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Introduction: Robot-assisted mirror therapy has been widely developed to help
remodeling of premotor cortex for patients suffering from motor disability of
limbs. Nevertheless, it is difficult to achieve real-time adaptive control in robot-
assisted mirror rehabilitation training, particularly for patients with varying levels
of limb impairment.

Methods: This paper proposes an equivalent kinematics control framework
based on the Broaden Learning System model for active robotic mirror
rehabilitation, where people’s bilateral upper limbs actively perform mirror
movements to enhance the impaired limb’s participation. The framework
accommodates a broaden learning model from sensing multi-kinematic
features to adjust the robotic damping coefficient in assisting human
participants to complete mirror-symmetry training. Besides, in order to adapt
to inter-patients’ variability with different disability levels, a challenge-level
modification interface is also fused for safer training. This model is verified by
additional symmetry indicator such as position trajectory error and force.

Results: Experimental results show that the weaker subjects can also maintain
mirror movement with the stronger subjects under the help of this model and
verify the performance of framework in mirror-symmetry effects and movement
smoothness. This leads us to believe that the framework can safely and efficiently
assist human participants in completing mirror-symmetry movement.

Discussion: The framework has the potential to improve outcomes in smoother
and safer mirror-symmetry training by sensing multi-kinematic features. Future
studies are necessary to involve clinical trials with actual patients.
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1 Introduction

Increasing number of patients are suffering from limb
movement disorders due to hemiplegia paralysis, which prevents
them from completing activities of daily living (ADLs). Professional
expertise and knowledge from physical therapists are generally
required in traditional rehabilitation, which is labor-consuming
and inefficient in terms of cost-effectiveness (Menner et al., 2020;
Xu et al., 2020). Robot-assisted rehabilitation therapy has
demonstrated the unprecedented potential to overcome these
challenges in the past few decades, including nonlinear control
techniques of soft robots for higher accuracy and safety (Cao
et al., 2024b; Xie et al., 2024), human-in-the-Loop adaptive
control concept for better adaptation of feedforward force and
environment impedance in interaction tasks (Li et al., 2023),
assist-as-needed control method for increasing muscle activity
(Cao et al., 2024a), and so on.

As a clinical intervention, bilateral rehabilitation has been
commonly used with positive clinical efficacy (Kantak et al.,
2017; Richardson et al., 2021). Mirror therapy is one of the most
classic methods in bilateral rehabilitation, which has shown the
advantages of promoting the recovery of motor function, compared
with conventional unimanual therapy (Summers et al., 2007; Dohle
et al., 2009; Thieme et al., 2018). Mirror-symmetric bimanual
therapy has also proven to be able to improve motion accuracy,
range of motion, and flexibility (Stevens and Stoykov, 2003; Luft
et al., 2004; Cauraugh and Summers, 2005). Traditional mirror
therapy is a treatment that requires patients to visually feel the
movement or touch of the uninhibited limb through optical illusion,
thereby promoting the recovery of the impaired limb function
(Stevens and Ellen Phillips Stoykov, 2004; Grünert-Plüss et al.,
2008; Rothgangel et al., 2011). Traditional mirror therapy is
generally delivered by physical therapists with passive or auxiliary
activities.

Robot-assisted mirror therapy has attracted much attention in
the past few decades due to enhanced productivity (Beom et al.,
2016; Shahbazi et al., 2016; Xu et al., 2020; Zhang et al., 2022; Zhang
C. Q. et al., 2023; Zhong et al., 2023). In an earlier study, Peter S. Lum
et al. proposed a bilateral mode that robots lead patients bilateral
upper limbs to perform mirror symmetry movements (Lum et al.,
2005). Unfortunately, the patients passively complete the mirror
training and the therapist cannot participate in patients’ training. In
order for the therapist to play a full role in the patients’ mirror
training process, M. Shahbazi et al. proposed a therapist-in-the-loop
robot-assisted mirror therapy (Shahbazi et al., 2014; Shahbazi et al.,
2015). In their framework, the haptic feedback about the patient’s
impaired limb movement is provided to the therapists, who are
required to guide a proper trajectory according to their expertise.
The effectiveness and safety of robot-assisted mirror therapy were
improved in M. Shahbazi’s study. However, over-reliance on the
participation of therapists increases the labor cost of rehabilitation
training. To save labor and realize in-home independent training,
J. Xu et al. proposed a multi-channel reinforcement learning
framework for lower-limb robotic mirror therapy, in which
muscle activation and patient emotion replace therapists to
guarantee the safety of subjects (Xu et al., 2020). J. Xu et al.
proved that robotic mirror-symmetry training could achieve
satisfactory rehabilitation performance in clinical experiments,

showing the effect of robotic mirror training. The ideas proposed
by these studies play an important role in the development of
bilateral mirror training. Mirror training control strategy has
also developed.

The bilateral impedance control strategy for mirror training in
M. Shahbazi has been verified (Sharifi et al., 2017), however, it is
difficult to determine impedance coefficients and the adaptive laws
in practice. Though J. Xu et al. proposed a novel controller based on
reinforcement learning, which could be used to find the optimal
parameters of the impedance model, reinforcement learning
requires a lot of trial and error to converge to ideal results. In
this article, a novel equivalent kinematics control strategy based on
supervised learning is proposed. In principle, reinforcement learning
can be directly used for impedance adjustment (Rizzolatti and
Craighero, 2004; Xu et al., 2020). However, when the human
high-dimensional kinematic performance is considered,
supervised learning has the advantage of requiring less online
data and less time (Menner et al., 2020). Inspired by
performance-based ideas (Krebs et al., 2003; Chemuturi et al.,
2013; Papaleo et al., 2013; Baur et al., 2016; Leconte and Ronsse,
2016a), this article adopts the periodical kinematic features within a
short time sliding window (such as average speed et al.) as
supervised model’s inputs, which reflects the patients’ performance.

Recently, a fast and efficient network architecture, broad
learning system (BLS), has been developed (Chen and Liu, 2018;
Gong et al., 2022). Contrary to the deep neural networks that require
a time-consuming training section to struggle for accuracy, the
features of less time cost and competitive accuracy make BLS
have great application potential in control (Feng and Chen, 2020;
Gong et al., 2022). Huang et al. proposed an impedance learning
framework (Huang et al., 2019; Huang et al., 2021), which solved the
problem of robot-environment interaction based on BLS and fuzzy
system. Another significant advantage of BLS is incrementally
updating the weights of the network when newly obtained data
need to be considered. These advantages of the BLS enable the
controller to learn in a humanlike manner. Huang et al. proposed a
novel framework based on BLS, which is proved to be valid for
motor generalizing learning and accumulating knowledge to
accomplish new tasks under the dynamic environment (Huang
et al., 2020). Hence, the BLS was chosen as the learning strategy

FIGURE 1
The bilateral upper limb training system. (A) the visual screen. (B)
the robotic handles. (C) the control box of the robotic system.
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to control the impedance of the robot to achieve mirror
rehabilitation training.

This paper aims to address the difficulty in achieving real-time
adaptive control in robot-assisted mirror rehabilitation training,
particularly for patients with varying levels of limb impairment. A

control framework is designed that can adaptively adjust the robotic
damping coefficient in real-time, optimizing mirror-symmetry
movements, while ensuring smooth and safe interactions.
Further, a BLS is used to dynamically sense and respond to the
participant’s kinematic performance, which provides personalized,
efficient, and scalable rehabilitation training.

Our contributions include: (1) an active robot-assisted mirror
therapy framework that using healthy limb guiding impaired limb
based on robotic adaptive assistance is proposed to promote the
kinematics similarity between upper limbs. (2) a BLS model with a
fast and smooth damping coefficient adjustment strategy is
proposed to enhance the fluidity and safety of movements during
mirror-symmetry rehabilitation training. The residual of this article
is organized as follows. Section 2 presents the system description, the
proposed control pipeline design, and the experiments. Then,
Section 3 shows evaluation metrics and results. The discussion
and conclusion are provided at last.

2 Methods

2.1 System description

The system is shown in Figure 1, which includes three degrees of
freedom (DOFs) upper limb rehabilitation robot (only two degrees
of freedom are adopted in this paper), and an extensive visual
interface (Zhang M. M. et al., 2023). The robot mainly consists of
three components, the three-axis force and position sensors, the
control box and the two handles that can move in three-dimensional
space. The real-time sensors’ position and force data can be sampled
and recorded. Meanwhile, the real-time position will be displayed on
the extensive visual interface in front of subjects to provide subjects
with intuitive vision.

The robotic working mode is the human-active mode when the
subject dominantly drives the robotic handles’ according to his
subjective wishes and the adjustment of the robot handle’s damping
coefficient can make both hands in different motion states. This work
mode can significantly enhance the participation of subjects to improve
motor function (Luo et al., 2019). The bilateral damping coefficients can
be adjusted to change subjects’ upper limb movement difficulty.

The damping coefficient k (The healthy side’s kH decides the
challenge level during training, and the impaired side’s damping
coefficient kI will be adjusted to optimize the mirror-symmetry
effects under a challenge level.) are generated according to our
proposed supervised method. The max damping coefficient is
limited by the maximum speed of the motor.

2.2 Framework method

The dynamic model of the robotic system interacted can be
written by

M€q + K _q � Fh (1)
where M � blockdiag M1,M2{ } ∈ R2n×2n with Mi �
diag mi1, ..., min{ }, i � 1, 2 is the inertial matrix at end-effector, i �
1 and i � 2 separately denote left and right robotic handle, n � 1 to
n � 3 respectively represent X-axis to Z-axis. q � [qT1 , qT2 ]T ∈ R2n×1

FIGURE 2
Overview of the control pipeline. The inner black solid line
represents the data flow of the control pipeline; The outer orange
dotted line indicates the challenge level modification interface that
can adjustment training difficulty according to the participant’s
different impaired level or mirror movement performance for
personalized and safer rehabilitation training.

TABLE 1 Values for kinematic features vectors.

Symbol Unit Feature

x1 mm/s Mean velocity

x2 mm/s Maximum peak velocity

x3 1 Number of peaks

The three kinematic indicators as the optimization objective of mirror symmetry

movement, which show temporality and smoothness, are as follows (Cusmano et al., 2014):

mean velocity, maximal peak velocity, and the number of peaks (only the velocity peaks

bigger than 10% of the maximal peak velocity were considered).

TABLE 2 Evaluation indicators of feedback model.

Indicators

Optimization indicators for mirror
evaluation

Bilateral mean velocity error

Bilateral maximum peak velocity
error

Number of bilateral peak velocity
error

Verification indicators for mirror
evaluation

Bilateral force difference

Bilateral trajectory position error

Indicators for smoothness evaluation Smoothness of velocity

SPARC

Note: SPARC, the spectral arc length is an accurate measure of movement smoothness for

the movement speed. The indicators used in the evaluation of the mirror state are all

bilateral indicator differences (Balasubramanian et al., 2012).
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with qi � [qi1..., qin]T ∈ Rn×1 is the position of end-effector in
Cartesian space. Fh � [FT

h1, F
T
h2]T ∈ R2n×1 with Fhi ∈ Rn×1 is the

interaction force applied on the end-effector by subjects, which
can be measured by the force sensor.

In our robotic mirror rehabilitation, the damping coefficients of
the handles can be adjusted to minimize the dissimilarity of bilateral
kinematic performance. It is assumed that the subject’s unilateral
limb movement ability is impaired (an impaired upper limb and a
healthy limb). The optimization objective function can be defined as

L1 � ∑n

i

1
2

xI
i − xH

i( )2 (2)

where the kinematic performance feature vector X ∈ Rn, xI
i and xH

i

refer to the ith feature of impaired upper limb performanceXI, the ith

feature of healthy upper limb performance XH.

The healthy limb, as the master, generates the appropriate
kinematic performance XH under the fixed damping coefficient.
The damping coefficient of the healthy limb can be modified to
change the challenge level according to the training
performance, which is friendly to supervisors. The fixed
damping coefficient, selected according to the personalized
conditions of subjects, determines the upper limit and bottom
limit of the reference kinematics performance. A large damping
coefficient makes it difficult for the impaired limb to keep up
with the healthy limb’s movement, and a small damping
coefficient maybe let subjects lose interest in training. When
the impaired limb feels uncomfortable during training, the
healthy limb can exert more muscle force to improve the
performance to reduce the difficulty of the impaired limb
under the framework.

FIGURE 3
Top panel: (A) Structure of a BLS. Bottom panel: (B) Dissimilarity of kinematic performance between the impaired limb with the damping coefficient
kI increasing frommin to max and the healthy limb with the fixed damping coefficient. (C)How to convert the pretrain data into training data for BLS and
label the data.

FIGURE 4
Interpolated and non-interpolated comparison. The blue solid
line represents the sudden change of the damping coefficient in the
case of non-interpolation. The pink point represents the slow change
of the damping coefficient under the interpolation.

FIGURE 5
2x2 dot matrix visual trajectory. The radius of the square track is
100 mm. The impaired and health limb’s trajectories are symmetrical
about the gray dotted line in the sagittal plane. The current position of
the healthy side will be projected onto the affected side as a
mirror trajectory reference.
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The impaired limb, as the slave, can keep up with the
performance of the healthy limb with the assistance of the
damping adjustment strategy based on proposed model. Figure 2
illustrates the proposed framework as a damping adjustment
strategy. The input setting kI of the robot handle on the
impaired side leads to the kinematic performance of impaired
limb XI, as given in Equation 3.

XI � g kI( ) (3)
where g(*) is an unknown function, the input setting kI are the
damping coefficient of the impaired limb. The control target is to
obtain the optimal input settings k* for which X* � g(k*) is closest
to the kinematic performance of healthy limb XH. In other words,

the goal is to find a proper k* to minimize the objective function in
Equation 1. In practical, we use incremental form: ΔXI � g(ΔkI).

The control strategy and conceptual ideas are as follows: the
control pipeline is composed of the objective function reflecting the
control objective, and the feedback section generates input
adjustment ΔkI. The objective function gives a scalar value
reflecting the dissimilarity of kinematic performance of bimanual
limbs. Therefore, the function provides a direction of improvement
for the impaired feature vector, which is mapped to an input settings
adjustment via the feedback section.

We define the control strategy for input adjustment ΔkI as in
Equation 4.

ΔkI � g−1 ΔXI( ) − kI (4)
where g−1: Rn → R1 is established by the broad learning system
method (the inverse mapping of g(*) in (3)). ΔkI denotes the change
of damping coefficient. In addition, ΔXI refers to expected kinematic
performance changes, denoted by the negative derivative of
Equation 2: −∇L1XI � XH − XI. In other words, the negative
gradient of the target equation provides an improved direction
for the feature vector XI. There the control law has the form in
Equation 5.

ΔkI � f XH − XI( ) − kI (5)
where f: Rn → R1 needs to be learned, play a role in making
damping adjustments based on the state performance.

2.3 Broad learning system

The BLS, which is developed from a random vector functional-link
neural network (Pao et al., 1994), provides a fast and efficient, and

FIGURE 6
Evolution of the mean kinematics dissimilarity for six subjects under the three conditions in 60s. (A) the results of the unassisted situation. (B) the
results of the fixed-step situation. (C) the results of the BLS.

FIGURE 7
Evolution of the left damping coefficients (KI) in 60s.
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incremental learning way to learn and remodel in broad expansion
without retraining the whole model.

In this learning system, the original input vectors are first mapped
into random features through feature nodes by some feature mappings.
Then, these features are sent into the “enhancement nodes” for
nonlinear transformation to generate enhancement features. Finally,
both themapped features and enhancement features are fully connected
to the output layer, and the full connection weights are the parameters
that can be calculated rapidly by ridge regression of the pseudoinverse
or can be optimized by gradient descent.

Given the training datasets X,Y{ } and n feature mappings ϕi,
then the ith feature matrix can be described as in Equation 6.

Zi � ϕi XWei + ϑei( ), i � 1, 2, . . . , n (6)
where X ∈ RN×M denotes the kinematic performance features
(details are shown in Table 1 in Experiments Configuration
Section). N is the number of input data, M is the number of
features each sample, C is the dimension of outputs, weights Wei

and bias term ϑei are randomly initialized and need to learn. ϕi is the
linear transformation function. In this work, the bias term is set to 0.

We denoteZn ≜ [Z1,Z2, . . . ,Zn] as the sets of n groups ofmapped
feature nodes. The sparse autoencoder is utilized to generate the sparse
features Zn of input. Then, Zn is fully connected to the enhancement
nodes for nonlinear activation. Similarly, we obtain the outputs of the
jth group of enhancement nodes by Equation 7.

Hj � ξj ZnWhj + ϑhj( ), i � 1, 2, . . . , m (7)

where ξj � tanh (x) is the nonlinear activation function, weightWhj

and bias ϑhj are randomly initialized. We denote the output matrix
of the enhancement layer by Hm ≜ [H1,H2, . . . ,Hm].

Therefore, the output of a BLS, the damping coefficient
adjustment Ŷ , can be denoted as in Equation 8.

Ŷ � Z1,Z2, . . . ,Zn,H1,H2, . . . ,Hm( ) � Wm Zn,Hm( )Wm (8)
where Wm are the weights connecting the layer of mapped feature
nodes and the layer of enhancement nodes to the output layer, and it
can be easily obtained by the ridge regression approximation of
pseudoinverse [Zn,Hm]+ as in Equation 9.

Wm ≜ Zn,Hm[ ]+Y (9)

In the rehabilitation scenarios, the new training data is generated
from the system after each training trial and we need to build a
model that is easily adaptive to the new data or different subjects’
data. Retraining the model again with the whole training data is

FIGURE 8
Evolution of mean velocity, number of peak velocity and maximum peak velocity in 60s. (A) the results of the unassisted situation. (B) the results of
the fixed-step situation. (C) the results of the BLS.

FIGURE 9
The analysis of variance of three method for mean Kinematics-
Similarity. * indicates statistical significance: *p < 0.05, ** p < 0.01 and
*** p < 0.001.
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time-consuming. However, only by updating some weights can
make the BLS be adapted to the new data, which is very practical.

Given that Xa,Ya{ } refers to the new training data for a BLS,
where Xa and Ya separately denote new input data and
corresponding target output. The mapped feature nodes for Xa

can be written as in Equation 10.

Zn
a � ϕ XWe1 + ϑe1( ), . . . , ϕ XWen + ϑen( )[ ] (10)

where Zn
a denotes the feature nodes derived from the input data Xa

using a nonlinear mapping function ϕ. Then, the model’s output
after processing the mapped feature nodes through the
enhancement layer is denoted as in Equation 11.

FIGURE 10
Top panel: Evolution of position error of six participants under three conditions in 60s. Bottom panel: Evolution of force of six participants under
three conditions in 60s. p < 0.05.

FIGURE 11
Comparison of the weak subjects’ movement smoothness under the three conditions and the reference subjects’ movement smoothness. The
average acceleration indicates the volatility of speed. The Absolute of SPARC is the measure of the smoothness of movement speed in the frequency
domain. The low Absolute of SPARC value indicates high smoothness of movement speed.
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Ax ≜ Zn
a , ξ Zn

xWh1 + ϑh1( ), . . . , ξ Zn
xWhm + ϑhm( )[ ] (11)

where YT
a denotes the true output, and AT

xW
m represents the

predicted output. B is an adjustment factor. Final, the
incremental weights are denoted as in Equations 12, 13.

Wm
a � Wm + YT

a − AT
xW

m( )B (12)
where

BT � C+, ifC ≠ 0
1 + DTD( )−1 Am( )+D, ifC � 0

{ C � AT
x − DTAm DT

� AT
x Am( )+ (13)

2.4 Control strategy based BLS

The modeling ideas and methods have been given before, and
now we will begin to establish the control strategy. There are a
series of data collection and processing tasks before training
the model.

Generally speaking, there is a positive correlation between
the damping coefficient and kinematic performance.
Therefore, the dissimilarity of the kinematic performance
of bilateral limbs has a trend as shown in Figure 3B with
the impaired damping coefficient increasing from min to
max, and there is an optimal k* (blue point) where the
dissimilarity is minimum. The optimal k* converges to a
certain value greater than the damping coefficient of the
healthy side.

In the pre-train experiment, the kinematic performance of the
impaired side changes with the increasing kI as shown in Figure 3C.
The blue horizontal line represents the approximate kinematic
performance of the healthy side under a fixed damping
coefficient and the orange upward trend curve represents the
kinematic performance of the impaired under the uniform
increase of the damping coefficient kI. The intersection (blue
point) of the two lines is the point with the smallest bilateral
dissimilarity, which corresponds to the optimal k*. XI

0 (kI0)
represents the performance XI

0 under the damping coefficient kI0.
The input data is the performance difference XH

i − XI
i and the label

is k*− kIi .

Algorithm 1. Train and Application of Feedback model.

Remark 1: The selection of hyperparameters in the BLS model
can use the grid searchmethod, and at the same time, select a smaller
number of neurons to prevent the model from overfitting when the
accuracy is high.

Obtained the BLS model, we can achieve a whole closed loop
control pipeline. We feed the input vector into the BLS model to get
the damping adjustment, which is sent to the robot device in real-
time via the UDP protocol after fine-tuning.

In actual training work, the damping adjustment predicted by
the BLS model mainly considers how to quickly make the bilateral
limbs achieve the same kinematic performance. Large damping
adjustment will give rise to the unsmooth movement (when the
damping adjustment exceeds the subject’s minimum sensitivity
value, subjects will feel the sudden changes in damping
coefficient and unsmooth movement). To solve the above
deficiency, three tricks in the following, are integrated and
applied to the output results of the BLS model to achieve fast
and smooth damping adjustment.

Trick 1: Introduce a saturation function to limit the maximum
value of each damping adjustment output ΔkI from the BLS model.
The function is as in Equation 14.

Δk �
Δk, Δk| |< Δklimit

+Δklimit,Δk > +Δklimit

−Δklimit,Δk < −Δklimit

⎧⎪⎨⎪⎩ (14)

where Δklimit is the limit of damping coefficient adjustment.
Trick 2: Perform n-time damping interpolation within the time

sliding window T through logarithmic interpolation in Figure 4. The
damping coefficients after interpolation are sent to the robot via the
UDP package in turn. The interpolation calculation formula can be
written as in Equations 15, 16.

stride � e1000* ki+Δk( ) − e1000*ki

num
(15)

ki+j � ln eki + j*stride( )\1000j ∈ 1, num( ) (16)

where stride is interpolation’s step size, num is the number of
interpolations. ki is the ith time window’s damping coefficient.

Trick 3: To increase the stability of the entire system, when the
loss S is lower than the particular threshold, we reduce the damping
adjustment by setting the decay factor δ ∈ (0, 1) in Equation 17.

ΔkI � Δk, S≥Threshold
δΔk, S<Threshold

{ (17)

The fixed-step model is a method of fixing each adjustment’s
step value without offline training compared with the supervised
learning methods.

Fixed-step model: We also utilized the fixed-step model for
comparison. There are only two options for adjusting the
damping coefficient: increasing and decreasing (+1,−1). We
set the damping coefficient adjustment with a fixed step value,
which is the maximum step value at which the subjects cannot
feel the damping coefficient’s sudden change. The fixed-step
control model focuses on the kinematic features to vote for
deciding the sign of the damping coefficient. The formula can
be written as in Equations 18, 19.
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sign � ∑n
i�1
SIGN xI

i − xH
i( ) (18)

Δk � sign*Δk′ (19)
where SIGN is a sign function; sign’s value is −1 or +1; xI

i and x
H
i are

the ith feature of the impaired and healthy upper limbs.

2.5 Experiments design

In this part, we show the design of the experiment for
demonstrating the effectiveness of the method proposed in Part
D. The experimental setup is composed of the bilateral robot device
and two subjects with different upper limb strength imitating the
impaired limb and the healthy limb of the patient with partial
unilateral movement disorders. The user datagram protocol (UDP)
was utilized to send data from the robot control box to control the
program and send the damping coefficient from the control
program to the robot control box. The communication frequency
is 200 Hz.

2.5.1 Experiment design
A total of nine healthy right-handed participants were enlisted

in the experiment (height 155–178 cm, weight 43–66 kg, age 21-27).
The study was approved by the Southern University of Science and
Technology, Human Participants Ethics Committee (20,190,004),
and consents were obtained from all participants.

Sitting straight in the chair, participants grip the two
uncoupled handles with both hands and are instructed
symmetrically to move the two handles along a square
trajectory in the sagittal-transverse plane, respectively. In the
experiment, we used a clockwise and counterclockwise square
trajectory whose side length of 20cm, as shown in Figure 5. The
participant’s real-time position information is displayed on a 65-
inch large screen 1.5m away.

There are a total of three experiments, including a pre-train
experiment to collect training data, a preliminary experiment to
group subjects, and a formal experiment to verify the framework.

In the pre-train experiment to collecting training data
XI

i , X
H
i , k

I
i , k

H
i{ }Ni�1, the left handle’s damping coefficient is

adjusted from the minimum value of 0.001 to the maximum
value of 0.015 in the step of 0.0002 every 5s and the right
handle’s damping coefficient is fixed. The subject was asked to
apply steady force on the handles to move along the square
trajectory spontaneously, and the movements of both hands did
not interfere with each other. The collected training data can be used
to train the BLS model after processing. The decay factor δwas set to
0.001, the limit of damping coefficient adjustment Δklimit was set to
0.003, and the threshold was set to 0.015.

The preliminary experiment was completed in advance to divide
the subjects into two groups, the strong group, and the weak
group. In the preliminary experiment, every subject was asked to
complete a 1-min mirror movement along the square trajectory
under the fixed damping coefficients which were different for males
and females. The subjects were divided into two groups according to
the average force level, the strong group and the weak group. We
simulated the healthy upper limb on the right and the impaired

upper limb on the left. The strong group’s subjects imitate the
healthy limb and the weak group’s subjects imitate the impaired
limb. In order to prevent two subjects from interfering with each
other during training at the same time, the movement history of the
strong group’s subject was recorded and reproduced in the formal
experiment.

In the formal experiment, the subjects in the weak group need
to put both hands on the two handles at the same time. However,
he/she could only move the left handle, and the right handle
moves spontaneously according to the recorded data. The task is
to keep the mirror movement on both sides. In the case of
inappropriate damping coefficients, subjects can perform a
scaled-down version of the square trajectory movement
according to their conditions.

When participants touch the handles, the handle’s kinematic
data start to be recorded. In the beginning, if the left upper limb’s
damping coefficient is difficult for the participant, the participant
could choose to move in a small-scale trajectory.

2.5.2 Experiments configuration
First, the raw data obtained by the pre-train experiment contains

some abnormal data, noise data, and dirty data. Therefore, they need
to be corrected before they can be used to train the BLS model. The
processing includes correcting the training label, Box-cox transform,
and data normalization. The offline data of two participants was
used to train the BLS model, which was used for the formal
experiments. The results show the good generalization of the
supervised learning model.

In the formal experiment, each participant was instructed to
complete nine formal experiments including three different
reference trajectories as healthy side’s trajectories and three
different assistant conditions (Unassisted, Fixed-step adjustment
model, and BLS adjustment model). Each formal experiment lasts
about 1 min, the order of the nine experiments is random, and there
will be a 1-min rest after each trial. The initial left damping
coefficient is the same as the damping coefficient in the
preliminary experiment.

There are some details are shown as follows.

1) Time Sliding Window: the smallest sample unit. For real-time
control, the kinematic features within a short time sliding
window T are extracted. In our study, the time sliding window
T is 1s, and it takes 0.05 s to extract data fromUDP data stream
to predict the adjustment ΔkI on the computer with a
3.70 GHz Intel Core i7 CPU in Python (version 3.6) The
total time of the time sliding window is strictly equal to the
sum of the time to predict the new damping coefficient and the
time to send the interpolated damping coefficients to the robot
device. The prediction time includes data accumulation time,
feature extraction time, and prediction time.

2) Feature Vector: the three kinematic features in Table 1 were
computed from raw data and become the member of the
participants’ kinematic performance feature vector. These
kinematic variables were selected not only because they are
usually used in clinical robotic studies but also relate to
physiological aspects of the movement, which are easier to
explain the effects of the training to patients.
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3 Evaluation metrics and results

To evaluate the performance of the proposed framework, a
previous clinical study was referred to define bilateral
performance indicators (Colombo et al., 2014). The study
recommended three kinds of robotic measured indicators to
evaluate upper limb motor ability during reaching task, including
mean velocity, movement accuracy and movement smoothness, as
shown in Table 2. According to the results on 31 stroke patients and
15 healthy subjects, these indicators showed a very low error of
measurements and coefficient of variation, which displayed positive
clinical application values. The details are given as below.

1) Mean Velocity. The mean value of the velocity of the end-
effector. In our study, this performance indicator was referred
to define bilateral mean velocity error and bilateral maximum
peak velocity error.

2) Movement Accuracy. This was assessed by measuring the
mean absolute value of the distance of each point of the
actual path travelled by the subject from the theoretical
path. In our study, this performance indicator was referred
to define bilateral force error and position error.

3) Movement Smoothness. Number of peaks in the tangential
speed profile of a reaching movement, expressed as a negative
value so that increases in the peak metrics equal increases in
smoothness. In our study, this performance indicator was
referred to define bilateral number of peak velocity error.

Two other indicators are selected to verify the smooth
performance of the adjustment method in Section 2-D.

3.1 Evaluation of optimization indicators

The kinematics dissimilarity, which is the optimization objective
of the proposed framework, reflects the subjects’ movement.
Figure 6 shows the evolution of the mean kinematics
dissimilarity for six subjects under the three conditions in the
60s. As can be seen, the dissimilarity of bilateral kinematics
performance without assistance remains at a high value. Under
the adjustment policy, the bilateral dissimilarity gradually decreases
to a low stable value. The adjustment time delay is defined as the
duration from the beginning of adjustment to the state that
dissimilarity reaches around the mean value. The results are
given in Figures 6, 7 show that the adjustment time delay of the
BLS method is smaller than the Fix-step method.

From the adjustment delay perspective, the BLS method can
rapidly assist participants in completing mirror-symmetry
movement on average. When patients feel that the impaired limb
is uncomfortable or painful, he/she can adjust the kinematic
performance of healthy limb to help the impaired limb relieve
the trouble instantaneously. (Such as reducing movement speed).

The evolution of the left damping coefficients (KI) in 60s under
three different conditions are shown in Figure 6. The results show
that the supervised learning modeling method based on the
participant training data is effective.

Three optimization indicators, including mean velocity error
number of peak velocity error, and maximum peak velocity error,

are used to analyze the effect of kinematics equivalent mirror-
symmetry movement. As is seen in Figure 8, the Fixed-step
model and BLS model can significantly reduce the difference in
bilateral upper limbs’ kinematic performance error, especially the
mean velocity error and the maximum peak velocity error. The
“number of peak velocity error” did not increase significantly,
indicating that the adjustment did not cause the subject’s
movement to be unsmooth.

According to the optimization and comprehensive indicators’
evaluation results, it can be inferred that the proposed framework
can achieve a great mirror symmetry effect without causing
unsmooth movement. Further verification results are given in
Section 3-B.

Meanwhile, we analyze variance on the dissimilarity of six
participants under three different conditions in Figure 8. The test
results show that both the Fixed-step method and BLS method can
significantly reduce the difference of bilateral upper limbs’
performance error.

3.2 Evaluation of verification indicators

To verify the effect of the proposed framework, the mirror
position error (mirror the real-time position of one side to the
opposite side and calculate the Euclidean distance) and the
difference of bilateral force are adopted. The error of bilateral
position under three different conditions is shown in Figure 9.
As can be seen, the position error has converged to low values under
these adjustment models. It can be seen from the verification results
that the Fixed-step method and BLS method can assist subjects with
weak strength in achieving great mirror-symmetry effects.

The difference of bilateral force under three different conditions
is shown in Figure 10. Under the three conditions, the average force
levels of the weak subjects were similar. Combining the results of the
two verification indicators in Figures 9, 10, the proposed method has
the potential to help patients with unilateral motor dysfunction
complete mirror rehabilitation training.

3.3 Evaluation of movement smoothness

Patients with unilateral limb dyskinesia are accompanied by
rhythmic and discrete movements (Montes et al., 2014; Leconte and
Ronsse, 2016b). Thus, there is no doubt that movement smoothness
is also an indispensable consideration to promote the recovery of a
patient’s motor function (Krebs et al., 1998; Balasubramanian et al.,
2012). There is a tradeoff between the damping coefficient
adjustments and movement smoothness. To observe the influence
of the damping coefficient’s adjustment on the smoothness of the
participants’ bilateral upper limbs under the two different
conditions, average acceleration, and the SPARC are compared in
Figure 11. With the help of the damping adjustment strategy, the
subjects’ average speed variability is closer to those of the strong
group. The auxiliary strategy based on the BLS model can make the
impaired side’s volatility of speed closer to that of the healthy side
compared to the adjustment method based on the fixed-step model.
From the SPARC indicator, the adjustment of damping can make
the weaker subjects move more smoothly. As can be seen, the
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proposed framework allows the weaker subjects to move more
naturally and smoothly like the stronger ones.

Although the proposed model has not been applied to clinical
experiments, the experimental results show this model’s good
performance in ordinary people’s simulation experiments. Our
future work will focus on conducting clinical trials to evaluate
the effectiveness of the proposed robotic mirror rehabilitation.

4 Discussion and conclusion

In this study, we proposed an active robot-assisted mirror
rehabilitation framework that incorporates an equivalent kinematics
control strategy, powered by a Broad Learning System (BLS). The
framework enables bilateral mirror movements, facilitating the
rehabilitation of patients with impaired upper limbs. By sensing
multi-kinematic features, the system adjusts the robotic damping
coefficients online, ensuring that patients experience smoother and
safer mirror-symmetry training. The experimental results showed that
the BLS model enabled fast adaptation and good synchronization
between the healthy and impaired limbs during mirror-symmetry
training. Key metrics such as mean velocity error and peak velocity
error showed significant reductions, indicating that the system could
better maintain bilateral symmetry. Furthermore, the dynamic
adjustment of damping coefficients contributed to smooth
movements, minimizing abrupt changes and enhancing the overall
comfort and efficiency of the rehabilitation process.

The BLS model has advantages in two aspects compared with
deep learning models as below.

• Fast Offline Training and Lower Complexity. Unlike deep
neural networks (DNNs) that require extensive iterative
training and high computational resources, BLS performs
efficient offline training. It uses random feature mapping
and enhancement nodes that do not require gradient-based
backpropagation. Only the weights between the
enhancement nodes and the output layer are learned
using the Moore-Penrose pseudoinverse, which is
computationally less intensive. BLS is a flat network,
meaning that increasing its width (adding more nodes)
grows the number of parameters far less than increasing
depth in DNNs. As cited by (Gong et al., 2022), this flat
structure allows for a more efficient scaling of the model
with lower computational demands compared to deep
networks, which are typically deeper and more
computationally intensive. This makes BLS advantageous
when real-time predictions need to be generated frequently.

• Incremental Learning Capability. A key feature of BLS is its
incremental learning capability. This allows the model to
update quickly with new data or enhancement nodes
without needing to retrain the entire network. In real-
time control scenarios, such as patient rehabilitation, this
is particularly useful because the model can adapt
incrementally as the patient’s condition changes. BLS’s
adaptability makes it an ideal candidate for such
applications, as it handles incremental data without
needing to retrain the entire network, unlike deep
learning architectures, which would increase

computational complexity. For example, a previous study
demonstrated that BLS was effective for edge computing
applications like traffic analysis systems, where the model
could adapt to new data without being fully retrained (Xiting
et al., 2019). Similarly, in rehabilitation scenarios, BLS can be
incrementally adjusted to reflect changes in a patient’s
progress, offering flexible and adaptive control without
requiring a complete retraining process.

Despite these promising results, there are some limitations that
need to be addressed. On one hand, the current experiments were
conducted with only healthy participants simulating motor
disturbance rather than real patients. Nevertheless, the system
can adjust the damping coefficient in real-time to optimize
mirror symmetry and includes a challenge-level modification
interface, which adapts to the varying abilities of different
individuals. Additionally, the system allows the adjustment of the
healthy limbs’ movements to reduce the difficulty for the impaired
limb, which can help alleviate the burden during rehabilitation.
Hence, clinical trials with actual patients are applicable to evaluate
the full potential of this approach. On the other hand, the
comparison between different advanced control methods will be
involved in the future work as well.
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