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Introduction: Accurate joint moment analysis is essential in biomechanics, and
the integration of direct collocation with markerless motion capture offers a
promising approach for its estimation. However, markerless motion capture can
introduce varying degrees of error in tracking trajectories. This study aims to
evaluate the effectiveness of the direct collocation method in estimating kinetics
when joint trajectory data are impacted by noise.

Methods: We focused on walking and squatting movements as our target
activities. To assess the method’s robustness, we created five groups with
differing noise levels—noise-free, mild noise, noisy group1, noisy group2, and
a Gaussian noise group—in the joint center trajectories. Our approach involved
combining joint center trackingwith biological termswithin the direct collocation
scheme to address noise-related challenges. We calculated kinematics, joint
moments, and ground reaction forces for comparison across the different
noise groups.

Results: For thewalking task, themean absolute errors (MAEs) for the knee flexion
moments were 0.103, 0.113, 0.127, 0.129, and 0.116 Nm/kg across the respective
noise levels. The corresponding MAEs of the ankle flexion moment were 0.130,
0.133, 0.145, 0.131, and 0.138 Nm/kg. The hip flexionmoment hadMAEs of 0.182,
0.204, 0.242, 0.246, and 0.249 Nm/kg in the respective groups. In squatting, the
MAEs of ankle flexionmoments were 0.207, 0.219, 0.217, 0.253, and 0.227 Nm/kg
in the noise-free, mild noise, noisy group1, noisy group2, and the Gaussian noise
group, respectively. The MAEs of the knee flexion moments were 0.177, 0.196,
0.198, 0.197, and 0.221 Nm/kg, whereas the mean MAEs of the hip flexion
moments were 0.125, 0.135, 0.141, 0.161, and 0.178 Nm/kg in the
respective groups.

Conclusion: The results highlight that the direct collocation method
incorporating both tracking and biological terms in the cost function could
robustly estimate joint moments during walking and squatting across various
noise levels. Currently, this method is better suited to reflect general activity
dynamics than subject-specific dynamics in clinical practice. Future research
should focus on refining cost functions to achieve an optimal balance between
robustness and accuracy.
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Introduction

Joint moment analysis is crucial in biomechanics because it
provides insights into the forces and torques acting on joints during
movement. Understanding these moments is essential for exploring
movement mechanics, which is helpful for performance
optimization and ergonomics (Dos’Santos et al., 2021; Kim et al.,
2024). Joint moment analysis is also a powerful tool in biomechanics
that aids in injury prevention and rehabilitation and contributes to
the design of better prosthetic and orthotic devices (Rogers-Bradley
et al., 2024; Ye et al., 2024).

To acquire the joint moment during various movements, inverse
dynamics is often used as a computational technique to calculate the
forces andmoments at the joints of a biomechanical system based on
observed motion. By leveraging kinematic data (positions, velocities,
and accelerations) from body segments and applying Newton’s laws
of motion, inverse dynamics can be used to determine the net forces
and moments necessary to produce observed movements (Ojeda
et al., 2016). However, this method requires external force
measurements (e.g., ground reaction forces) and relies on
accurate kinematics obtained from motion capture systems and
inertial parameters in musculoskeletal modeling. Unfortunately, the
high cost and in-laboratory setup of motion capture systems and
force plates limit the application of inverse dynamics in real-
world scenarios.

With advances in deep learning, pose estimation technology has
become an alternative to optical motion capture systems and has
achieved acceptable accuracy (Wren et al., 2023; Outerleys et al.,
2024). Markerless motion capture, also known as pose estimation, is
a computer vision task that involves detecting and tracking the
position and orientation of human body parts in images or videos.
By predicting specific keypoints (such as joints, hands, and heads),
pose estimation creates a skeletal representation of the subject.
Notably, this approach is cost-effective and easily adaptable to
various environments. Recently, pose estimation algorithms have
become increasingly popular for analyzing human movement and
understanding the mechanics of the body (Berhouet and
Samargandi, 2024; Simonet et al., 2024). For example, pose
estimation aids in the early diagnosis of movement disorders in
patients with Parkinson’s disease (Hong et al., 2022). Athletes’
movements can be analyzed to improve techniques and prevent
injuries (Monteiro et al., 2024). Pose estimation can also be used as a
tool for physiotherapists to monitor patients’ ability to perform
functional movements of the lower limbs (Hu et al., 2021). However,
it is essential to consider potential errors arising from the number of
cameras and the design of pose estimation algorithms, particularly
when estimating joint centers (Wade et al., 2022).

Similar to motion capture systems, force plates are also essential
for traditional biomechanics analysis in measuring the ground
reaction force (GRF) for inverse dynamics calculations. Recently,
optimal control has offered an alternative to sensor-based GRF
measurements for tracking and simulation (Moissenet et al., 2019).
By introducing contact elements in the musculoskeletal model, the
contact dynamics are transformed into a differentiable and
optimizable problem. In recent years, direct collocation has
gained popularity as a method of optimal control in
biomechanics (Lin and Pandy, 2017; Uhlrich et al., 2023;
D’Hondt et al., 2024). This technique discretizes control and

state variables at specific collocation points, effectively
transforming the continuous-time optimal control problem into a
finite-dimensional nonlinear programming problem. The key
advantage lies in its simultaneous optimization of state and
control trajectories, resulting in faster convergence than other
approaches, such as direct single shooting (Betts, 2010; Porsa
et al., 2016).

Widely employed to estimate muscle forces and joint moments,
the direct collocation method has been successfully used to simulate
various activities (Uhlrich et al., 2023). For example, given
kinematics and GRFs, Lin and Pandy (2017) applied direct
collocation to track joint angles and GRFs in musculoskeletal
simulations. Falisse et al. (2019b) developed a unique cost
function to ensure biological plausibility in predictive walking
simulations without direct tracking of ground truth kinematics.
Despite its potential, the ability of direct collocation to track joint
centers has not been extensively examined, which is crucial given the
variable errors introduced by different markerless motion
capture setups.

A key distinction between tracking and predictive simulations in
direct collocation lies in cost function design. To address the impact
of noisy data, our study explored the combination of joint center
tracking terms with biological terms used in predictive simulations.
Our aim is to evaluate the effectiveness of this combination in
estimating kinetics when joint trajectory inputs are noisy. We
hypothesize that incorporating these terms into the cost function
will increase the robustness of the kinetics estimation while tracking
noisy joint center trajectories.

Methods

The analysis comprises three essential processes: raw data
preprocessing, joint center tracking via direct collocation, and
result comparison (Figure 1).

To evaluate the capability of kinetics estimation, ground truth
kinematics, GRFs, and joint moments are needed. Since walking
represents basic human movement, the OpenCap biomechanics
data on walking were used for analysis (Uhlrich et al., 2023). The
extracted walking data included 10 able-bodied adults walking at
their preferred speed. This dataset included full-body kinematics
and GRFs captured via optical motion capture systems with ground-
embedded force plates. Joint moments were also included in the
dataset and were calculated based on the kinematics and GRFs using
the OpenSim’s inverse dynamics function (Seth et al., 2018). The
marker-based data, GRFs, and joint moments were used as the
ground truth for comparison. Additionally, we analyzed squatting
activity in the OpenCap dataset because of its unique role in fitness
and daily activities. Similar to the walking dataset, this dataset
provides full-body kinematics, GRFs, and joint moments. The
study participants consisted of 10 healthy adults, including six
female and four male candidates, with an average age of
27.7 years (±3.8), an average mass of 69.2 kg (±11.6), and an
average height of 1.74 m (±0.12).

In addition to traditional biomechanical data, the dataset
comprises keypoint trajectories from a markerless motion capture
system with varying configurations, including different camera
setups and pose estimation algorithms. In this study, the
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OpenCap dataset included 20 keypoints, including the mid-hip, left
and right hips, knees, ankles, heels, small and big toes, mid-shoulder,
left and right shoulders, elbows, and wrists. Most of them reflect the
joint centers in the OpenSim model (left and right hips, knees,
ankles, heels, left and right shoulders, elbows, and wrists) or can be
calculated from joint centers (mid-hip andmid-shoulder), except for

the small and big toes. Therefore, we manually averaged the
trajectories of the big and small toes to estimate the position of
the metatarsal joint in the OpenSim model. Consequently, 18 joint
centers were targeted for tracking (Figure 2). We selected data from
five cameras using the OpenPose high-accuracy setting to form
noisy group1 and data from two cameras using the OpenPose
default setting to form noisy group2. We also converted the
ground truth kinematics into keypoint trajectories as a noise-free
group and performed tracking for comparison (Figure 1).
Additionally, we averaged the noisy group1 and ground truth
data to create a mild noise group. For comparison, trajectories of
joint centers with Gaussian noise were additionally created for
tracking. In total, five groups of keypoint trajectories with
different noise levels (noise-free, mild noise, noisy group1, noisy
group2, and Gaussian noise groups) were used for tracking.

For simulations, the OpenSim musculoskeletal model proposed
by Uhlrich et al. (2022) employed 33 degrees of freedom (DoFs),
including the root joint for the pelvis (6 DoFs, three for rotation and
three for translation), bilateral hip (3 DoFs × 2), knee (1 DoF × 2),
ankle (1 DoF × 2), subtalar (1 DoF × 2), metatarsophalangeal joint
(1 DoF × 2), lumbosacral joint (3 DoFs), shoulder (3 DoFs × 2), and
elbow (2 DoFs × 2). The model comprises 80 muscles actuating the
lower limbs, along with several ideal torque motors for the
lumbosacral joints, and joints from the upper limbs. Six contact
spheres were attached to each foot for the simulation of foot‒ground
interactions. For each subject, the scaled model provided in the
dataset was used for simulation. One movement cycle was sampled
for each task. The walking cycle begins when the left foot leaves the
ground and ends after a full gait cycle is completed. The squatting
cycle begins from a standing position and ends when the person
returns to an upright position again.

The mean per joint position error (MPJPE) is a common metric
used to evaluate the performance of human pose estimation
algorithms. It measures the average distance between the
predicted joint positions of a human skeleton and the ground
truth joint positions in a given dataset. Smaller MPJPE values

FIGURE 1
Data processing steps in this study.

FIGURE 2
Selected tracking targets in this study.
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indicate better algorithm performance. Recent reports on MPJPE,
estimated by pose estimation algorithms using monocular or
multiple cameras, range from 16.9 to 45.5 mm (Martinez et al.,
2017; Iskakov et al., 2019; Zhu et al., 2022). Compared with the
ground truth data, the MPJPE values of the tracked joint centers in
this study were 18.4 mm (mild noise group), 37.1 mm (noisy
group1), and 37.9 mm (noisy group2) during walking and
15.4 mm, 30.1 mm, and 38.7 mm for squatting, respectively. The
trajectories of the joint centers in the Gaussian noise group were
established by incorporating Gaussian noise, resulting in an MPJPE
of 40.0 mm.

The tracking tasks were treated as optimal control problems, in
which the cost function was optimized for minimization. The joint
center trajectories from one cycle of walking and squatting with
varying noise levels were the primary targets in the cost function
(Equation 1). Additional biological terms, including metabolic cost
and passive torque terms from the predictive simulation, were
adopted to regulate noisy data (Falisse et al., 2019b; Falisse et al.,
2022). The cost function (J) incorporates multiple terms:

J � ∫tf

0
w1E

2
traj + w2

_E
2 + w3a

2 + w4e
2
a + w5u

2
a + w6T

2
p( )dt, (1)

where tf is the gait cycle duration, Etraj is the tracking error in
trajectories of the joint center, _E is the metabolic cost, a is the muscle
activation, ea is the excitation of the torque motors actuating the
joints of the upper limbs, ua is the joint acceleration, Tp represents
the passive torques, t is the time, and w1−6 represents the weight for
each term in the cost function based on initial testing during
formulation. The weights were set to 10,000; 50; 200; 100,000;
5,000; and 100. Etraj was defined as the Euclidean distance of the
position of the joint center between the input noise-free and noisy
data. By performing forward kinematics, the positions of the joint
centers can be obtained, and the distance in the global frame can be
subsequently calculated. Since the noisy data may lead to unrealistic
joint velocity and acceleration, additional cost terms, including a
metabolic penalty term ( _E), an activation penalty term (a), and an
acceleration penalty term (ua), were used to generate the
physiological behavior of the tracked motion. The metabolic
energy rate model proposed by Bhargava et al. (2004) was used
for the metabolic penalty term. The passive torque term (Tp) was
used to limit the position of the joint in its reasonable range. As
described by Falisse et al. (2019b), optimization involves a set of
constraints, including muscle activation dynamics, muscle
contraction dynamics, torque activation dynamics, skeleton
dynamics, zero pelvis residual forces, and state continuity. To
prevent self-collision, we impose constraints on the distance
between joint centers, ensuring that the lower limbs do not
intersect. We also implemented cyclic constraints in the walking
task to increase the convergence speed.

Since the metabolic energy rate term was incorporated for noise
regulation, the inclusion of muscle–tendon units (MTUs) within the
simulations is necessary. In line with Falisse et al. (2022), muscle
excitation–activation coupling was modeled using Raasch’s model
(Raasch et al., 1997; De Groote et al., 2009), whereas a Hill-type
model described muscle–tendon interactions (Zajac, 1989; De
Groote et al., 2016). The MTU parameters were extracted from
the scaled models. Skeletal motion was depicted through Newtonian

rigid body dynamics using compliant Hunt–Crossley foot–ground
contacts with a stiffness set at 1 MPa and contact spheres with radii
set at 0.032 m. Other parameters in the contact model, including
dissipation, friction coefficients, and transition velocity, were set up
as described by Falisse et al. (2019b). The ideal torque motor
dynamics were represented via a linear first-order approximation.
The muscle–tendon lengths, velocities, and moment arms were
fitted as polynomial functions of the joint positions and velocities
to improve the computational efficiency. The state variables
included the joint position, velocity of all DoFs, normalized
tendon force, and activation of the muscle and torque actuators.
The control variables included derivatives of muscle activations and
excitation of the torque actuator. Other control variables included
joint acceleration and the tendon force derivative. Inverse
kinematics was performed based on the tracked joint center
trajectories of each group to establish initial guesses for joint
positions, velocities, and accelerations. The initial guesses for
other variables and the bounds of the variables were set up, and
all the design variables were scaled, as described by Falisse
et al. (2019b).

OpenSim 4.3 was used for musculoskeletal modeling (Seth et al.,
2018), whereas OpenSimAD provided automatic differentiation
(Falisse et al., 2019a), generating necessary derivatives for
evaluating forward kinematics and inverse dynamics functions.
CasADi was used to formulate the optimization problem, and
IPOPT was used as an optimization solver in the direct
collocation scheme with the Radau quadrature (Andersson et al.,
2019). Parallel formulation was used to ensure efficient execution in
CasADi. Based on preliminary findings, the tasks were discretized
into 30 mesh intervals to balance the optimization speed
and accuracy.

Sensitivity studies on metabolic weightings (0 (M0) and 10 times
the default weighting (M10)) and passive torque weightings (0 (P0) and
10 times the default weighting (P10)) were performed for noisy group2.
Additionally, we performed sensitivity studies on the number of mesh
intervals, in which 40mesh intervals (N40) and 50mesh intervals (N50)
were applied for the noisy group2 data. In total, we performed
220 optimization cases, including both walking and squatting
tracking tasks, across five data groups (noise-free, mild noise, noisy
group1, noisy group2, and Gaussian noise group) and six additional
sensitivity groups (M0, M10, N40, N50, P0, and P10) for each task,
involving 10 subjects. For comparison, we used the OpenCap pipeline
with default settings to track the inverse kinematics data derived from
the augmented markers of the two activities in the noisy group1 and
2 data. The ground truth kinematics derived from the optical motion
capture of the two activities were also tracked using OpenCap with
default settings for comparison.

After the optimization process was finished, the simulated
kinematics, joint moments, and GRFs were generated. To
account for subject variability, we normalized joint moments and
GRFs by total body mass. The data were compared with the ground
truth kinematics (derived from optical motion capture), joint
moments, and GRF data. The mean absolute errors (MAEs) were
calculated and compared between each group of data to show the
performance in tracking and estimating kinetics. The kinematics
derived from the augmented markers in the OpenCap dataset were
also analyzed for comparison.
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Results

The direct collocation method successfully completed all
tracking tasks (Figures 3, 4). As shown in Table 1, the MAEs for
each activity were averaged across movements and participants. In
the walking task, the MAEs were 4.2° for the noise-free group, 5.1°

for the mild noise group, 7.0° for noisy group1, 6.1° for noisy group2,
and 4.6° for the Gaussian noise group for knee flexion angles across
10 participants. As the noise level increased, the accuracy of hip joint
tracking decreased, with MAEs for hip flexion angles of 4.7°, 4.5°,
5.6°, 6.6°, and 6.8° in the corresponding groups. The ankle flexion
angles revealed MAEs of 7.1°, 7.5°, 8.1°, 7.5°, and 7.1° in the respective

FIGURE 3
Reference and tracked kinematics using the direct collocation method (mean and standard deviation) in the walking task. Ref, ground truth data
derived from optical motion capture; Sim, simulation results.

FIGURE 4
Reference and tracked kinematics using the direct collocation method (mean and standard deviation) in the squatting task. Ref, ground truth data
derived from optical motion capture; Sim, simulation results.
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groups. During the squatting task, the mean hip flexion angles had
MAEs of 8.2°, 8.3°, 8.8°, 9.0°, and 8.0°, whereas knee flexion angles
recorded 5.1°, 4.9°, 5.3°, 5.1°, and 4.8° in the respective groups. Ankle

flexion angles showed MAEs of 3.7°, 3.7°, 3.4°, 3.5°, and 4.1° in the
respective groups. Additional kinematics and error data for other
lower limbs are detailed in Supplementary Material 1, 2.

TABLE 1 Mean absolute error of kinematics.

Noise level Method Walking Squatting

Rotations (°) Translations (mm) Rotations (°) Translations (mm)

Noise-free This study 4.7 (2.7–7.4) 12.2 (5.3–16.8) 5.4 (1.2–12.0) 15.5 (3.2–27.0)

OpenCap (Tracking) 1.0 (0–2.9) 8.0 (1.0–12.5) 1.9 (0–5.7) 8.6 (0.4–17.3)

Mild noise This study 4.9 (2.6–7.8) 11.0 (6.1–14.4) 5.5 (1.4–12.9) 17.6 (6.8–26.6)

Noisy group1 This study 5.7 (3.2–8.3) 11.9 (8.8–13.8) 5.6 (1.5–12.7) 19.8 (10.8–25.6)

OpenCap (IK) 3.9 (1.4–7.6) 12.0 (8.2–16.3) 3.4 (1.3–6.8) 13.4 (10.2–15.1)

OpenCap (Tracking) 5.0 (2.2–9.5) 21.8 (8.6–40.1) 3.9 (1.4–8.1) 18.2 (10.2–25.9)

Noisy group2 This study 6.0 (3.5–8.1) 13.4 (10.4–15.2) 5.6 (1.7–13.0) 20.2 (13.0–23.9)

This study (M0) 5.7 (3.2–8.0) 12.4 (11.0–14.1) 5.3 (1.6–11.3) 18.6 (12.7, 23.7)

This study (M10) 8.1 (5.1–11.1) 15.2 (11.1–20.3) 7.4 (1.6–16.8) 30.0 (12.8, 52.9)

This study (N40) 5.9 (3.4–8.1) 13.3 (10.4–15.0) 5.5 (1.7–12.4) 19.2 (13.0, 23.1)

This study (N50) 5.9 (3.4–8.1) 13.5 (10.5–15.4) 5.5 (1.6–12.3) 18.6 (12.8, 22.9)

This study (P0) 7.8 (5.5–13.2) 17.2 (13.9–21.6) 8.1 (2.6–18.4) 23.5 (14.3–36.5)

This study (P10) 5.8 (3.3–8.3) 12.9 (9.7–14.6) 6.5 (1.4–12.4) 22.1 (13.1–32.1)

OpenCap (IK) 4.4 (2.2–7.1) 12.7 (12.0–13.8) 3.9 (1.6–7.0) 16.3 (14.2–20.1)

OpenCap (Tracking) 4.5 (2.3–7.1) 22.0 (12.3–40.5) 4.4 (1.7–9.5) 19.6 (13.7–24.0)

Gaussian noise This study 5.3 (2.5–8.8) 13.2 (6.3–18.7) 5.7 (1.8–11.2) 15.9 (7.1–24.0)

Note: Errors for each activity were averaged over participants and reported as an average over movements and degrees of freedom (rotations: three for pelvis orientation, three for the lumbar,

three per hip, one per knee, and two per ankle; translations: three for the pelvis position). Kinematic errors are presented as the mean and range over the degrees of freedom.M0, with a metabolic

weight of 0; M10, with 10 times the default metabolic weight; P0, with a passive torque weight of 0; P10, with 10 times the default passive torque weight. The default number of mesh intervals is

30. N40, with 40 mesh intervals; N50, with 50 mesh intervals. IK, inverse kinematics data from trajectories of augmented markers in the OpenCap dataset. Tracking simulated kinematics by

tracking the IK, data using OpenCap default settings.

FIGURE 5
Normalized joint moment (mean and standard deviation) estimated by the direct collocationmethod and the reference data in the walking task. Ref,
ground truth data derived from inverse dynamics based on optical motion capture and force plate data; Sim, simulation results.
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For joint moment estimation during the walking task (Figure 5),
the knee and ankle joints achieved higher accuracy than hip joints
when assessed against the ground truth. Specifically, the MAEs for
the knee flexion moment were 0.103, 0.113, 0.127, 0.129, and
0.116 Nm/kg in the noise-free, mild noise, noisy group1, noisy
group2, and the Gaussian noise group, respectively. For the ankle
flexion moment, the corresponding MAEs were 0.130, 0.133, 0.145,

0.131, and 0.138 Nm/kg. The hip flexion moment had MAEs of
0.182, 0.204, 0.242, 0.246, and 0.249 Nm/kg in the respective groups.
During squatting (Figure 6), the MAEs of the ankle flexion moments
were 0.207, 0.219, 0.217, 0.253, and 0.227 Nm/kg in the noise-free,
mild noise, noisy group1, noisy group2, and the Gaussian noise
group, respectively. The MAEs of the knee flexion moments were
0.177, 0.196, 0.198, 0.197, and 0.221 Nm/kg, whereas the mean

FIGURE 6
Normalized joint moment (mean and standard deviation) estimated by the direct collocation method and the reference data in the squatting task.
Ref, ground truth data derived from inverse dynamics based on optical motion capture and force plate data; Sim, simulation results.

TABLE 2 Normalized mean absolute error of joint moment.

Noise level Method Walking Squatting

All degrees of freedom (Nm/kg) All degrees of freedom (Nm/kg)

Noise-free This study 0.10 (0.03–0.19) 0.18 (0.01–0.47)

OpenCap 0.10 (0.02–0.20) 0.17 (0.01–0.35)

Mild noise This study 0.11 (0.03–0.21) 0.18 (0.02–0.42)

Noisy group1 This study 0.13 (0.03–0.25) 0.18 (0.03–0.41)

OpenCap 0.20 (0.05–0.36) 0.18 (0.02–0.37)

Noisy group2 This study 0.14 (0.04–0.28) 0.18 (0.04–0.39)

This study (M0) 0.20 (0.06–0.45) 0.22 (0.08–0.47)

This study (M10) 0.15 (0.04–0.31) 0.17 (0.03–0.32)

This study (N40) 0.14 (0.04–0.28) 0.18 (0.05–0.37)

This study (N50) 0.14 (0.04–0.27) 0.18 (0.05–0.39)

This study (P0) 0.15 (0.04–0.33) 0.18 (0.06–0.39)

This study (P10) 0.15 (0.04–0.31) 0.21 (0.05–0.45)

OpenCap 0.19 (0.05–0.37) 0.19 (0.03–0.41)

Gaussian noise This study 0.13 (0.04–0.25) 0.18 (0.07–0.35)

Note: Errors for each activity were averaged over all participants (n = 10) and are reported as an average over movements and degrees of freedom (three for lumbar, three per hip, one per knee,

and two per ankle). Kinetic errors are presented as the mean and range across degrees of freedom.
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MAEs of the hip flexion moments were 0.125, 0.135, 0.141, 0.161,
and 0.178 Nm/kg in the respective groups. Table 2 lists the MAEs of
the joint moment for each activity. The joint moments and errors of
the other lower limbs are reported in Supplementary Material 3, 4.

With respect to the GRF estimation in the walking task
(Figure 7), the mean MAEs for both feet in the vertical direction
varied from 0.74 to 0.95 N/kg across the five groups. During
squatting (Figure 8), these MAEs ranged from 0.80 to 1.25 N/kg
(Table 3). Additional GRF data and error information for each
group are available in Supplementary Material 5, 6.

Discussion

This study performed a sensitivity analysis to explore the
capabilities of the direct collocation method for kinetics
estimation based on keypoint trajectories detected from pose
estimation algorithms. Walking and squatting were selected as
the tracking activities. To illustrate the effect of errors inherent in
pose estimation algorithms, various noise levels of trajectories of

joint centers were used for tracking. Our results indicate that the
direct collocation method robustly tracks movements despite noise.
Furthermore, our study highlights the feasibility and practical
considerations of applying the direct collocation method in
conjunction with markerless motion capture for
biomechanical analysis.

A key finding was that the direct collocation approach, which
incorporates both tracking and biological terms in the cost function,
could robustly track noisy joint center trajectories and estimate joint
moments and GRFs. The tracking errors remained consistent across
various noise scenarios, largely because of the biological terms
included in the cost function. The incorporation of constraints in
the optimization process—such as state continuity, muscle
activation dynamics, contact dynamics, and collision
avoidance—ensures realistic and plausible model movements.
Consequently, the method was robust to typical noise levels
encountered with markerless motion capture systems, with
kinematics converging into recognizable patterns, which is
consistent with findings from previous studies by Falisse et al.
(2019b) and Falisse et al. (2022). In addition to previous studies

FIGURE 7
Normalized GRF of the left foot estimated by the direct collocation method and the reference data of the walking task (AP, anterior–posterior; ML,
medial–lateral).

FIGURE 8
Normalized GRF of the left foot estimated by the direct collocationmethod and the reference data of the squatting task (AP, anterior–posterior; ML,
medial–lateral).
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simulating walking, our study revealed that a tracking term in
combination with biological terms could also be used to simulate
squatting activity. Unlike economical movements such as walking,
squatting is an energy-consuming activity. The robust performance
in the squatting task indicates that the current settings in the
collocation scheme are also suitable for tracking noneconomical
activities.

The inclusion of a metabolic energy rate term played a significant
role in managing noisy data and achieving biologically realistic kinetic
estimations. Although excluding this term (in the M0 setting for noisy
group2) slightly improved tracking accuracy, it resulted in higher errors
for joint moment and GRF estimations than the default settings. This
study adopted the metabolic energy rate model proposed by Bhargava
et al. (2004), in which muscle excitation, activation, muscle fiber
kinematics, and fiber-related forces were included to estimate the
metabolic energy rate. This resulted in smooth and physiologically
sound joint moments. In contrast, the OpenCap pipeline used joint
position, velocity, and acceleration as tracking terms in the cost function
(Uhlrich et al., 2023). This setting has certain benefits in estimating the
joint moment when the input data are noise-free. However, the tracked
joint acceleration, as the second derivative of the joint position, is
susceptible to inaccuracies in the joint position, which can lead to
deviations in joint acceleration and subsequently influence the results of
the joint moment estimation. This could explain why, despite the
OpenCap pipeline providing more accurate kinematics from
augmented markers, the errors in joint moment estimation
remained at the same levels as those observed in our study. In
contrast, this study, which includes a metabolic energy rate term,
could robustly estimate joint moments and GRFs against different
noise levels. However, excessive metabolic weighting (M10) led to
deviations from reference data, indicating a need for a balanced

setting of the metabolic term for optimal performance. For example,
low metabolic weighting could be assigned to energy-consuming
activities.

Despite robust tracking and joint moment estimation, certain
challenges persist. For example, the ankle flexion angle in the
walking task had a smaller range of motion than the reference data.
This issue also occurred in predictive simulations (Falisse et al., 2019b;
Falisse et al., 2022; D’Hondt et al., 2024), indicating that current
modeling of foot- or energy-utilizing strategies may deviate from
that of humans. Interestingly, the group with zero metabolic
weighting (M0) performed better in tracking ankle flexion
movements (see Supplementary Material 1). This result suggests that
metabolic weighting may be divided among specific muscle groups and
that low metabolic weighting could be applied to energy-consuming
activities involving those muscle groups. Additionally, discrepancies
between the pelvis tilt and hip flexion angles emerged, where incorrect
pelvis tilt estimations impacted the accuracy of hip flexion. This is
because the orientation of the pelvis cannot be easily tracked by the
positions of the hip joint centers. Since the pelvis is the root segment of
the human model, the hip flexion angle may also be influenced. This
issue is prevalent in pose estimation algorithms and remains difficult to
resolve, even with multiple cameras (Wren et al., 2023). To address this
problem, incorporating an additional inertial measurement unit (IMU)
attached to the pelvis may be a suitable way to obtain precise
orientation data.

Although our GRF profiles approximated the ground truth data,
minor discrepancies arose in the walking task—specifically, in the
initial contact time and magnitude. Several reasons may cause this
issue. First, the thickness and material properties of the subject’s feet
and shoes were not precisely modeled because of missing
information in the ground truth data. Furthermore, the lumbar

TABLE 3 Normalized mean absolute error of ground reaction force (N/kg).

Noise level Method Walking Squatting

AP Vertical ML AP Vertical ML

Noise-free This study 0.36 0.74 0.12 0.16 0.80 0.63

OpenCap 0.24 0.71 0.11 0.11 0.36 0.50

Mild noise This study 0.34 0.77 0.13 0.21 0.95 0.58

Noisy group1 This study 0.33 0.84 0.15 0.20 1.01 0.57

OpenCap 0.43 1.11 0.23 0.10 0.40 0.51

Noisy group2 This study 0.35 0.87 0.18 0.24 1.07 0.57

This study (M0) 0.56 1.59 0.24 0.30 1.56 0.68

This study (M10) 0.33 0.80 0.20 0.19 0.81 0.43

This study (N40) 0.35 0.85 0.19 0.25 1.09 0.55

This study (N50) 0.35 0.84 0.18 0.26 1.02 0.56

This study (P0) 0.29 1.13 0.20 0.25 1.15 0.54

This study (P10) 0.39 0.84 0.20 0.22 1.21 0.66

OpenCap 0.46 1.63 0.21 0.14 0.59 0.50

Gaussian noise This study 0.35 0.95 0.16 0.28 1.25 0.52

Note: Errors for each activity were averaged over all the participants (n = 10), and the reported mean is an average over movements and feet.
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and knee joints were treated as joints with only rotational DoFs. The
omission of their cushioning effects in the translational DoFs during
simulation may contribute to GRF estimation errors. To alleviate
this issue, calibrating the stiffness of the contact element and
adjusting the height of the floor in the simulation scheme may
improve the results (Serrancoli et al., 2019). Increasing the number
of contact elements may also enhance the performance.

The estimation of joint moments in our study yielded error
levels comparable to those from the OpenCap pipeline, despite
fundamental differences in the cost function. Notably, OpenCap
employs distinct weights to track various joint kinematics and
activities, along with additional settings such as heel contact
constraints for specific tasks. In contrast, our method applied
uniform weights across all joint centers and used the same
settings for both activities, except for incorporating cyclic
constraints for walking. Consequently, while there was a
compromise in kinematics tracking accuracy, our method
maintained robust kinetics estimation. It is expected that
introducing joint-specific and activity-specific weighting could
further enhance the performance.

In both the walking and squatting tasks, the direct collocation
method consistently provided more accurate estimations for the
ankle and knee joint moments than for the hip joints. Several factors
might contribute to this tendency. First, the inaccuracy in tracking
hip joint angles, as mentioned earlier, plays a significant role.
Additionally, joint moments are heavily influenced by the GRF,
and its accuracy in the direct collocation scheme heavily relies on
input kinematics and the model. In this study, the trunk was
modeled as a single rigid body, a simplification that might result
in a loss of detail regarding kinematics, inertia, and mass
distribution, thereby leading to greater deviations in joint
moment estimations adjacent to the trunk. On the other hand,
the ground truth joint moments were calculated using OpenSim’s
inverse dynamics function, which permitted certain pelvis residual
torques to actuate degrees of freedom. However, the current direct
collocation scheme constrained these residual forces to 0. Therefore,
a detailed trunk model may be helpful in improving the quality of
kinetics estimation.

This study has several limitations. Compared with previous
methods, this study yielded greater tracking errors in joint angles
when noise-free kinematics were tracked (Lin and Pandy, 2017;
Uhlrich et al., 2023). The main reason is that to maintain robust
tracking performance across different noise levels, our study
incorporated biological terms for regulating noisy joint center
trajectories. In our additional sensitivity studies, removing the
metabolic term (M0) improved tracking accuracy, whereas its
inclusion in the M10 configuration led to decreased accuracy. In
terms of kinetics estimation, M0 generated more errors in the joint
moment estimation than the default setting did in this study.
Although the biological terms can constrain the noise trajectories
into physiological movements and joint moments, they come at the
expense of tracking performance. Furthermore, the selected joint
centers might be insufficient for accurate joint angle tracking.
Therefore, future studies could explore more generalized cost
functions to strike a balance between robustness and accuracy.
To further improve the robustness of joint moment estimation,
the weight for each term in the cost function can be further divided
and set up according to the input data quality and prior knowledge

of the activities. Additionally, variations in the estimated joint
moment errors across subjects and joints indicate that this
method is currently better suited to reflect general activity
dynamics than subject-specific dynamics when similar
movements are performed.

Conclusion

The direct collocationmethod, which incorporates both tracking
and biological terms into the cost function, can robustly estimate
joint moments during walking and squatting across various noise
levels. Future studies should aim to develop more comprehensive
cost functions to achieve the optimal balance between robustness
and accuracy.
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