) 43.848 98.884 1.646 228.757 529.102 7.435

FIGURE 5
Mesh statistics for the generated vertebrae (A) and IVD FEMmeshes (B). Black points represent the percentage of poor quality elements in single FEM
models, with poor quality being defined as an aspect ratio >5. The blue beams indicate the average percentage of poor quality elements in all models of
the specific label. Failed vertebraemodels were excluded from the plot. For vertebraemeshes (A), themaximum share of poor quality elements was 13% in
a C5 vertebrae. The average percentage of poor quality elements was never below 2% in both, vertebrae and IVDs. For IVDs (B), the average
percentage of poor quality elements was never even below 0.5%. The lowest mesh quality was generated in the cervical spine.
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a label 5 vertebra (C5). It is represented as the highest outlier
in Figure 5A.

Regarding IVDs (Figure 5B), the average percentage of poor
quality elements never dropped below 0.5%. This indicates a good
mesh quality, well within the defined guideline for mesh quality
(10%). In the whole dataset, six IVD labels even contained no
elements with poor quality, which were 5-6, 8-9, 10-11, 14-15,
15-16, as well as 24-25. For another six labels, namely 9-10, 11-
12, 16-17, 17-18, 18-19 and 19-20, only one IVD model was
generated which contained elements of poor quality.

For both vertebra and IVD models, the lowest mesh quality was
consistently found in the cervical spine. The best results considering
mesh quality were achieved in the higher labels, namely the
lumbar spine.

3.2 Failed attempts

Among all 637 vertebra and 600 IVD simulations, ten vertebrae
and seven IVDs raised an error within the process, which led to the
incompletion of the FEM simulation. Errors were either caused by
the poor quality of the segmentation mask of the respective body, or
arose during the smoothing process. Smoothing errors were caused
by a low surface mesh quality, including either non-manifold edges
or holes, which was mainly the case for IVDs. Segmentation errors
appeared when disconnected volumes were present, which was only
the case for vertebrae.

3.3 Calculation times

With an average number of 21 vertebrae and 20 IVDs per
subject, the average processing time was 4.4 min for a vertebra and
31 s for an IVD. For one subject, the average duration to process and
simulate all vertebrae was 93.3 min. For all IVDs, the average
calculation time per subject was 10.4 min.

With significant distance, vertebrae smoothing and their FEM
simulation make up the most costly parts of the pipeline considering

processing times (Figure 6). Note that especially for the smoothing
process, the selective smoothing of vertebrae takes an average time of
35 min per subject, while the adaptive IVD smoothing algorithm
only takes less than a minute (Table 2). With approximately 13 min
per subject, meshing the vertebrae volumes is still among the most
time-consuming parts of the pipeline. Note that the MRI to surface
mesh process includes the complete processing and segmentation of
the MRI file, as well as alignment and the determination of points
of interest.

Finally, the developed pipeline is automated to a point where
only the MRI image paths of the patients and the FEM simulation
parameters need to be defined as input. The latter includes loading
and material parameters. As output, an ABAQUS output database is
created, containing deformation and stress values as requested. No
manual steps were required.

4 Discussion

637 vertebrae and 600 IVDs were modeled and simulated using
our automated pipeline, with an average duration of 4.4 min per
vertebra and 31 s per IVD. We evaluated the quality and
performance of the pipeline by investigating the quality of
generated meshes, failed attempts and processing times.

With the predefined mesh quality criteria, more than 98% of
generated models achieved good quality. This was also reflected in
the low amount of failed attempts - only ten vertebrae and seven
IVDs raised an error within the modeling and simulation process. A
detailed analysis of these failed attempts revealed insights into the
failure mechanisms in our pipeline. For all cervical IVDs, errors were
due to self-intersecting faces or non-manifold edges in the surface
mesh, which occurred in regions of small segmentation volumes.
Failure mechanisms in thoracic IVDs were connected either to a
hole in the raw mesh or small segmentation volumes. In one case, a
hole led to a T-vertex in the presmoothed mesh, which caused the
self-intersection of faces in the adaptively smoothed IVD. In the only
failed lumbar IVD, T-vertices were created for an unidentified
reason regarding the good quality of the raw mesh. We

FIGURE 6
Statistical evaluation of the duration needed for the different parts of the pipeline when processing a single subject, displayed in a box plot. Whisker
boundaries are drawn at 1.5 times the interquartile range (IQR). Outliers aremarked by single points. Each part’s duration is given for the vertebrae and the
IVDs, respectively. Note that with considerable margin, the vertebrae smoothing and FEM simulation take the most time in the automated pipeline.
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additionally monitored all failed vertebrae for apparent quality
issues, and found similar failure mechanisms as in the IVDs. In
six of the ten vertebrae, self-intersecting faces were found, which led
to failing FEM mesh generation. In the remaining cases, mostly
cervical vertebrae, the segmentation mask contained two
disconnected volumes. Our pipeline was able to generate two
disconnected surface mesh parts from these segmentation masks.
However, only one volume was converted to a solid mesh. We
consider this an issue of the segmentation mask and not primarily a
limitation of the here presented pipeline.

The processing time for the FEM simulation of vertebrae was
approximately tenfold higher compared to that for IVDs. It is worth
noting that meshing and smoothing times are directly proportional
to the number of elements in the mesh, which is roughly 4.5 times
greater in vertebrae models than in IVD models.

Assessing the efficiency of our approach versus traditional
manual methods is challenging due to the lack of qualitative
literature data on the time required for manual implementation.
Manual processes typically involve segmentation software for
surface mesh derivation, followed by volumetric model
generation and FEM simulations using separate tools, a process
that can take up to several days (Caprara et al., 2021). In contrast,
our automated pipeline drastically reduces this timeframe. With no
user interaction and reliance solely on an MRI image, our method
achieves biomechanical analysis of a vertebra or IVD within just
about 4.3 min or 27 s, respectively. In addition, it is insusceptible to
variability due to manual steps.

One limitation of our pipeline is the homogeneous, isotropic
modeling approach, that is in conflict with recent IVD and vertebra
models, which contain anisotropic material definitions in the case of
vertebrae (Molinari and Falcinelli, 2021; Fleps and Morgan, 2022),
and biphasic, hyperelastic or fiber-reinforced components in the
case of the IVD (Gruber et al., 2024; Dreischarf et al., 2014).

For the IVD, these more complex modeling approaches go hand
in hand with anisotropic meshing that comprises, in the best case,
hexahedral elements (Dreischarf et al., 2014). The presented
approach does not enable a structured mesh including multiple
phases, such as e.g. a nucleus pulposus cavity or annulus fibrosus

fibers. Besides the lack of detail this brings to the resulting
mechanics, calculation times would likely increase when using a
more realistic material definition. However, experiments indicate
that already in mildly degenerated discs, fluid content decreases
significantly (Galbusera et al., 2014; Iatridis et al., 1998; Iatridis et al.,
1997; Johannessen and Elliott, 2005). As a result, tissue behaved
almost linearly and a change from anisotropic to isotropic nature
was reported (Iatridis et al., 1998). For lumbar IVDs, a slowly
increasing loss of flexibility correlates with an increasing grade of
degeneration (Kettler et al., 2011). Interestingly, studies have found
an abrupt decrease in flexibility for mildly degenerated thoracic discs
with Pfirrmann grade (Pfirrmann et al., 2001) of 1 (Liebsch and
Wilke, 2022) as opposed to healthy discs. Precisely, the tetrahedral
representation of IVDs, as it results from our pipeline, might be
sufficient for analyzing further degenerated IVDs with the advantage
of low complexity and comparably short computation time. In
addition, biomechanical FEM studies of multiple FSUs that
investigate the holistic behavior of the spine, like the one
conducted by El Bojairami et al. (2020), may profit from the
reduced complexity of the IVD mesh. To particularly investigate
the advantages of a more complex IVD model in their use case, El
Bojairami et al. implemented an additional two-phase fluid-
structure model besides their isotropic one. And extracted the
hydrostatic pressure from an enclosed, hydrostatic pressure
element within the nucleus pulposus cavity (El Bojairami et al.,
2020). The comparison between the two modeling approaches
(isotropic vs. complex) showed that both methods produced
results that overlapped to a great extent, with a maximum
discrepancy of approximately 4% at certain flexion angles.
Moreover, tetrahedral elements allow for a more straightforward
implementation of shared-node contact surfaces, which is beneficial
for computation times and numerical stability (El Bojairami et al.,
2020). A recent observation in FEM simulations of degenerated discs
even found that tetrahedral elements were more stable and accurate
in the results (Fasser et al., 2022). Altogether, these findings may
support employing tetrahedral elements and isotropic material
properties for the IVD in limited circumstances, particularly
when considering factors such as computational efficiency and

TABLE 2 Quantitative statistical values for the durations of different pipeline parts. The averages refer to the duration needed to process one subject.

Pipeline part Average duration [s] Min duration [s] Max duration [s]

MRI → Surf Mesh 178.15 144.34 272.09

Vert Smoothing 2,195.24 1,381.07 3,050.03

IVD Smoothing 4.23 3.47 5.53

Vert Surface Mesh → Volume Mesh 253.59 176.69 330.53

IVD Surface Mesh → Volume Mesh 38.32 29.15 58.22

Vert Volume Mesh → inp file part 791.39 602.23 970.29

IVD Volume Mesh → inp file part 178.82 140.76 243.29

Vert inp file part → inp file model 224.97 139.18 293.58

IVD inp file part → inp file model 50.81 37.46 79.82

Vert FEM Simulation 2,046.73 1,452.35 3,358.66

IVD FEM simulation 265.57 219.22 368.09
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simplicity of implementation. However, multiple studies have
analyzed the benefits of biphasic or fiber-reinforced material
models for the IVD (Gruber et al., 2024; Stadelmann et al., 2018;
Knapik et al., 2022; Sciortino et al., 2023). A differentiated
consideration of modeling approaches is crucial, and their
application should be carefully selected depending on the specific
research question.

Apart from the IVD model complexity, vertebrae models in our
pipeline are also limited to isotropic, tetrahedral meshes, which lack the
distinction between cortical and cancellous bone. However, the inclusion
of shell elements could easily be realized similarly to the approach of Imai
et al., who attached a 0.4 mm thick layer of shell elements to the outer
surface of the tetrahedra (Imai, 2015). Nevertheless, the application of
modeling approaches should also be carefully selected based on the
specific research question. By providing the pipeline to the public and
ensuring the output of a standardized mesh representation as an .inp file,
research groups are enabled to further process and adapt meshes of their
own datasets towards their requirement.

In comparison to morphing approaches for FEM model
generation (Campbell and Petrella, 2015; Lavecchia et al., 2018;
Caprara et al., 2021; Fasser et al., 2022; Castro-Mateos et al., 2015;
Caprara et al., 2021; Fasser et al., 2022), the here presented filling
approach represents more details of the segmentation, which
unfortunately includes low-resolution features like stair steps as
well. To counter this, we implemented a tailored smoothing
algorithm Nispel et al. (2024). However, since the focus was
placed on smoothing the interface surfaces, the circumferential
surfaces of vertebrae and IVDs were only considered during the
pre- and postprocessing of smoothing, resulting in stair-step
artifacts in the final meshes. This may be viewed as a limiting
factor of our approach. With advancements in faster MRI scanning
methods, higher-resolution scans will become more readily
available, potentially reducing these stair-step artifacts in the
circumferential surfaces. Considering the final FEM mesh quality,
we do not expect any improvement in the FEM mesh with the
enhancement of MRI resolution, as the size of the FEM elements is
much smaller than the stair-step artifacts.

Finally, given the MRI segmentation in our pipeline, hard tissue
prediction is not as stable as in CT image segmentation. Potential
errors in correctly predicting detailed vertebrae characteristics like
osteophytes could be propagated to the FEM results and may affect
the result quality negatively.

5 Conclusion and outlook

The goal of this work was to advance the automated generation
of patient-specific FEM models derived directly from MRI
segmentations. In comparison to recent approaches, our
approach is based on the MRI image itself and does not rely on
templates like SSMs. The process of morphing a mesh is thereby
obsolete, which constitutes the advantage of having fewer processing
steps and higher flexibility in representing geometries that do not fit
into statistical norms, like osteophytes, strongly deformed vertebrae
or extreme bulges in IVDs.

By realizing surfaces with shared nodes and elements for
adjacent vertebrae and IVDs, we spare the time-consuming and
unstable process of implementing penalties during contact

modeling. In addition, shared interface nodes are advantageous
in the framework of exchanging load and displacement data in
coupled MBS and FEM simulations.

Manual implementations of full spine models may be subject to
automation efforts in the future. Constitutive models of the IVD and
vertebrae can be advanced by including locally varying,
individualized MRI- or CT-derived material parameters. To
include both detailed bone geometries with, e.g., osteophytes and
IVD deformities such as bulges, a co-registration of MRI and
available CT data could be beneficial.

For the IVD, a differentiation between nucleus pulposus and annulus
fibrosus, together with a fiber-reinforced or biphasic implementation
could be beneficial in answering specific research questions. Vertebrae
might benefit from a differentiation between cortical shell and trabecular
bone. Prospectively, combining our pipeline with validated models, as
demonstrated in our group’s recent work Gruber et al. (2024), will enable
large cohort studies to gain insight into the causes of spinal disorders such
as degeneration or back pain.
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