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Self-assembled lipid-based nanoparticles have been shown to have improved
therapeutic efficacy and lower toxic side effects. Breast cancer is a common type
of malignant tumor in women. Conventional drugs such as doxorubicin (DOX) have
shown low therapeutic efficacy and high drug toxicity in antitumor therapy. This
paper surveys research on self-assembled lipid-based nanoparticles by categorizing
them under three groups: self-assembled liposomal nanostructures, self-assembled
niosomes, and self-assembled lipid–polymer hybrid nanoparticles. Subsequently, the
structural features and operating mechanisms of each group are summarized
individually along with examples of representative drugs from each group.
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1 Introduction

Breast cancer is a common type ofmalignant tumor among women (Ashkbar et al., 2020).
Between 2008 and 2020, the number of female breast cancer cases increased from 1.38million
to 2.25 million (Tseu and Kamaruzaman, 2023; Riis, 2020). The main factors that induce
breast cancer include heredity, menstruation, fertility, and living habits (Kshivets, 2023; Jemal
et al., 2011; Britt et al., 2020)}. The 5-year survival rate for breast cancer is over 90% (Riis,
2020); however, breast cancer remains the second leading cause of tumor-related deaths
among women worldwide (Yang et al., 2021). Breast cancer treatments have now entered the
era of precisionmedicine (Sarhangi et al., 2022). Traditional chemotherapeutic drugs have low
bioavailability and poor efficacy owing to their poor selectivity toward cancer cells, poor
solubility, low stability, and high side effects (Yang et al., 2021; Qiao et al., 2020). In addition,
the ability of chemotherapeutic drugs to penetrate cancer cells is limited, often resulting in
drug resistance (Tredan et al., 2007; Grantab et al., 2006; Ning, 2022). Thus, improving the
drug concentration at the cancer site and reducing the side effects are important directions of
current research (Lim and Ma, 2019).

Self-assembled nanoparticles loaded with drugs constitute a class of medications
characterized by their nanoscale structures. These nanoparticles are formed by self-assembly
and incorporate small molecules of chemotherapeutic or macromolecular drugs, such as
proteins and nucleic acids. During this process, they may experience interactions involving
hydrogen bonds, electrostatic forces, van der Waals forces, and other related forces (Song et al.,
2012). Currently, most nanoparticles used in clinical practice have diameters in the range of
1–200 nm. Upon entering the body, the nanoparticles maintain balanced surface charges to
prevent infiltration of the encapsulated drugs into the surrounding tissues (Song et al., 2012;
Hoshyar et al., 2016; Cheng et al., 2020; von Roemeling et al., 2017; Schwartz, 2017; Xie et al.,
2017). Various self-assembled nanoparticles have been synthesized from carbohydrates, nucleic
acids, peptides, and other biomaterials for biomedical and pharmaceutical applications (Dahiya
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and Dahiya, 2021; Fan et al., 2016; Kaur et al., 2023; Jain et al., 2015).
The comprehensive treatment of cancer using self-assembled
nanoparticles not only enhances the survival rates but also mitigates
the risks associated with low local drug utilization and excessive
systemic adverse drug reactions (Pérez-Herrero and Fernández-
Medarde, 2015; Sabit et al., 2022; Kitsios et al., 2023).

Existing research classifies self-assembled nanocarriers into six
categories for various medical applications as lipid-based
nanoparticles (Lasic, 2019; Puri et al., 2009; Sabahi, 2023),
polymeric nanostructures, carbon-based nanoparticles, ceramic
nanostructures, biological nanoparticles, and micelles (Lasic,
1996; Torchilin, 2006; McClements, 2012; Allen and Cullis, 2013;
Cabral and Kataoka, 2014; Menjoge, 2010; Varma et al., 2020; Da,
2021; Xie and Pedrielli, 2023). Self-assembled lipid-based
nanoparticles offer numerous advantages, including versatility,
biocompatibility, controlled drug-release capabilities, enhanced
stability, and targeted delivery potential. Some representative
drugs in this category include DOX-Lip, pegylated liposomal
doxorubicin (PLD), nitric oxide (NO)-donor-loaded bioinspired
lipoprotein system (NO-BLP), albumin-bound paclitaxel lipid
nanoparticles (ABPLN), and liposomal daunorubicin.

This review comprehensively introduces three distinct categories
of self-assembled lipid-based nanoparticles, namely self-assembled
liposomal nanostructures, self-assembled niosomes, and self-
assembled lipid–polymer hybrid nanoparticles (LPHNPs). We
describe the structures and compositions of these nanoparticles;
furthermore, we provide a summary of the related drugs and
current research status by analyzing their advantages and
disadvantages, thereby enabling discussion of the extent to which
self-assembled lipid-based nanoparticles can optimize chemotherapy
in breast cancer (as illustrated in Table 1).

2 Research advancements on using
diverse self-assembled lipid-based
nanoparticles in chemotherapy for
breast cancer

The Guidelines for Clinical Diagnosis and Treatment of
Advanced Breast Cancer in China (2023 Edition) clearly state

that anthracyclines, including epirubicin and doxorubicin (DOX)
(Devi et al., 2023; Hossain et al., 2023), are the preferred first-line
treatment drugs for breast cancer. Nevertheless, the main challenge
is reducing the toxicity of anthracyclines, which significantly
impacts the clinical management of breast cancer. As a
representative drug delivered by self-assembled lipid-based
nanoparticles, such as PLD/ABPLN, it enhances drug utilization
while mitigating the toxic side effects.

2.1 Compositions of three kinds of self-
assembled lipid-based nanoparticles

Through in vitro experiments, animal studies, and clinical trials,
it has been found that self-assembled lipid-based nanoparticles can
provide increased drug concentration while minimizing the toxicity
and side effects. In this context, the three self-assembled lipid-based
nanoparticles used in chemotherapy against breast cancer are self-
assembled liposomal nanostructures, self-assembled niosomes, and
self-assembled LPHNPs.

2.1.1 Self-assembled liposomal nanostructures
Liposomes are nanomaterials used for drug delivery

(Bhattacharya et al., 2022; Zylberberg et al., 2017). Nanoparticles
prepared as liposomes were among the first to be applied in clinical
drug delivery systems, offering advantages such as biocompatibility
and degradability (Torchilin, 2005; Allen and Cullis, 2013; Al-Jamal
and Kostarelos, 2011). Liposomes also have disadvantages, such as
being thin, being fragile, and having poor storage stability.
Bangham’s phospholipid experiment in the 1960s revealed that
hydrophilic groups of self-assembled liposomes exposed to water
with hydrophobic groups hidden inside facilitate liposomal delivery
systems through molecular interactions. The amphiphilic
components of the liposomes self-assemble in aqueous media
spontaneously to form stable structures. Self-assembled liposomal
nanostructures can adjust their performances through alterations to
the composition and surface (Das et al., 2013; Logigan et al., 2024;
Ewert et al., 2023; Stephanopoulos et al., 2013; Genio et al., 2022).

The cytotoxic drug DOX can stop the proliferation of cancer
cells by inhibiting the syntheses of topoisomerase II and nucleic

TABLE 1 Advantages and disadvantages of typical self-assembled lipid-based nanoparticles.

Taxonomic
category

Advantages Disadvantages References Research
objects

Representative
drugs

Self-assembled
liposomal

nanostructures

Enhance drug
biocompatibility; targeted
drug delivery; deep tumor
penetration and release

Liposomes are thin and
fragile with poor storage

stability

Pestalozzi et al. (1992) and
Pestalozzi et al. (1995); Poujol
et al. (1999); Makowski et al.

(2019); Chowdhury et al. (2020);
Wang et al. (2020); Yang et al.

(2022)

HER-2+ breast
cancer cells;
4T1 cells

Pegylated liposomal DOX;
liposome-complexed

mitoxantrone

Self-assembled
niosomes

Better economy; more
stable; higher

encapsulation rate

Combination toxicity
unaltered

Liu et al. (2017); Assali et al.
(2022)

MCF-7 breast
cancer cells;
Peppas–Sahlin

model

Liposomal
daunorubicin

Self-assembled
lipid–polymer hybrid

nanoparticles

Repeatability; stability;
controllable; tumor
targeting; high drug

efficacy

Solvent toxicity; toxic
products; limited drug-

capture capacity

Ruttala and Ko (2015b, 2015a);
Stylianopoulos et al. (2018);

Chowdhury et al. (2020); Martin
et al. (2019); Wu et al. (2023)

MCF-7 breast
cancer cells;
4T1 cells

Albumin-bound paclitaxel
lipid nanoparticles
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acids. DOX combined with liposomes can reduce the side effects of
DOX itself and overcome the limitations of clinical medications
(Makowski et al., 2019). Rahman et al. (1989) at Georgetown
University found that liposomes with encapsulated DOX could
inhibit DNA synthesis in human breast cancer (MDA-435) cells.
Upon addition of a monoclonal antibody against human laminin
receptor to the surface of the liposomal DOX, the binding to the
target cells was found to have increased tenfold. Since the mid-
1990s, long-acting DOX (also known as Doxil in the United States
and Caelyx in Europe) encapsulated in polyethylene glycol (PEG)
liposomes has beenmarketed and applied tometastatic breast cancer
(Waterhouse et al., 2001; Duggan and Keating, 2011).

Unlike DOX, which inhibits lipid peroxidation and induces the
formation of free radicals, mitoxantrone is superior in terms of its acute
toxicity and cross-resistance, especially in the treatment of metastatic
breast cancer (Durr et al., 1983; Pestalozzi et al., 1992). Poujol et al.
(1999) found that in patients with multidrug-resistant breast cancer,
certain compounds could alter the P-glycoprotein function through
plasma membrane stabilization and modulate multidrug resistance in
human cancers based on their lipid compositions.Mitoxantrone-loaded
liposomes have improved drug safety but have not significantly
improved the antitumor abilities of the drug. Moreover, they do not
show evident advantages over self-assembled liposomal nanostructures
loaded with DOX. Therefore, Chowdhury et al. (2020) continued their
research onDOX in self-assembled liposomal nanostructures; they used
phosphatidylcholines, cholesterol, and 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine with conjugated methoxy PEG (DSPE-mPEG)
to develop a lipid–polymer coating for DOX. Their experiments on
HER-2-positive breast cancer cells showed increased uptake of DOX
with a lower IC50 value. It was observed that the presence of liposomes
in the HER-2-positiveMCF-7 and SKBR-3 breast cancer cells increased
the uptake and targeted delivery of DOX. Yang et al. (2022) modified
DSPE-PEG-biotin, conjugated streptavidin (STA), biotin, and PEG on
double-layer phospholipids to encapsulate DOX and form DOX-Lip
(Figure 1A). Furthermore, DOX-Lip was connected to macrophages to
form the macrophage liposome (MA lip). A study on a triple-negative
breast cancer cell line (4T1 cells) showed that MA lip was conducive to
the migration of DOX into the deep cells of the tumor and its release
into the deep regions of the tumor.

It was shown that DOX induces the immune cells to activate
antitumor immunity (Galluzzi et al., 2020), and it was also
confirmed that macrophages actively migrate into hypoxic areas
within tumors (Chaturvedi et al., 2014; Germain and Kastenmüller,
2010). Existing research shows that self-assembled liposomal
nanostructures are formed using single-layer or double-layer lipid
outer membranes composed of substances such as phospholipids,
cholesterols, DSPE-mPEG, and lipids encapsulating chemotherapeutic
drugs like mitoxantrone or DOX with or without surface modification
by DSPE-PEG-biotin (Figure 1A) (Chowdhury et al., 2020; Yang et al.,
2022; Pestalozzi et al. (1992) and Pestalozzi et al. (1995); Wang et al.,
2020). The representative drugs PLD and liposome-complexed
mitoxantrone were also shown to have improved safety.

2.1.2 Self-assembled niosomes
Niosomes are nanovesicles of non-ionic surfactants that promise

efficient drug delivery by encapsulating hydrophilic and
hydrophobic drugs. Riccardi et al. (2018) used the
AS1411 aptamer to target cancer cell nucleolin, whereby the
drugs were delivered directly to the breast tumors with reduced
toxicity and enhanced treatment efficacy. Liu et al. (2017) studied
liposomal daunorubicin as a representative drug of self-assembled
niosomes to enhance its retention time in tumor tissues. Wheat
germ agglutinin (WGA)-modified daunorubicin antiresistant
liposomes were produced by the thin-film hydration method
using coated WGA (Li et al., 2014, Li et al., 20142015) with a
lipid composition of error-producing condition (EPC)/cholesterol/
DSPE-PEG 2000. In tumor-bearing mice with MCF-7/ADR cells,
the WGA-modified daunorubicin antiresistant liposomes were
found to retain daunorubicin in the tumor tissues for 24 h and
significantly reduce the size of the tumor cells; free daunorubicin
stayed in the tumor tissues for only a short time. However, liposomal
daunorubicin also has some limitations, such as its high molecular
weight. Although liposomal daunorubicin has low toxicity even with
its lengthy retention time in living tissues, further studies are needed
to assess whether there will be toxicity accumulation. Kulkarni and
Rawtani (2019) from the American Pharmaceutical Association
used the Box Behnken design to study MCF-7 breast cancer cells
in vitro. They found that niosomes containing the lipophilic drug

FIGURE 1
Structures of self-assembled lipid-based nanoparticles. (A) Self-assembled liposomal nanostructures: modified DSPE-PEG-biotin (streptavidin,
biotin, PEG, andmacrophage synthesis) on a double-layer structure to encapsulate DOX to formDOX-Lip (Yang et al., 2022)ⓒ 2022, American Chemical
Society. (B) Self-assembled niosomes: Tween-80-conjugated niosomeswith cholesterol encapsulate DOX andD-limonene in lipid-based nanoparticles.
(C) Self-assembled lipid–polymer hybrid nanoparticles: NO-donor-loaded bioinspired lipoprotein system (NO-BLP) was constructed using 1,2-
dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), DSPE-PEG 2000, NO-C16, and ApoA1 mimetic peptide (Wu et al., 2023) ⓒ 2023, American
Chemical Society.
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tamoxifen and hydrophilic drug DOX had 70% encapsulation
efficiency and could be stable for up to 6 months under
refrigeration at 4°C; this composition shows increased
encapsulation efficiency and stability simultaneously. Although
blank niosomes are non-toxic to normal cells, the niosomes used
in this study could not reduce the cumulative toxicity of the drugs in
combination therapy for the time being. Assali et al. (2022) used the
Peppas–Sahlin model and found that niosomes containing Tween
80 with cholesterol and encapsulating DOX as well as D-limonene
exhibited higher stability; in vitro experiments also showed that the
release of DOX was more stable (Figure 1B). However, the study did
not identify the protective effects of D-limonene combined with
DOX on the heart, indicating that further research is needed.

Unlike self-assembled liposomal nanostructures using DSPE-
PEG 2000 as the medium, self-assembled niosomes contain Tween
80 as the medium. As shown in Figure 1B (Assali et al., 2022; Liu
et al., 2017), liposomal daunorubicin as a representative drug
controls the progress of breast cancer by increasing the retention
time of daunorubicin in the tumor tissues.

2.1.3 Self-assembled LPHNPs
Self-assembled LPHNPs have advantages as nanocarriers for the

delivery of anticancer agents (Pang et al., 2020; Martinelli et al.,
2019; Govindan et al., 2023); these benefits include compositions of
diverse synthetic drugs, simple and repeatable synthesis process, and
good stability (Du et al., 2019). These nanoparticles also enable
individualized treatments for tumor patients through different
chemical modifications (Kumar et al., 2020). However, owing to
the use of organic solvents during synthesis, the LPHNPs exhibit
shortcomings, such as generating toxic byproducts after in vivo
degradation and limited capacity to capture drugs (Ulbrich et al.,
2016). Rao and Prestidge (2016) encapsulated polymer particles in a
lipid shell to synthesize LPHNPs and explored their feasibility for
oral administration. LPHNPs mainly comprise an external lipid
shell encapsulating biodegradable hydrophobic polymers, with the
inner core serving as the primary carrier of lipid-soluble drugs (Shi
et al., 2015; Li, 2024; Dehaini et al., 2016; Wu et al., 2020; Sengel-
Turk et al., 2021). LPHNPs have strong lipid-based drug-loading
capacities and can affect the drug release rates (Bakar-Ates et al.,
2020; Klibanov et al., 1990; Hamdi et al., 2020). Moreover, LPHNPs
possess biomimetic properties, biocompatibility, ideal drug-release
characteristics for polymer nanocarriers, and the ability for various
surface chemical modifications (Al-Jipouri et al., 2023; Shi et al.,
2014; Tahir et al., 2020). Zhang et al. (2021) prepared nanoparticles
using the Michael-type step polymerization (Lynn and Langer,
2000), where a mixed lipid shell comprising DSPE-PEG 2000,
FA-DSPE-PEG 2000, and lecithin encapsulates a degradable poly
β-amino ester (PBAE) carrying docetaxel (DTX) to form PBAE/
DTX nanoparticles. FA-targeted phospholipid monolayers form the
shell of the FA/PBAE/DTX nanoparticles. The study of 4T1 breast
cancer cells showed that compared to free DTX or PBAE/DTX
nanoparticles, FA/PBAE/DTX nanoparticles had significantly
enhanced intracellular uptake efficiency and cytotoxicity. The
modification with FA enhances the tumor-targeting ability of the
polymeric lipid nanoparticles. Finally, FA/PBAE/DTX nanoparticles
for drug delivery enhanced the antitumor effects and had less
systemic toxicity in 4T1 breast cancer cells. A sunitinib-loaded
self-nanoemulsifying formulation has been reported to have

better antitumor activity against MCF-7 breast cancer cells
(Nazari-Vanani et al., 2017; Adams and Leggas, 2007; Alshahrani
et al., 2018). Further studies are being conducted on sunitinib malate
(SM) in 28 ongoing clinical trials (Chen et al., 2017). Another study
on MCF-7 cells involved the use of lecithin as a stabilizer along with
emulsification-solvent evaporation technology (Ahmed et al., 2022;
Anwer et al., 2021). SM, Lipoid 90H, and chitosan have been
combined to form LPHNPs; by adjusting the concentration of
chitosan, the composition of the nanoparticles can be altered.
Accordingly, four formulations (SLPN1–SLPN4) were developed
and tested separately on MCF-7 cells. The results showed that
SLPN4 significantly enhances the release and accessibility of SM
in MCF-7 cells and that SM-loaded LPHNPs may be a promising
option for cancer treatment.

Existing clinical studies have shown that albumin-bound
paclitaxel increases the safety of paclitaxel over traditional
paclitaxel for HER-2-positive, weak-positive, or HER-2-negative
patients (Shi et al., 2023; Futamura et al., 2023). However, no
significant changes have been found in the survival rates of breast
cancer patients. Ruttala and Ko (2015b) improved the antitumor
effects of albumin-bound paclitaxel nanoparticles (APN); the
lipid–liposome bilayer was coated with albumin paclitaxel to
prepare liposome-encapsulated APN (i.e., L-APN or ABPLN). In
vitro tests then showed that L-APN could significantly improve the
stability of paclitaxel and enhance the cytotoxic activity of APN in
MCF-7 cells; it was also found via in vitro studies that when curcumin
and APN are codelivered to MCF-7 cells, the presence of the
liposomes enhances the synergistic antitumor ability of curcumin
and albumin-bound paclitaxel (Ruttala and Ko, 2015a).

Compared to self-assembled LPHNPs coated with APN, liposomal
nanoparticles coated with curcumin and albumin-bound paclitaxel
exhibit greater cytotoxicity and superior anticancer effects on breast
cancer cells. Based on these findings, scholars from Fudan University in
Shanghai constructed a NO-BLP (Wu et al., 2023) composed of 1,2-
dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), DSPE-PEG
2000, glutathione (GSH)-sensitive NO donor agent (NO-C16), and
an apolipoprotein A1 (ApoA1) mimetic peptide (Figure 1C)
(Stylianopoulos et al., 2018; Martin et al., 2019). In mice carrying
4T1 tumors of breast cancer, NO-BLP can effectively accumulate at the
tumor site and release active NOmolecules to normalize the disordered
tumor vessels, promoting intratumoral administration and
chemotherapy using APN. Self-assembled lipid–polymer hybrid
nanoparticles can modify the tumor microenvironment and enhance
the efficacy of chemotherapeutic drugs by releasing NO into the tumor
cells. Therefore, NO-BLP improves the efficacy of APNs. However, as
this study was conducted in animals, only the antitumor effects were
evaluated while the drug safety was not assessed; thus, drug safety
evaluations are necessary for further clinical trials.

2.2 Action mechanisms of self-assembled
lipid-based nanoparticles

2.2.1 Prolonging the retention times of
chemotherapeutic drugs in tumor tissues and
activating strong immune responses

Most recent studies show that self-assembled lipid-based
nanoparticles can prolong the residence times of

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Liu 10.3389/fbioe.2024.1482637

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1482637


chemotherapeutic drugs in tumor tissues (Makowski et al., 2019;
Chowdhury et al., 2020; Yang et al., 2022). Yang et al. (2022) showed
that DOX-Lip links with macrophages through DSPE-PEG-STA
interactions (Figure 2A) and deeply penetrates the tumor cells to
release DOX, thereby activating robust immune responses through

the CD4+/CD8+/NK cells. MA-DOX-Lip effectively inhibited the
tumor growth model of 4T1 triple-negative breast cancer in mice
and improved the killing rate of the tumor cells (Figure 2A). Recent
studies have also proven that the presence of liposomes improves the
utilization rates of chemotherapeutic drugs and their safety.

A

B

FIGURE 2
Prolonging the retention times of chemotherapeutic drugs in tumor tissues and activating strong immune responses. (A) DOX-Lip links with
macrophages through DSPE-PEG-STA interactions; mechanism of in vivo action of self-assembled lipid-based nanoparticles (Yang et al., 2022)ⓒ 2022,
American Chemical Society. (B) Schematic illustration of self-assembled lipid-based nanoparticles acting on breast cancer tissues to restore normal
blood supply (Wu et al., 2023)ⓒ 2023, American Chemical Society. Here, DSPE-PEG denotes 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-
poly (ethylene glycol); DMPC denotes 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine; PAN denotes paclitaxel nanoparticles; NO-BLP denotes NO-
donor-loaded bioinspired lipoprotein system.
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However, some studies have shown that increasing the utilization of
chemotherapeutic drugs has no apparent advantages for prolonging
the overall survival (OS) of cancer patients.

2.2.2 Self-assembled lipid-based nanoparticles
restore regular blood supply to tumor tissues

Although traditional research efforts have prolonged the
retention times of chemotherapeutic drugs in tumor tissues, they
have not significantly prolonged the OS of breast cancer patients
because of the influence of the tumor microenvironment on
antitumor efficacy (Tredan et al., 2007). Wu et al. (2023)
prepared NO-BLP loaded with GSH-activated NO donors to
normalize tumors, improve the delivery efficiency of APN in the
tumors, change the tumor microenvironment by restoring regular
blood supply to the tumor tissues, and sequentially treat tumors
(Figure 2B). The tumor inhibition rate for the NO-BLP + PAN
treatment group was 81.03%, and the tumor sizes were only 29.89%
for the NO-BLP group and 39.85% for the PAN group (Wu
et al., 2023).

Changes in the tumor microenvironment are likely to promote
the effects of chemotherapeutic drugs and reduce drug resistance
(Tredan et al., 2007). Unlike traditional research on activating the
immune responses, research on self-assembled lipid-based
nanoparticles offers an alternative approach by which the
nanoparticles change the tumor microenvironment to improve
the drug utilization rate. Research on restoring regular blood
supply to the tumor tissue with nanomaterials can improve the
killing rates of tumor cells using chemotherapeutic drugs through
the changes to the tumor microenvironment. However, such
research efforts are still within the scope of animal research.
Although animal research proves the safety and reliability of a
drug—supported by the weights of the tumor-bearing mice and
histological examination results of their main organs—there is a lack
of relevant clinical trials, resulting in inadequate evaluations of the
safety and antitumor effects. The extent to which NO-BLP improves
the effectiveness of other liposomal chemotherapeutic drugs
remains an open research question.

2.3 Current clinical research progress on
self-assembled lipid-based nanoparticles

Existing clinical antitumor treatments widely use liposomal
adriamycin, and clinical trials have improved its safety, reduced
the toxic and side effects, and ensured a smoother process for
chemotherapy, thereby prolonging the progression-free survival
(PFS) (China, 2023). Unlike the results of in vitro studies and
animal experiments, the aforementioned drugs have not
improved the OS times of breast cancer patients over 5 and
10 years, which may be related to insufficient sample sizes and
short research times (Gucalp et al., 2018; Fujiwara et al., 2019;
Pestalozzi et al., 1992, 1995; Fabi et al., 2020). Pestalozzi et al. (1992);
Pestalozzi et al. (1995) found that in the phase II study of liposome-
complexed mitoxantrone, although there was no significant
improvement in the PFS over treatment with free mitoxantrone,
there were reductions in the cardiac and hematological toxicities. To
verify whether breast cancer patients could benefit from self-
assembled liposomal nanostructures, O’brien et al. conducted a

phase III study comparing the use of DOX and PLD as first-line
treatments in 509 patients withmetastatic breast cancer (Wang et al.,
2020). PLD was formulated as photolipid bilayers coated with
methoxy-PEG-encapsulated DOX. The OS rates of patients
showed no differences for the two treatments (PLD over
21 months vs. DOX over 22 months); however, the pathological
complete response (PCR) of the PLD group was significantly
prolonged and cardiac toxicity was significantly reduced (hazard
ratio [Hr] 1/4 = 3.16; 95% confidence interval [cI] 1/4 = 1.58–6.31;
p< 0.001). Research results from patients with clinical stage IIA–IIIc
and lymph node position indicate that PLD is safer andmore reliable
than DOX in the combined treatment of metastatic breast cancer,
and prolonging the PCR also reduces the cardiotoxicity of DOX. The
main drawback of this study is that its sample size was too small and
HER-2-positive cases were not grouped, so studies on a larger
population would be needed in the future. Fabi et al. (2020)
conducted a phase I study on HER-2-negative metastatic breast
cancer patients and found that liposoluble DOX had improved drug
safety and reduced chemotherapeutic drug toxicity.

Clinical experiments on PLD and liposomal mitoxantrone,
which are some representative drugs used in self-assembled
liposomal nanostructures, show that liposomal nanostructures
can indeed increase drug safety and relatively improve drug
utilization compared to free DOX/mitoxantrone. However, there
are no apparent benefits in terms of drug resistance, especially in
prolonging the survival of breast cancer patients.

Although self-assembled niosomes have produced good results
in vitro and in animal experiments and liposomal daunorubicin used
as their representative drug significantly reduced the growth rates of
breast cancer cells in MCF-7/ADR-tumor-bearing mice, there are no
clinical trials that clearly show that self-assembled niosomes can
simultaneously improve the efficacy and safety of antitumor drugs.
Liposomal daunorubicin as a representative drug used in self-
assembled niosomes has improved the antitumor efficacy in
chemotherapy because it prolongs the residence time of
daunorubicin in the tumor tissues. However, the safety of
relevant drugs and nanomaterials are still subject to verification.
Compared with self-assembled liposomal nanostructures that
improve the safety of antitumor treatments, self-assembled
niosomes have more advantages in reducing the tumor growth
rates; however, unlike the phase I/II study of self-assembled
liposomal nanostructures, there are no available clinical studies of
self-assembled niosomes, suggesting that breast cancer patients can
significantly benefit from more studies on self-assembled niosomes.
Furthermore, clinical experiments are needed to clarify whether self-
assembled niosomes can achieve better antitumor effects in humans.

As a representative drug used in self-assembled LPHNPs, APN
(or L-APN), ABPLN can improve the safety of chemotherapy and is
more convenient for clinical application (Ruttala and Ko, 2015b;
Meng et al., 2015). However, there is limited research on these drugs
against breast cancer. In vitro research shows that NO-BLP or self-
assembled LPHNPs have better anticancer effects and can further
improve the antitumor effects in chemotherapy by changing the
tumor microenvironment. A phase I study of APN also showed that
self-assembled lipid-based nanoparticles could reduce the toxicity of
chemotherapeutic drugs (Fabi et al., 2020). Compared with
traditional free paclitaxel/DOX, liposome-encapsulated DOX
combined with APN has significantly reduced toxicity.
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Nevertheless, as a phase I study involving only 12 patients, this
approach needs improvement given the inadequate number of
participants, samples, and data.

3 Conclusion

Nanomedicine as a field is still limited for the comprehensive
treatment of breast cancer (Kim et al., 2007; Fabian et al., 2020;
Gucalp et al., 2018; Malloizel-Delaunay et al., 2024; Wu et al., 2017),
and clinical trials related to nanomedicine have also proved the
importance of nanobioengineering for disease control in clinical
tumor patients (Fujiwara et al., 2019; Mohammadpour and
Majidzadeh, 2020; Hekmat et al., 2022). The presently available
self-assembled lipid-based nanoparticles increase the drug
utilization concentrations in tumor tissues as well as reduce the
toxic and side effects of drugs, thereby improving the safety of
tumor treatment.

Nowadays, chemotherapy as a treatment for breast cancer is
limited by the toxic and side effects of the drugs used, which affects
the treatment efficacy. Although the phase I studies conducted by
Pestalozzi et al. (1992) and Pestalozzi et al. (1995), O’brien (Wang
et al., 2020), and Fabi et al. (2020) lack adequate sample sizes, there is
evidence that self-assembled liposomal nanostructures encapsulated
with DOX or mitoxantrone can improve the safety of chemotherapy
drugs as well as significantly reduced their toxic and side effects,
especially in terms of cardiotoxicity. However, it is debatable
whether improving the chemotherapy cycle of DOX can further
prolong the OS times of breast cancer patients and must be verified
with additional clinical studies. Moreover, in vivo and in vitro
experiments have shown that the representative drugs used in
self-assembled lipid-based nanoparticles, such as DOX-Lip,
liposome-complexed mitoxantrone, ABPLN, and liposomal
daunorubicin, significantly improve the safety of chemotherapy
in the free state and reduce cardiotoxicity. At the same time,
extant studies show that DOX-Lip, liposome-complexed
mitoxantrone, and ABPLN mainly enhance safety by reducing the
toxic and side effects of chemotherapeutic drugs, with no significant
changes in the OS times of the patients. However, NO-BLP as a typical
drug used in self-assembled LPHNPs enables easier entry into tumor
cells by improving the tumor microenvironment.

In conclusion, although self-assembled LPHNPs, such as
ABPLN, can increase the efficacies of chemotherapeutic
medications by improving the tumor microenvironment, it is
unclear whether self-assembled lipid nanostructures and self-
assembled niosomes carrying different drugs can produce similar
changes. Another open question is whether self-assembled lipid-
based nanoparticles can change the tumor microenvironment by

carrying different substances. In the future, such treatments must
aim to target different types of tumors through various substances.

Lipid-based nanoparticles thicken the liposomes and increase
their storage stability to a certain extent. Nevertheless, their ability to
capture drugs remains to be improved. The utilization of organic
solvents during preparation of specific lipid-based nanoparticles
requires further research for reducing the toxicity of these
nanoparticles. The present review clearly shows that data on
animal and human experiments are lacking with regard to
the use of nanomaterials in breast cancer chemotherapy.

This mini review summarizes recent research progress on lipid
nanoparticles and provides detailed descriptions of the structures,
mechanisms, and representative drugs associated with three types of
self-assembled nanoparticles. Furthermore, we discuss the
applications of lipid nanoparticles in the treatment of breast cancer.
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