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Purpose: Plantar soft tissue properties affect foot biomechanics during
movement. This study aims to explore the relationship between plantar
pressure features and soft tissue stiffness through interpretable neural
network model. The findings could inform orthotic insole design.

Methods: A sample of 30 healthy young male subjects with normal feet were
recruited (age 23.56 ± 3.28 years, height 1.76 ± 0.04 m, weight 72.21 ± 5.69 kg).
Plantar pressure data were collected during 5 trials at the subjects’ preferred
walking speed (1.15 ± 0.04 m/s). Foot soft tissue stiffness was recorded using a
MyotonPRO biological soft tissue stiffness meter before each walking trial. A
backpropagation neural network, optimized by integrating particle swarm
optimization and genetic algorithm, was constructed to predict foot soft
tissue stiffness using plantar pressure data collected during walking. Mean
impact value analysis was conducted in parallel to investigate the relative
importance of different plantar pressure features.

Results: The predicted values for the training set are slightly higher than the actual
values (MBE = 0.77N/m, RMSE = 11.89 N/m), with a maximum relative error of
7.82% and an average relative error of 1.98%, and the predicted values for the test
set are slightly lower than the actual values (MBE= −4.43N/m, RMSE= 14.73 N/m),
with a maximum relative error of 7.35% and an average relative error of 2.55%.
Regions with highest contribution rates to foot soft tissue stiffness prediction
were the third metatarsal (13.58%), fourth metatarsal (14.71%), midfoot (12.43%)
and medial heel (12.58%) regions, which accounted for 53.3% of total
contribution.

Conclusion: The pressure features in the medial heel, midfoot area, and lateral
mid-metatarsal regions during walking can better reflect plantar soft tissue
stiffness. Future studies should ensure measurement stability of this region
and refine insole designs to mitigate plantar soft tissue fatigue in the specified
areas.
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1 Introduction

Plantar soft tissue is an important structure for maintaining foot
mobility function, and its mechanical properties affect foot
performance during motion (Mckeon et al., 2015; Lynn et al.,
2012; Natali et al., 2010; Ker et al., 1987). The plantar soft tissue
consists of fat pads, fascia, muscles and tendons in the sole of the
foot. Due to its viscoelasticity, the plantar soft tissue can coordinate
the rigid structures of the foot to adapt to different modes of
movement. In the plantar soft tissue, the fat pad in the heel can
provide cushioning and protect the bones and joints during
movement (Mckeon et al., 2015; Teng et al., 2022); the muscles
in the sole can increase the rigidity of the foot to provide power for
improved locomotion efficiency (Ridola and Palma, 2001); the
plantar fascia can store energy during weight bearing, improving
locomotion economy through its viscoelasticity (Natali et al., 2010;
Ker et al., 1987). Studies show that the stiffness of the proximal
plantar fascia increases with greater dorsiflexion angles and tension
in the Achilles tendon (Liu et al., 2020; Shiotani et al., 2023), and the
stiffness of the Achilles tendon and plantar fascia are important
indicators for assessing plantar fasciitis (Bolivar et al., 2013; Baur
et al., 2021). Investigations of the plantar fascia in overweight and
obese groups showed reduced stiffness of the muscular fascia in the
sole of the foot relative to normal weight populations (Tas et al.,
2017), and decreased rigidity of the plantar fascia may affect midfoot
stability, leading to excessive pronation (Cifuentes-De et al., 2021;
Huang et al., 1993). Moreover, diabetic foot patients have higher
stiffness than healthy people in the plantar soft tissue (Chatzistergos
et al., 2014). Behforootan et al. believe that understanding the stress-
strain capabilities of plantar soft tissue under daily weight-bearing
conditions is important for understanding the etiology of foot ulcers
(Behforootan et al., 2017). It can be seen that the soft tissues of the
sole play an important role in improving the adaptability and
economy of movement of the foot during exercise. Exploring the
biomechanical performance of the foot during exercise is an
important reference for reflecting the state of the soft tissues
of the sole.

Current methods for measuring plantar soft tissue stiffness can
be divided into two categories: ultrasound technology and non-
invasive physical detection techniques. Ultrasound-based devices
include ultrasound diagnostic instruments and ultrasound
elastography equipment. The principle is to evaluate plantar soft
tissue stiffness by calculating shear modulus based on the velocity
attenuation of ultrasound waves in plantar soft tissues (Baur et al.,
2021; Gatz et al., 2020). Non-invasive physical detection techniques
mainly apply mechanical pressure on plantar soft tissues and
measure tissue rebound or feedback to quantify plantar soft
tissue stiffness. Devices using this technique include MyotonPRO
biological soft tissue stiffness meter and some custom-designed
plantar pressure devices by researchers (Chatzistergos et al., 2014;
Sakalauskaitė and Satkunskienė, 2012; Teoh and Lee, 2016).
However, the aforementioned test methods can only measure
plantar soft tissue stiffness under non-weight-bearing and static
conditions, lacking integration with actual physical activity, and
many foot soft tissue diseases often arise from the foot repeatedly
buffering, propelling, walking and other functions while bearing
body weight. Pathological changes in the force characteristics of
different plantar regions during walking often lead to changes in

plantar soft tissue stiffness, thus resulting in various plantar soft-
tissue related diseases (such as plantar fasciitis, heel pain, diabetic
foot, etc.) (Bolivar et al., 2013; Chatzistergos et al., 2014; Cheung
et al., 2006). Finite element analysis indicates that softening plantar
tissues in pes cavus can reduce stress on metatarsals, thereby
mitigating metatarsalgia (Cen et al., 2023). The aforementioned
content underscores the necessity of identifying key plantar regions
that exhibit the functional characteristics of soft tissues during
physical activity. This is instrumental in enhancing the design of
foot orthoses and in formulating appropriate intervention strategies
for the plantar soft tissues.

Although traditional analytical methods (such as correlation
analysis) can explore associations between variables, they are
typically limited to linear relationship analysis between single
variables. In contrast, the neural network is more suitable for the
regression problem, which involves a relatively small number of
input parameters, and can demonstrate rapid training speed and
good convergence performance. This study selected the average
pressure of different plantar regions during the walking stance phase
as the input layer, and tested the in vivo plantar soft tissue stiffness of
the subjects using a MyotonPRO biological soft tissue testing device
as the output layer. Optimizing a Backpropagation (BP) Neural
Network through Particle Swarm Optimization (PSO) and Genetic
Algorithms (GA), in conjunction with the Mean Impact Value
(MIV) method, to explore the relationship between the stiffness
of the plantar soft tissues and the mechanical characteristics of the
plantar region during walking.

2 Methods

2.1 Subjects

Referring to previous studies on plantar fascia (Sakalauskaitė
and Satkunskienė, 2012; Huang et al., 2018), 30 young male
participants were recruited for this study, with the following
inclusion criteria: (1) participants exhibited normal foot arch
types (with the arch index between 0.21 and 0.26 (Cavanagh and
Rodgers, 1987)); (2) no history of lower limb or plantar fascia
injuries in the past 6 months; (3) no engagement in intense
physical activity within 48 h prior to the study. The basic
information of the subjects is presented in Table 1. The testing
procedures were explained to all subjects and informed consent was
obtained prior to testing. This study was approved by the Ethics
Committee of Hebei Normal University (No. 2022LLSC026), and
the elements of the study involving human research were conducted
in accordance with the Declaration of Helsinki.

TABLE 1 Basic information of the subjects.

Age (years) Height(m) Weight (kg) Arch index

Value 23.56 ± 3.28 1.76 ± 0.04 72.21 ± 5.69 0.23 ± 0.02
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2.2 Data collection

2.2.1 Plantar pressure data acquisition
Plantar pressure data during walking was collected using a high

frequency plantar pressure plate (RSscan International, Belgium,
sampling frequency 120Hz, minimum resolution 0.25N,
measurement range 1–60N/cm2, plate length 2 m). Extensions of
1.5 m were added at the beginning and end of the pressure plate to
record changes in plantar loading during progression. Under the
guidance of the experimenters, all participants first completed the
same warm-up routine, which involved mobilizing the knee and
ankle joints and stretching the thigh and calf muscles, then walked 2-
3 times over the pressure plate to get familiar with the testing
protocol. Plantar pressure data of 5 trials under each subject’s
preferred walking speed (1.15 ± 0.04 m/s) were recorded, with at
least one left and one right step in each trial.

2.2.2 Plantar soft tissue stiffness data acquisition
After subject warm-up, a MyotonPRO biological soft tissue

stiffness meter (Myoton AS, Estonia, measurement depth
20–30mm, stiffness range 70–1900N/m, coefficient of variation
1.7%, acceleration resolution ±8 g) was used to record plantar
soft tissue stiffness. Subjects lied in a supine relaxed position
with the ankle and metatarsophalangeal joints aligned in a
neutral position (Chatzistergos et al., 2014; Behforootan et al.,
2017). The probe was placed perpendicular to the intersection of
the anterior calcaneus and second toe midline (plantar aponeurosis
location (Sakalauskaitė and Satkunskienė, 2012)) until the green
light turned on (Figure 1). The tester held the device steadily at the
measuring position to collect data. Both feet were measured 5 times
for each subject, each test was conducted prior to the walking test to
ensure that the plantar soft tissue stiffness data corresponded with
the walking data.

2.3 Data processing

2.3.1 Plantar pressure data processing
The average pressure of ten plantar regions was calculated using

Equation 1:

Fmean � ∑Fi

n
(1)

(where Fmean is the average plantar pressure, Fi is the pressure of that
region at the ith sampling, and n is the total number of samples).

The ten plantar regions were divided according to the Footscan
software included with the high frequency plantar pressure plate.
The division of plantar regions is shown in Figure 2, where region
one is the hallux, region two is the second to fifth toes, regions three
to seven are the first to fifth metatarsals respectively, region eight is
the midfoot, region nine is the medial heel and region 10 is the
lateral heel.

2.3.2 Plantar soft tissue stiffness data processing
The MyotonPRO biological soft tissue stiffness meter mainly

records the damped natural oscillation of soft tissues in the form of
acceleration signals. It calculates soft tissue stiffness from the force of

FIGURE 1
Plantar soft tissue stiffness testing.

FIGURE 2
Schematic diagram of plantar regions.
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the probe and deformation of the soft tissue. An example of the test
data is shown in Figure 3. Soft tissue stiffness was calculated using
Equation 2:

S � amax ·mprobe

Δl
(2)

(where S is the soft tissue stiffness, amax is the maximum acceleration
value, mprobe is the probe mass, and Δl is the soft tissue
deformation variable).

2.3.3 Neural network construction
The neural network was constructed using the Neural Network

Toolbox in MATLAB 2022b, combined with open-source PSO and
GA code from Github. The workflow is shown in Figure 4. The
specific steps are as follows.

2.3.3.1 Data preprocessing
The plantar pressure data from five successful walking trials for

both feet of the 30 subjects was constructed into a 10 × 300 input
layer. The corresponding plantar soft tissue stiffness from each
walking trial was constructed into a 1 × 300 output layer. To
improve the stability and accuracy of the neural network, the
input and output layer data were normalized to the range (0, 1)
respectively to accelerate convergence (Xu et al., 2021), as shown in
Equation 3.

xstandard � xi − xmin

xmax − xmin
(3)

(where xstandard is the normalized data, xmin is the minimum value in
the target dataset, and xmax is the maximum value in the
target dataset).

2.3.3.2 Setting neural network parameters
A three-layer multi-input single-output BP regression neural

network was constructed with 10 nodes in the input layer, 13 nodes
in the hidden layer (determined by Equation 4, (Gu et al., 2020; Xia
et al., 2019)), and one node in the output layer. The network was set
to train for 8,000 iterations, with a target error of 1 × 10−6 and a
learning rate of 0.01.

Hidden � ��������������
Input + Output

√ + a (4)
(where Hidden is the number of hidden layer nodes, Input is the
number of input layer nodes, Output is the number of output layer
nodes, and a is a constant between Equations 1, 9).

2.3.3.3 Initializing weights and biases
The PSO-GA optimization algorithm was used to initialize the

neural network weights and biases. During each iteration of the PSO,
the best individual identified by the genetic algorithm is used to
replace the worst individual in the PSO population. This strategy
harnesses the complementary strengths of both PSO and GA,
enhancing overall optimization performance. The main
parameters of the PSO-GA optimization algorithm are shown in
Table 2. After each update, the fitness value of each particle was
calculated (Gu et al., 2020; Xia et al., 2019) using Equation 5.

Fitness � ∑nt
m�1

�����������
1
nt

tm − t̂m( )2√
(5)

(where a Fitness is the fitness value, nt is the training dataset size, tm
is the true value for the mth group of training data, and t̂m is the
predicted value for the mth group of training data).

2.3.3.4 Extracting optimal weights and biases
The convergence of the algorithm was evaluated by plotting the

change in fitness values over each PSO-GA iteration. After all PSO-
GA iterations were complete, the particle position with the
minimum fitness value was selected, containing the optimal
weights and biases.

2.3.3.5 Network training
The optimal weights and biases were assigned to the connection

weights and biases of the neural network. The training and test sets
were divided in a 8:2 ratio for network training.

2.3.3.6 Simulation prediction
The optimized neural network was used to perform simulation

predictions on the test and training sets, followed by inverse
normalization of the data.

2.3.3.7 Error calculation
Both absolute and relative error metrics were employed to

evaluate the model performance on the training and test sets. For
absolute errors, the mean bias error (MBE) and root mean square
error (RMSE) were calculated as presented in Equations 6, 7, (Xu
et al., 2021; Li et al., 2022). For relative errors, the relative error
percentage (REP) was computed as presented in Equation 8, (Xu
et al., 2021; Li et al., 2022).

FIGURE 3
Example of test data. (Note: s is the deformation variable, v is
velocity, and a is acceleration).

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Bai et al. 10.3389/fbioe.2024.1482382

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1482382


MBE �
∑n
m�1

ym − ŷm( )
n

(6)

RMSE �
�������������
1
n
∑n
m�1

ym − ŷm( )2√
(7)

REP � ym − ŷm

∣∣∣∣ ∣∣∣∣
ym

× 100% (8)

(Where n is the dataset size, ym is the true value for themth data, and
ŷm is the predicted value for the mth data).

2.3.3.8 Calculating input feature contributions
The MIV algorithm was used to calculate the contribution of

each input feature to the output. The method begins by perturbing
each input variable by ±10%, after which the trained neural network
is used to predict the outputs for the perturbed data, generating new

FIGURE 4
Neural network construction.

TABLE 2 Main parameters of the PSO-GA optimization algorithm.

PSO GA

Iteration Individual learning
factor

Population learning
factor

Swarm
size

Generation Swarm
size

Accuracy Crossover
rate

30 4.5 4.5 5 50 5 1 × 10−6 0.4
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results. By comparing the output changes before and after the
perturbation, the MIV is calculated. A positive MIV indicates the
input feature has a positive influence on the output, while a negative
MIV means the input has a negative influence on the output (Gu
et al., 2020; Xia et al., 2019; Li et al., 2022).

MIV � Pi1 − Pi2

n
(9)

(Where Pi1 is the predicted data after increasing the ith feature by
10%, Pi2 is the predicted data after decreasing the ith feature by 10%,
and n is the data size).

The MIV value for each feature was calculated according to the
above steps. The absolute MIV value for each feature was divided by
the sum of absolute MIV values for all features to obtain the
contribution rate of each feature (Gu et al., 2020; Xia et al., 2019;
Li et al., 2022), as presented in Equation 10:

Coni � MIVi| |
∑10
i�1
MIVi

× 100% (10)

(Where Coni is the contribution rate of the ith feature, andMIVi is
the mean impact value of the ith feature).

2.4 Statistical analysis

The data collected in this study were processed and statistically
analyzed by Excel and SPSS25.0. The neural network construction,
training, and error calculation were performed in Matlab 2022b.

3 Results

3.1 Evaluation of neural network
performance

3.1.1 Results of optimization algorithm
The PSO-GA optimization convergence curve is shown in

Figure 5. The fitness value stabilized around the 12th iteration,

indicating that the network reached convergence with an optimal
fitness value of 0.12397.

3.1.2 Results of Model Prediction Performance
As shown in Table 3 and Figure 6, the predicted values for the

training set are slightly higher than the actual values (MBE = 0.77N/
m, RMSE = 11.89 N/m), with amaximum relative error of 7.82% and
an average relative error of 1.98%, and the predicted values for the
test set are slightly lower than the actual values (MBE = −4.43N/m,
RMSE = 14.73 N/m), with a maximum relative error of 7.35% and an
average relative error of 2.55%.

3.2 Contribution rates of input features

The contribution rates of each input feature to the output are
shown in Figure 7. As illustrated, the average pressure of the third
metatarsal (13.58%), fourth metatarsal (14.71%), midfoot
(12.43%), and medial heel (12.58%) regions accounted for over
10% each, comprising 53.3% of the total contribution. MIV results
indicate that the average pressure in the hallux (6.41%), second-
fifth toes (5.78%), first metatarsal (9.44%), and midfoot (12.43%)
regions had a negative influence on plantar soft tissue stiffness. In
contrast, the average pressure of the second metatarsal (9.17%),
fourth metatarsal (14.71%), fifth metatarsal (8.15%), medial heel
(12.58%), and lateral heel (7.75%) regions positively influenced
plantar soft tissue stiffness.

4 Discussion

This study used the average pressure of each plantar region
during the stance phase of walking as the input layer and the
plantar soft tissue stiffness under the plantar fascia in a non-
weight-bearing state as the output layer. By combining actual
motion in daily life (i.e., walking) to optimize the neural
network algorithm, the relationship between static stiffness and
dynamic plantar mechanics during foot motion was explored. The
results showed that the average pressure during walking in the
third metatarsal region (13.58%), fourth metatarsal region
(14.71%), midfoot region (12.43%) and medial heel region
(12.58%) made relatively vital contributions to plantar soft
tissue. Among them, the third metatarsal and midfoot
regions had positive effects on plantar soft tissue stiffness, while
the fourth metatarsal region and medial heel region had
negative effects.

4.1 Discussion of neural network
performance

This study develops an interpretable neural network to extract
plantar pressure indicators that reflect the condition of soft
tissues. To improve the accuracy of the model, a larger dataset
was used, with an 8:2 split between the training and test sets.
Consequently, enabled the application of machine learning
techniques to more effectively capture the key indicators in the
input layer. For the output layer, soft tissue stiffness of the

FIGURE 5
Changes in fitness during training.
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rearfoot region was measured by MyotonPRO, which obtained
the result of 476.99 ± 15.26 N/m in this study, similar to the
findings by Huang et al. and Sakalauskaite et al. using the same
device (Sakalauskaitė and Satkunskienė, 2012; Huang et al.,
2018), indicating favorable stability of the measurements in
this study. During network training, fitness was calculated in
each iteration using the root mean square error between predicted
and actual values of the training set. As shown in Figure 5, at the
12th iteration the fitness value of optimization algorithm
converged and remained below 0.124. Comparing the errors of
the training and testing sets showed the overall maximum REP
did not exceed 8% with an average REP below 3%. Concurrently,
the RMSEs for the training and testing sets were less than 15%
with average absolute errors below 13 N/m. It demonstrates that
the PSO-GA-BP regression network can effectively predict
plantar soft tissue physical properties, which achieving
prediction of plantar soft tissue physical properties through
biomechanical characteristics of the foot during daily exercise.
In addition, the key plantar areas reflecting soft tissue stiffness
during walking can be analyzed based on the constructed
neural network.

TABLE 3 Error calculation results of the training and test sets.

Absolute error Relative error

MBE (N/m) RMSE (N/m) Maximum REP (%) Average REP (%)

Training set 0.77 11.89 7.82 1.98

Test set −4.43 14.73 7.35 2.55

FIGURE 6
Model prediction performance.

FIGURE 7
Contribution rates of input features. (Note: “+” indicates a
positive influence of the input feature on the output. “-” indicates a
negative influence).
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4.2 Discussion of plantar mechanics and soft
tissue stiffness

The plantar soft tissue stiffness is an important parameter for
evaluating foot function and diagnosing foot disorders
(Cifuentes-De et al., 2021; Chatzistergos et al., 2014; Teoh
and Lee, 2016). This study utilized MIV to quantify feature
importance in neural networks, identifying the third and
fourth metatarsals, midfoot, and lateral heel as critical
indicators of plantar soft tissue biomechanics. During
walking, the heel cushions impact via the plantar fat pad.
Higher impact frequency and force indicate more rigid
buffering during the heel strike phase (Bai et al., 2022).
Research has shown that narrower and higher heels increase
plantar fascia stress, while lower heel heights contribute to
alleviating tension in plantar soft tissues (Wang et al., 2021).
Our study found the average pressure in both medial and lateral
heel correlated positively with plantar soft tissue stiffness. This
suggests that incorporating enhanced heel cushioning in
footwear design may help alleviate stiffness in the plantar
fascia. Matthew R et al. also found that using calcaneal
taping to prevent excessive eversion of the calcaneus can help
support the function of the medial longitudinal arch,
thereby reducing tension on the plantar fascia and alleviating
heel pain (Hyland et al., 2006). These outcomes indicate
individuals with poorer heel cushioning or abnormal
calcaneus position may have stiffer plantar soft tissues. It is
recommended to incorporate both enhanced calcaneal
cushioning and stabilization features in footwear design to
help relieve pressure on the plantar fascia.

For the midfoot region, Peng et al. used a musculoskeletal
flatfoot model and found arch-supporting insoles can effectively
reduce peak plantar pressure and strain in the plantar fascia (Peng
et al., 2022). Our results also showed the average midfoot pressure
negatively influenced plantar soft tissue stiffness, indicating that
appropriately raising the arch height to increase midfoot pressure
may relieve stiffness of the plantar fascia, consistent with Peng’s
findings. Although existing research on flatfoot has only found
thicker plantar fascia without differences in stiffness compared to
normal feet (Tas et al., 2018), some studies show higher incidence
of plantar fasciitis in flatfoot patients (Huang et al., 2004; Lee
et al., 2023). Researches have also shown that elevating the arch in
flat-footed patients not only helps distribute plantar pressure
more evenly, but also improves foot comfort (Xu et al., 2019;
Kasai et al., 2024). For the general population, a moderate
elevation of the arch can enhance comfort as well (Lewin and
Price, 2024). These findings suggest that adjusting the load-
bearing pattern of the arch may help alleviate tension in the
plantar fascia.

In the forefoot, the windlass mechanism is used during
walking to increase arch stiffness and enable the rigid lever
function of the foot for push-off (Kelly et al., 2014). In this
study, the third and fourth metatarsals showed high contribution
to plantar soft tissue stiffness, reflecting their important role in
push-off. However, their influence on stiffness was opposite
during walking, with lateral metatarsals (fourth and fifth)
positively contributing and medial metatarsals (first to third)
negatively contributing. Previous research has demonstrated a

medial shift in the center of pressure during the propulsive phase
of gait (Hof et al., 2005). These findings suggest that a gait pattern
characterized by enhanced lateral forefoot propulsion and foot
eversion may facilitate medial pressure transfer, potentially
improving propulsive efficiency and exhibiting greater plantar
fascia stiffness. Cen et al., using finite element simulations,
demonstrated that reducing the stiffness of the plantar fascia
can effectively alleviate metatarsal conformity (Cen et al., 2023).
Combined with previous research and the findings of this study, it
can be concluded that metatarsal conformity is a key indicator of
the biomechanical properties of the plantar fascia.

In summary, the characteristics of plantar pressure during
walking are important indicators of the foot soft tissues
condition. Adjustments to plantar pressure should consider the
structural features of various parts of the foot to collaboratively
regulate pressure distribution. This approach can optimize the
mechanical properties of the foot soft tissue through appropriate
insole design. Moreover, insights from studies on adaptive
impedance control strategies in other fields can inform the
optimization of resistance training devices or wearable
assistive systems (Chen et al., 2024; Li et al., 2023). By
modulating the state of plantar soft tissues in response to
plantar kinetic characteristics, so as to enhance motor control
capabilities and achieve superior rehabilitation outcomes.

5 Limitations

There are some limitations of the study. Firstly, the current
modeling focused on plantar pressure and soft tissue conditions of
young male individuals with normal foot during walking. Future
studies are recommended to analyze different genders and age
groups, focusing on abnormal foot types or pathological
conditions such as flatfoot and diabetic foot, so as to establish an
interpretable model incorporating movement performance for
assessing risk of plantar soft tissue injury. Additionally, while the
PSO-GA-BP regression network demonstrated favorable predictive
performance in this study, it is still suggested that future research
endeavors aim to increase the sample size, employing more precise
algorithms and validation methods for models. This would not only
further improve predictive accuracy but also enable more effective
utilization of MIV algorithm to assess input layer impact on output
layer, achieving interpretable modeling of plantar soft tissue
mechanical condition based on different motions like running
and jumping.

6 Conclusion

This study constructed an interpretable model of plantar soft
tissue stiffness using plantar pressure across different regions during
walking. The pressure features in the medial heel, midfoot area, and
lateral mid-metatarsal regions during walking can better reflect
plantar soft tissue stiffness. However, the mean pressure in the
fourth metatarsal region demonstrated low test-retest reliability.
Future studies should ensure measurement stability of this region
and refine insole designs to mitigate plantar soft tissue fatigue in the
specified areas.
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