
Assessment of the bioactivity of
bioinspired magnesium oxide
nanoparticles from the
Azadirachta indica extract

Laila M. Al-Harbi1, Mohammed Ezzeldien2*,
Ahmed A. Elhenawy3,4 and Alaa Hassan Said5

1Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, 2Physics
Department, College of Science, Jouf University, Sakaka, Saudi Arabia, 3Department of Chemistry,
Faculty of Science, Al-Azhar University, Nasr CityCairo, Egypt, 4Department of Chemistry, Faculty of
Science, Al-Baha University, Al-Baha, Saudi Arabia, 5Electronics and Nano Devices Lab, Faculty of
Science, South Valley University, Qena, Egypt

Azadirachta indica (neem) extract was used to biologically synthesize magnesium
oxide nanoparticles (MgO NPs). The synthesized NPs were characterized using X-ray
diffraction (XRD), thermogravimetric analysis (TGA), transmissionelectronmicroscopy
(TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and
UV-vis spectroscopy. Antioxidant, anticancer, antibacterial, antidiabetic, and anti-
inflammatory activitieswere analyzed for the synthesizedMgONPs andneemextract.
The obtained results confirmed the synthesis of spherical magnesium oxide
nanoparticles with an average particle size of 23 nm using XRD. The samples
exhibited good thermal stability and high stability in biological media. Compared
to the neem extract and chemically synthesizedmagnesium oxide nanoparticles, the
bioinspired magnesium oxide nanoparticles showed considerable free radical
scavenging activity, with an IC50 value of 69.03 μg/mL. In addition, they reflected
high selectivity to liver hepatic cancer cells with an IC50 value of 94.85 μg/mLwithout
inducing any damage to human umbilical vein endothelial cells. The antibacterial
activity of the bioinspiredmagnesiumoxide nanoparticles demonstrated comparable
effectiveness in treating both Gram-positive and Gram-negative bacterial strains.
Furthermore, the produced bioinspired magnesium oxide nanoparticles showed a
high percentage of inhibition for both α-amylase and α-glucosidase enzymeswith an
IC50 value of 61. 53 and 50.6 μg/mL, respectively. In addition, the bioinspired
magnesium oxide nanoparticles also showed a higher denaturation inhibition
percentage with an IC50 value of 6.66 μg/mL, indicating strong anti-inflammatory
action. These enhanced abilities usher in a new bioinspired magnesium oxide
nanoparticle bio-application era. Consequently, further in vivo studies are needed
to assess the kinetic properties of these nanoparticles.
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1 Introduction

Bioinspired metal oxide nanoparticles (NPs), such as magnesium oxide, have gained
global attention due to their outstanding physiochemical characteristics and bioactivities.
The biological synthesis of NPs can readily mimic these features to make ecologically clean
NPs with better bioactivities (antioxidant, anticancer, antibacterial, antidiabetic, and anti-
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inflammatory). Magnesium oxide nanoparticles (MgONPs) are eco-
friendly and commercially viable. They are essential in industrial
applications due to their high refractive index, excellent corrosion
resistance, strong thermal conductivity, lower electrical
conductivity, and high biocompatibility. These unique
physicochemical properties make them significant in various
fields (Thakur et al., 2022; John et al., 2016; Pilarska et al., 2017).
They are used in photochemical products to enhance light
absorption and conversion. In electronics, MgO NPs improve
materials used in capacitors and insulators. In ceramics, they
enhance mechanical strength and thermal resistance.

Additionally, they serve as effective catalysts in various chemical
processes and are explored in pharmaceutical development for drug
delivery and therapeutic applications. Their diverse usage highlights
their importance in advancing technology across multiple industries
(Singh et al., 2020; Abdulkhaleq et al., 2020; Sharma et al., 2020). In
addition to being important in the bioremediation of contaminants,
MgO NPs have been retained in paints, catalysts, refractory
additives, and superconducting products (Singh et al., 2020;
Abdulkhaleq et al., 2020; Kant et al., 2021; Mantilaka et al., 2018;
Gajengi et al., 2017). MgO NPs show great promise in medicine.
They can treat heartburn, promote bone regrowth, and act as
antimicrobial and antitumor agents. Their diverse applications
power their potential to enhance medical treatments (Sharmila
et al., 2019; Abdullah and Mohammed, 2021; Bindhu et al., 2016).

The growing use of NPs in various fields has recently led to
several challenges. There are increasing concerns about
environmental contamination, bacterial multidrug resistance,
depletion of natural energy resources, and healthcare-related
issues. These challenges have heightened interest in designing
and developing environmentally conscious products to address
these pressing issues (Kumar et al., 2023).

Green synthesis is increasingly preferred over traditional
methods due to its key advantages: simplicity, cost-effectiveness,
and safety. It uses non-toxic, eco-friendly reagents, reducing
hazardous waste and minimizing the environmental impact.

Additionally, the scalability of green synthesis allows for efficient
production suitable for commercial applications, leading to an
increase in bioinspired NP production, which leverages natural
processes and materials for unique properties. A broader shift
toward sustainable practices in nanotechnology offers innovative
solutions while promoting environmental responsibility (Dadkhah
and Tulliani, 2022; Soltys et al., 2021; Aigbe and Osibote, 2024). A
biogenic solvent is needed for bioinspired NP synthesis to facilitate
the reduction process and stabilize the resultant NPs. Plants, fungi,
andmicroorganisms have been investigated as reducing and capping
agents for NP synthesis (Jeevanandam et al., 2022; Srivastava et al.,
2015; Yuliarto et al., 2019; Ashour et al., 2023). Metal ions are
reduced by the action of plant and bacterial biomolecules such as
amines, carbohydrates, ketones, amino acids, phenols, aldehydes,
proteins, and carboxylic acids (Siddiqi and Husen, 2016; Kumar
et al., 2021). Compared to bacteria and/or fungus-mediated
synthesis, using the plant extract to produce NPs at scale is a
straightforward process (Singh et al., 2018). Due to the
dominance of biomolecules in different parts of plants with high
concentrations, the biosynthesis of NPs was reported using plant
leaves, roots, seeds, and fruits (Jadoun et al., 2021).

The biosynthesis of MgO NPs was reported using various types
of plants such as Solanum trilobatum (Narendhran et al., 2019),
Rosmarinus officinalis (Abdallah et al., 2019), Matricaria
chamomilla L. (Ogunyemi et al., 2019), Calotropis gigantea (Hii
et al., 2018), Moringa oleifera (Vijayakumar et al., 2023), Limonia
acidissima (Nijalingappa et al., 2019), and Azadirachta indica
(Moorthy et al., 2015; Aravind Kumar et al., 2019). The
bioinspired MgO NPs showed comparable antioxidant,
anticancer, antibacterial, antidiabetic, and anti-inflammatory
activities.

A. indica (Neem) is a familiar medical plant grown in tropical
and subtropical climates. As a member of the Meliaceae family, it
contains many constituents, such as nimbin, nimbidin, nimbolide,
and limonoids. Phenolic and flavonoid phytochemicals are
responsible for their antibacterial, antifungal, and antimicrobial
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properties (Ali et al., 2021; Seriana et al., 2021). Neem leaves, flowers,
and seeds were reported to treat skin allergies, tooth infections, and
wound healing (Alzohairy, 2016). Furthermore, the neem extract
showed radiosensitization activity after irradiation with infrared
light in neuroblastoma (NB), inhibiting the anti-apoptotic signaling
cascade (Veeraraghavan et al., 2011). Recently, the neem extract was
applied in the green synthesis of palladium (Amrutham et al., 2020),
silver (Chand et al., 2019), zinc oxide (Saravanan et al., 2020), copper
oxide (Nagar and Devra, 2018), titanium oxide (Thakur et al., 2019),
and manganese oxide NPs (Moorthy et al., 2015; Aravind Kumar
et al., 2019).

This research innovatively explores the impact of the neem
extract on the structural, optical, and bioactive properties of MgO
NPs through a bioinspired synthesis approach. By comparing two
distinct synthesis methods—one utilizing sodium hydroxide as a
reducing agent and the other incorporating the neem extract—this
study aims to highlight the potential benefits of neem extracts in NP
synthesis and bioactivities.

2 Experiment details

2.1 Materials

The following materials were used to synthesize MgO NPs and
perform cell culture experiments without purification. Magnesium
nitrate, Mg (NO3)2.6H2O, ethanol, propanol, acarbose, 3,5-
dinitrosalicylic acid (DNSA), bovine serum albumin, diclofenac
sodium, and dimethyl sulfoxide (DMSO) were purchased from
Alfa Aesar, United States. Dulbecco’s modified Eagle’s medium,
L-glutamine, and fetal bovine serum were purchased from Life
Science Production, United Kingdom. Penicillin–streptomycin,
phosphate-buffered saline (PBS), and trypsin–EDTA were
purchased from Lonza, Germany. Furthermore, 3-[4,5-
dimethylthiazol-2-yl]-2,5 diphenyltetrazolium (MTT), 2,2-
diphenyl-1-picrylhydrazyl (DPPH), 2′,7′-di-chlorodihydrofluorescein
diacetate acetyl ester (DCFH-DA), yeast α-glucosidase,
p-nitrophenyl-α-D-glucopyranoside (pNPG), and α-amylase were
purchased from SERVA Electrophoresis GmbH, Heidelberg,
Germany. Liver hepatocellular cells (HepG2 cells) were purchased
from the Egyptian holding company for biological products and
vaccines (Vacsera), Giza, Egypt. The following bacterial strains were
donated by the Department of Botany and Microbiology, Faculty of
Science, South Valley University, Qena, Egypt: Salmonella typhimurium
(ATCC 14028), B. subtilis (ATCC 29213), E. coli (ATCC 25922), and
Staphylococcus aureus (ATCC 29213). This work was approved by the
Ethics Committee of South Valley University, Faculty of Science
(Permit Number: 001/08/24).

2.2 Aqueous extract of neem

Neem leaves were collected from a local farm, South Valley
University Farm, washed thoroughly with distilled water, and left to
dry for 24 h. Then, 50 g of the dried leaves were cut and boiled in
200 mL of distilled water for 30 min. The final extract was filtered
three times using Whatman paper number 1 and stored at 4°C until
further use.

2.3 Synthesis of MgO NPs

Two MgO NP samples, bioinspired MgO (denoted as
MgO–neem NPs) and chemical MgO (denoted as MgO NPs),
were prepared by the co-precipitation technique with magnesium
nitrate serving as the magnesium precursor (Moorthy et al., 2015;
Umaralikhan and Jamal, 2018; Vijayakumar et al., 2021). The
magnesium reduction process occurs with neem extract and
sodium hydroxide in the two samples, respectively. In brief,
50 mL of 1 mM magnesium nitrate solution was added drop by
drop to 50 mL of the reducing agent under stirring at 600 rpm for
30 min. The pH of the solution was adjusted to 12 by adding 1%
NaOH. To maximize the formation of the Mg (OH)2 precipitate, the
aging procedure was carried out by stirring both samples for 2 h at
room temperature. Following a 24-h precipitation period at room
temperature, the generated NPs were recovered by centrifugation at
7,000 rpm, followed by three rounds of washing to eliminate
unreacted ions. Lastly, the samples were dried in an oven at
100°C for 12 h and then calcinated for 2 h at 450°C (Figure 1).

2.4 Characterization of MgO NPs

An X’Pert PRO-PAN X-ray Machine with Cu-Kα radiation at
40 kV and 30mA, high-resolution transmission electronmicroscope
(JEOL, model JEM 2100, Japan), and scanning electron microscope
(JEOL SEM model JSM-5500, Japan) were used to explore the
structural and morphological future of MgO NPs. Spectroscopic
analysis was conducted using a Fourier transformation infrared
(model 6100, Jasco) spectrometer and UV–visible spectrophotometer
(model SPECORD 200 PLUS, Analytik Jena, Germany). Thermal
stability was assessed using a Shimadzu (TGA-50H) instrument at a
heating rate of 20oC/min under a constant flowing nitrogen
atmosphere.

2.5 Bioactivity of MgO NPs

Different bioactivities of MgO, MgO–neem NPs, and neem
extract were investigated. Table 1 summarizes the experimental
details of each one. For each spectroscopic measurement, the
absorption was detected using a UV–visible spectrophotometer
according to each assay condition for standard (AC) and test
samples (AS). All experiments were performed in triplicates, and
the calculated values were expressed as the mean (±SD). The IC50

value was obtained from the graph of the inhibition percentage
against the sample concentration.

2.5.1 Antioxidant activity (DPPH assay)
The free radical scavenging (FRSC) activity was evaluated using

a standardized DPPH assay (Alghamdi et al., 2023). Test samples
and standard material were dissolved in methanol to prepare a series
of concentrations, as shown in Table 1. Subsequently, 3 mL of DPPH
was added to each test tube and kept in the dark at room
temperature for 30 min. Ultimately, the absorbance (A517) of the
test samples and the standard was detected spectrophotometrically
at 517 nm, and FRSC activity against DPPH was evaluated using
Equation 1 (Table 1).
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2.5.2 Antibacterial activity
The capacity of the test samples to induce bacterial cell death was

evaluated using the agar diffusion disk method (Balouiri et al., 2016).
Luria-Bertani (LB) broth medium was used to grow the four
bacterial strains listed in Table 1 and acquire the bacterial
suspensions. The next day, hygienic disks with a 6-mm diameter
containing test samples and standard material with the
concentrations listed in Table 1 were used to cover the cultured
bacterial plates, which were then incubated at 37°C for 24 h. The
zone of inhibition was then measured in millimeters.

2.5.3 Anticancer activity
The cytotoxicity of test samples and standardmaterial against two

cell lines, listed in Table 1, was screened using the MTT assay (Kamal
et al., 2022). Cells were seeded with a density of 10,000 cells per well in
a 96-well plate in complete DMEM supplemented with 10% fetal
bovine serum (FBS) and 1%penicillin/streptomycin and incubated for
24 h at 37°C with 5% CO2. The next day, after the cells reached a
confluency of 80%, detached cells were removed by washing the plates
with PBS, and 100 μL of the new culture medium containing test
samples and standard with the concentrations listed in Table 1 was
added to each well under incubation conditions (at 37°C with 5%
CO2). The exposure time was set to be 24 h; after this period, the cells
were washed again with PBS, and 80 µL of FBS-free medium mixed
with 20 µL of MTT reagent was added to each well under incubation
conditions (at 37°C with 5%CO2). After 3 h, 100 µL of stooping regent
DMSO was added to each well to halt the reaction, and the mixture

was left under shaking in the dark for 15 min. Finally, the absorbance
at 590 nm was measured, and cell viability was evaluated using
Equation 2 given in Table 1.

2.5.4 Oxidative stress assay
Oxidative stress (ROS) of the MgO NPs was evaluated using the

DCFH-DA assay (Amin et al., 2023). Generally, the generated ROS
oxidizes the non-fluorescent DCFH-DA into the brightly fluorescent
compound dichlorofluorescein (DCF) (λEX/λEM = 485 nm/535 nm).
This assay was performed in both HepG2 and HUVEC cell lines
under the same culturing conditions as the MTT assay. Cells were
exposed to test samples at the concentrations mentioned in Table 1
for 24 h. The cells were then washed with PBS and incubated with
100 µL of the fresh culture medium containing 80 µL of the serum-
free medium and 20 µL of the DCFH-DA reagent under incubation
conditions (at 37°C with 5% CO2) for half an hour in the dark. After
treatment, the cells were washed with PBS, and themicroplate reader
detected the fluorescence intensity at λEX/λEM = 485 nm/535 nm.

2.5.5 Antidiabetic activity
2.5.5.1 α-Glucosidase inhibition assay

The ability of MgO NPs to inhibit the activity of the α-
glucosidase enzyme was screened using yeast α-glucosidase and
p-nitrophenyl-α-D-glucopyranoside (pNPG) (Kim et al., 2004). The
tested samples and standards were prepared in PBS at the
concentrations mentioned in Table 1. The concentrations of α-
glucosidase and pNPG were adjusted to 0.1 M of PBS (1U/mL) and

FIGURE 1
Schematic illustration of the synthesis conditions of chemically synthesized and bioinspired MgO NPs.
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TABLE 1 Experimental details of the measured bioactivates used in this study.

Activity MgO NPs MgO–neem NPs Neem extract

Measured parameter Antioxidant activity FRSC (%) � (AC517−AS517
AC517

) × 100 (1)

Mechanism of action Neutralizing free radical

Used concentrations (µg/mL) 1,000, 500, 250, 125, 62.5, 31.25, 15.625, and 7. 8

Bioactive medium 2,2-Diphenyl-1-picrylhydrazyl (DPPH)

Standard material Ascorbic acid

Protocol reference Alghamdi et al. (2023)

Measured parameter Antibacterial activity Zone of inhibition (mm)

Mechanism of action Inducing oxidative stress

Used concentrations (µg/mL) 25, 50, and 100 20

Bioactive medium • S. aureus (ATCC 29213)
• B. subtilis (ATCC 29213)
• E. coli (ATCC 25922)
• S. typhimurium (ATCC 14028)

Standard material Gentamycin with a concentration of 20 μg/mL

Protocol reference Balouiri et al. (2016)

Measured parameter Anticancer activity Cell viability% � AC590−AS590
AC590

(2)

Mechanism of action Inducing oxidative stress

Used concentrations (µg/mL) 1,000, 500, 250, 125, 62.5, 31.25, 15.8, and 7.8

Bioactive medium • Liver hepatic cancer cells (HepG2)
• Human umbilical vein endothelial cells (HUVECs)

Standard material Doxorubicin

Protocol reference Kamal et al. (2022)

Measured parameter Oxidative stress Fluorescence intensity at λEX/λEM = 485 nm/535 nm

Mechanism of action Oxidization of non-fluorescent 2′,7′-di-chlorodihydrofluorescein diacetate acetyl ester (DCFH-
DA) to fluorescent dichlorofluorescein (DCF) (λEX/λEM = 485 nm/535 nm)

Used concentrations (µg/mL) 1,000, 500, 250, 125, 100, and 50

Bioactive medium • HepG2
• HUVECs

Standard material -

Protocol reference Amin et al. (2023)

Measured parameter Antidiabetic activity • α − glucosidase inhibition% � AC(405)−AS(405)
AC(405) × 100 (3)

• α − amylase inhibition% � AC(540)−AS(540)
AC(540) × 100 (4)

Mechanism of action • Inhibition of α-glucosidase
• Inhibition of α-amylase

Used concentrations (µg/mL) 1,000, 500, 250, 125, 62.5, 31.25, 15.63, 7.81, 3.91, and 1.95

Bioactive medium • Yeast α-glucosidase and p-nitrophenyl-α-D-glucopyranoside (pNPG)
• 3,5-Dinitrosalicylic acid (DNSA)

Standard material Acarbose

Protocol reference (Kim et al., 2004; Wickramaratne et al., 2016)

Measured parameter Anti-inflammatory activity Inhibition% � AC(660)−AS(660)
AC(660) × 100 (5)

Mechanism of action Activation of pro-inflammatory cytokines and interleukins, stabilizing protein structures and
preventing denaturation

(Continued on following page)
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10 mM, respectively. A measure of 100 μL of the prepared α-
glucosidase was added to each test tube and kept at 37°C for
20 min. Subsequently, 10 μL of the prepared pNPG was added to
each test tube and incubated at 37°C for 30 min. Finally, 650 μL of
the stopping reagent (sodium carbonate, 1 M) was added to halt the
reaction. The absorbance at 405 nmwas recorded, and the inhibition
percentage was evaluated using Equation 3 (Table 1).

2.5.5.2 α-Amylase inhibitory
The α-amylase inhibition test was carried out using the DNSA

technique (Wickramaratne et al., 2016). Tested samples and
standards were prepared in PBS at the concentrations listed in
Table 1. A measure of 10 μL of α-amylase (2 units/mL) was
mixed with 20 μL of each sample in the test tube and kept at
37°C for 20 min. Then, 200 μL of 1% potato starch in PBS (100 mM)
was added to each test tube and kept at 37°C for a further 30 min.
The reaction was terminated by adding 100 μL of the DNSA reagent
to each test tube and boiling at 90°C for 10 min. After cooling to
room temperature, the absorbance was measured at 540 nm, and the
inhibition percentage was evaluated using Equation 4 (Table 1).

2.5.6 Anti-inflammatory activity
The anti-inflammatory activity of the sample was determined

using a protein denaturation assay (Fahaduddin, 2024). Any
material with anti-inflammatory properties could stabilize protein
structures and prevent denaturation. The tested samples and
standards were prepared in PBS at the concentrations mentioned
in Table 1. A measure of 3 mL of 1% bovine serum albumin (BSA)
was added to each tube and incubated in a water bath at 55°C for
20 min. The absorbance was detected at 660 nm, and the inhibitory
percentage was evaluated using Equation 5 (Table 1).

2.6 Statistical analysis

Statistical variation among the obtained results was assessed using a
one-way analysis of variance (ANOVA) with the Statistical Package for
Social Sciences (SPSS). The results are expressed as themean ± standard
deviation, and p < 0.05 was considered statistically significant.

3 Results and discussion

3.1 Characterization of MgO NPs

3.1.1 Structural analysis using X-ray diffraction
The successful formation of both MgO NPs and MgO–neem

NPs was confirmed by the presence of distinct fingerprint diffraction

peaks characteristic of MgO NPs, as illustrated in Figure 2. These
peaks indicate the crystalline nature and structural integrity of the
synthesized NPs, confirming that the synthesis methods used
effectively produced high-quality MgO NPs. Five diffraction
peaks appeared in both samples at 2θ = 36.7, 42.76, 62.08, and
78.4 for MgO NPs, which shifted to lower 2θ = 36.46, 42.4, 61.84,
73.84, and 78.22 for MgO–neem NPs, respectively. These diffraction
peaks belonged to (111), (200), (220), (311), and (222) diffraction
plans, respectively. The detected diffraction peaks were assigned to
cubic face-centered crystal (FCC) structure MgO NPs, which is in
line with the reported card (JCPDSNo. 87-0652) (Wang et al., 2024).

The cubic FCC structure is characterized by lattice parameters
(a = b = c = 4.215787 A°). The lattice parameter for both samples was
calculated using Equation 6 (Lee et al., 2016):

dhkl � a����������
h2 + k2 + l2

√ . (6)

The average crystal size was calculated using Scherer’s
Equation 7 (Kamal et al., 2022):

D � 0.9λ
ΓCos θ, (7)

where D is the mean crystal size, λ is the X-ray wavelength source,
0.9 is constant for crystal shape, θ is the diffraction angle, and Γ is the
full-width at half-maximum of the diffraction peak. The dislocation
density (δ, nm-2) was calculated as 1/D2.

A slight increase was observed in the crystal size of bioinspired
MgO–neem NPs compared with MgO NPs from 21.807 ± 2.053 to
23.09 ± 2.78 (nm) due to the coating action of biomolecules in the

TABLE 1 (Continued) Experimental details of the measured bioactivates used in this study.

Activity MgO NPs MgO–neem NPs Neem extract

Used concentrations (µg/mL) 1,000, 500, 250, 125, 62.5, 31.25, 15.6, 7.8, 3.9, 2, 1, and 0.5

Bioactive medium Bovine serum albumin (BSA)

Standard material Diclofenac sodium

Protocol reference Fahaduddin (2024)

FIGURE 2
XRD pattern of MgO and MgO–neem NPs.
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neem extract. This increase was combined with an enlargement in
the lattice parameter a from 4.225 to 4.248 (A°) and an increase in
the dislocation density (see Table 2). The results establish that neem
extracts are reducing agents for synthesizing MgO NPs without
distorting the crystal structure. Similar results were reported for the
green synthesis of MgO NPs from different biological sources
(Moorthy et al., 2015; Aravind Kumar et al., 2019).

3.1.2 Electron microscope technique
The high-resolution transmission electron microscope (HRTEM)

technique was used to study the structural future of NPs in terms of
particle size and shape. The formed MgO NPs showed semispherical
shapes (Figure 3). InHRTEM images, some aggregations ofMgONPs
and MgO–neem NPs were observed. These aggregations were also
observed in SEM images, mainly due to surface attractive interactions
in the nanoscale. The green synthesis of NPs can contribute to this
agglomeration by coating the MgO NP surface with biomolecules,
which can interact with the surrounding molecules via many
Coulombic interactions (Arabi et al., 2020; Shanavas et al., 2020).
ImageJ software was used to calculate the particle size of MgO NPs. A
total of 100 particles per image were selected, and then particle size
distribution was plotted. The mean particle size of MgO NPs was
16.97 ± 3.4 nm, while the mean particle size of MgO–neem NPs was
17.78 ± 3.42 nm. These results were in line with the XRD data and
reported results for bioinspired MgO NPs (Nijalingappa et al., 2019;
Vijayakumar et al., 2021; Pachiyappan et al., 2020).

3.1.3 UV–visible spectroscopy
UV-vis spectrometry was used to characterize the

photocatalytic activity of NPs (Devanand et al., 2013). The
absorption edge was detected for the neem extract at 252 nm,
while for MgO and MgO–neem NPs, it was 283 and 285 nm,
respectively (Figure 4A). The literature indicates that the successful
reduction of metal ions and the generation of metal oxide NPs were
suggested by an apparent absorption edge in the 260–300-nm
range when sodium hydroxide and plant extract were utilized in
the NP manufacturing process.

To correlate the optical properties with the observed structural
alterations of bioinspired MgO–neem NPs, Tauc’s Equation 8 was
utilized to determine the optical band gap, Eg (Devanand
et al., 2013):

α hv( ) � A hv − Eg( ) m /

2, (8)
where α is the absorption factor, h] is the energy of the incident
photon, and A and m are constants depending on the nature of
the transition. Plotting the relationship between photon energy
hν and (αhv)2 yielded the predicted optical band gap energy Eg

of bioinspired MgO–neem NPs (Figure 4B). The band gap of
bioinspired MgO–neem NPs (Eg = 4.701 eV) was greater than
that of MgO NPs (Eg = 4.534 eV). This discrepancy was in line
with the published findings and connected to the observed shift
in the particle size of bioinspired MgO–neem NPs (Sharmila
et al., 2019; Fatiqin et al., 2021).

TABLE 2 Crystallographic data of MgONPs as analyzed from XRD, the full-width at half-maximumwas calculated using OriginLab software, the crystal size
(D, nm) was calculated using Scherer’s equation, and dislocation density (δ, nm2) was calculated as 1/D2.

Sample MgO NPs

Plane 2θ dhkl Γ D (nm) δ * 10−4 (nm−2) a = b = c

111 36.7 2.445 0.463 18.873 28.073 4.236

200 42.76 2.112 0.385 23.135 18.683 4.224

220 62.08 1.493 0.403 24.020 17.331 4.223

311 74.44 1.272 0.504 20.665 23.414 4.222

222 78.4 1.218 0.479 22.344 20.029 4.220

Average (nm) 21.807 21.506 4.225

STDV 2.053 4.311 0.006

Sample MgO–neem NPs

Plane 2θ dhkl Γ D (nm) δ * 10−4 (nm -2) a = b = c

111 36.46 2.461 0.426 20.498 23.798 4.263

200 42.4 2.129 0.345 25.786 15.039 4.258

220 61.84 1.498 0.397 24.352 16.861 4.238

311 73.84 1.281 0.526 19.723 25.706 4.251

222 78.22 1.220 0.426 25.092 15.882 4.228

Average (nm) 23.090 19.457 4.2480

STDV 2.780 4.922 0.014

Bold values represent the average ± SD for the measured parameters.
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3.1.4 Fourier-transform infrared spectra
In the Fourier-transform infrared (FTIR) spectrum, three

vibrational bands were identified as MgO NP fingerprints. The first
band, which is related to the stretching vibration of magnesium oxide,
is often observed between 600 and 880 cm−1. The second band, caused
by the stretching of magnesium carboxylate, emerged between
1,600 and 1,640 cm −1. Water is represented as moisture by the
stretching hydroxyl (O-H) in the third broadband that appears
between 3,350 and 3,550 cm−1. These bands were observed in the
MgO and bioinspired MgO–neem NP spectra (Figure 5).

To investigate the role of biomolecules in the neem extract in the
reduction of MgO NPs, the FTIR spectrum of the neem extract was
analyzed. The broadband that was visible between 3,350 and
3,550 cm−1 was associated with the O-H vibration, which is
indicative of amino acids and carbohydrates. Aromatic aldehyde
stretching vibrations of C-H were observed at 2,935 cm−1.
Conversely, at 1,630 cm−1, C=O stretching, which primarily
originates from alkene compounds in proteins, was observed. The
carbonyl group found in flavonoids was identified as the band observed
at 1,590 cm−1. At approximately 1,400 cm−1, C-H bending vibration
became apparent. Furthermore, the C-O stretching vibration
originated in the aliphatic amine band at 1,029 cm−1.

Examining the FTIR spectra more closely revealed that the
bioinspired MgO–neem NPs contained the functional groups
(O-H, C-H, C=O, and C-O) that are associated with terpenoids,

flavonoids, and proteins of the neem extract. Thus, the reduction and
production of MgO NPs are mostly caused by these biomolecules.
Research indicates that proteins’ C-N and C=O functional groups
serve as capping agents to aid in the production of NPs
(Chandrasekaran et al., 2024). Additionally, proteins’ amine
linkages have a strong attraction to metals, which causes them to
form a stabilized layer on the surface of the metal NPs.

3.1.5 Stability measurement
The stability of NPs is one of the main challenges that hinder their

potential applications. Measurement in conditions similar to in vitro or in
vivo environments is an important yet hard feature ofNPcharacterization.
One of the critical factors is the stability and amount of aggregation ofNPs
under physiological conditions (e.g., plasma) or in various media relevant
to biotechnological applications (e.g., culture medium). Several studies
have demonstrated that the stability of NPs in various culture media can
be significantly reduced depending on ionic and protein content,
influencing NP characteristics and their functions in both in vitro and
in vivo applications (Kadir et al., 2023; Proniewicz et al., 2024).

For screening the stability of MgO NPs, UV spectroscopy was
used. Both MgO NP samples were suspended in complete DMEM,
and then UV spectra were recorded during different time intervals
from 0 to 480 min (Figure 6). Both samples showed good stability
during the measurement period (8 h), and there was no significant
change in the absorption edge.

FIGURE 3
HRTEM and SEM images of MgO and bioinspired MgO–neemMgONPs. HRTEM images with a scale of 100 nmwere recorded at 200 KV, while SEM
images with a scale of 50 µm were recorded at 25 KV. Particle size distribution was calculated using ImageJ software (n = 100).
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Thermogravimetric analysis (TGA) is a straightforward
analytical method that calculates a material’s weight change (or
gain) in relation to temperature. When materials are heated, they
may lose weight by straightforward processes like drying or chemical

reactions that release gases. The composition and structure of the
material are closely linked to these thermal processes. To determine
the material’s thermal behavior, TGA curves for any material may be
divided into segments based on how the material’s weight loss
changes with temperature.

For MgO NPs, the weight loss was observed in three
segments (Figure 7). The first segment starts from ambient
temperature to 260°C with an approximate weight loss of
2.4% for MgO NPs and 3% for MgO–neem NPs. This weight
loss was mainly due to the loss of absorbed water from moisture
(Chandrasekaran et al., 2024; Hirphaye et al., 2023). The slight
increase in the weight loss of bioinspired MgO–neem NPs due to
the larger content of water was confirmed by the higher intensity
of the stretching O-H band in the FTIR spectrum. The second
segment, from 260 to 500°C, reflects the decomposition of
organic molecules and the transition of MgO NPs
(Poonguzhali et al., 2022; Leung et al., 2014). The weight loss
in this segment was 5% for both MgO NPs and MgO–neem NPs,
while the third segment lies between 500 and 1,000°C, in which
the residue of organic molecules decomposes with smaller
weight loss at approximately 1.6% and 1.5% for MgO NPs
and MgO–neem NPs, respectively. This smaller weight loss
indicates that both samples were stabilized in the crystalline
phase above 500°C, which is in line with the reported thermal
stability of MgO NPs (Leung et al., 2014; Sharmila and
Selvaraj, 2024a).

3.2 Bioactivity of NPs

3.2.1 Antioxidant activity (DPPH assay)
Creating free radicals is a cascade-like process; it starts with

gaining or losing an electron, and this electron eventually hits
another atom or molecule to create more free radicals. As a
result, the reaction continues to produce an increasing number of
these free radicals (Abdallah et al., 2019; Dobrucka, 2018).
Antioxidant molecules are sufficiently stable to donate an
electron to form a stable molecule and mitigate the damaging
effects of free radicals. The literature suggests that the capacity to
donate hydrogen is the reason behind the antioxidant activity of
bioinspired MgO NPs. The production of an electron–hole pair on
the surface of MgO NPs can significantly reduce H2O molecules,
which can act as DPPHmolecules’ scavengers. Nevertheless, because
the plant extract contains phytochemicals, including phenolics and
polyphenolic compounds, the green synthesis of MgONPs may help
modify the scavenging activity (Khan et al., 2020; Akshaykranth
et al., 2021).

The capability of the bioinspired MgO–neemNPs as a scavenger
for DPPH radicals is compared to that of MgO NPs, neem extract,
and ascorbic acid (ASC) as the standard and presented in Figure 8. A
dose-dependent behavior was observed in the scavenging activity of
all tested samples. The calculated IC50 value for bioinspired
MgO–neem NPs was 69.03 μg/mL. The IC50 values for MgO
NPs, neem extract, and ascorbic acid were 131.62 μg/mL,
84.7 μg/mL, and 15.35 μg/mL, respectively. The improved
scavenging activity of the MgO–neem NPs can be mainly
attributed to the presence of biomolecules from the neem extract,
which enhance the NP efficacy. Previous studies on bioinspired

FIGURE 4
UV-vis spectroscopy of MgO and bioinspired MgO–neem NPs:
(A) UV-vis absorption spectra and (B) optical band gap calculated
using Tauc’s equation.

FIGURE 5
FTIR spectra of MgO and bioinspired MgO–neem NPs.
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MgO NPs from different biological sources have shown comparable
DPPH scavenging activity (Table 3). These comparable scavenging
values are bio-source-dependent, which indicates the importance of
optimization of green MgO NP synthesis to achieve the desired
bioactivity.

3.2.2 Antibacterial activity
The MgO NPs’ antibacterial activity can be ascribed to two

distinct mechanisms: the antimicrobial effect mediated by reactive

FIGURE 6
Stability of MgO and MgO–neem NPs in biological media. The top of the graph shows the UV spectra for each sample recorded at t time intervals
(0–480 min). At the bottom, the dotted line represents the variation in the absorption edge with time.

FIGURE 7
TGA curves of MgO and bioinspired MgO–neem NPs.

FIGURE 8
Free radical savaging activity of MgO NPs, MgO–neem NPs,
neem extract, and ascorbic acid (ASC) as estimated using the
DPPH assay.
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TABLE 3 Comparison of different bioactivities of bioinspired MgO NPs from different biological sources.

Measured activity Bio-source Findings Reference

Antibacterial activity Painted spiral ginger Inhibition zone (mm)
• S. aureus (5.50)
• B. subtilis (10)
• E. coli (12.5)
• S. paratyphi (15)

Kainat et al. (2021)

Horseradish Inhibition zone (mm)
• S. aureus (6.3)
• E. coli (6)

Fatiqin et al. (2021)

Red pea Inhibition zone (mm)
• E. coli (16.66)
• B. subtilis (16)
• S. pyogenes (15.66)

Abdullah and Mohammed (2021)

Shoeblack Inhibition zone (mm)
• P. aurigenosa (19)
• P. vulgaris (22)
• E. coli (19)

Nadeem et al. (2021)

P. farcta Inhibition zone (mm)
• S. aureus (18.21)

Rotti et al. (2023)

C. orientalis Inhibition zone (mm)
• K. pneumoniae (14)
• P. aeruginosa (18)
• S. aureus (13)
• E. coli (17)
• B. subtilis (10)

Amina et al. (2020)

Azadirachta indica Inhibition zone (mm)
• P. aeruginosa (33.5)
• E. coli (28.7)
• S. aureus (34.8)

Saied et al. (2021)

S. costus Inhibition zone (mm)
• E. coli (15)
• P. aeruginosa (16)
• S. aureus (14)
• B. subtilis (10)

Fouda et al. (2021)

A. terreus Inhibition zone (mm)
• C. albicans (12.8)
• E. coli (11.3)
• P. aeruginosa (14.7)
• S. aureus (11.3)
• B. subtilis (13.3)

Pugazhendhi et al. (2019)

P. chrysogenum Inhibition zone (mm)
• S. aureus (12)
• B. subtilis (12.7)
• P. aeruginosa (23.3)
• E. coli (17.7)
• C. albicans (14.7)

Sharma et al. (2022)

S. wightii Inhibition zone (mm)
• S. aureus (9)
• P. aeruginosa (8)

Ammulu et al. (2021)

Anticancer activity Painted spiral ginger • % Inhibition of Dalton’s lymphoma ascites: 52% Kainat et al. (2021)

P. farcta • Inhibition zone for human breast cancer: 18 mm Rotti et al. (2023)

S. costus • % Cytotoxicity of human breast cancer cells: 82% Fouda et al. (2021)

S. wightii • % Apoptosis for human lung cancer cells: 79.5%
% Cell viability: 20.5%

Ammulu et al. (2021)

Antioxidant activity Horseradish • IC50 value against DPPH: 290 μg/mL Fatiqin et al. (2021)

Red pea • IC50 value against DPPH: 72.24 μg/mL Abdullah and Mohammed (2021)

Shoeblack • % Scavenging DPPH: 69.2% Nadeem et al. (2021)

(Continued on following page)
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oxygen species and the non-reactive species. MgO NPs create H2O2,
which causes oxidative stress in the microbial system (Dobrucka,
2018; Nguyen et al., 2023). This leads to the production of reactive
oxygen species (ROS), ultimately resulting in cell death. Furthermore,
MgO NPs have been linked to cellular membrane disruption and
contents leaking after physical contact. They may penetrate cells more
quickly due to their smaller size, and they can interact with cells more
extensively due to their larger surface area. Cell, protein, and DNA
damage occur at higher MgO NP concentrations (Kumar et al., 2021;
Breijyeh et al., 2020). For comparing the antibacterial activity of the
investigated samples, a clearer zone of inhibition was measured in
millimeters and is shown in Figure 9.

Bioinspired MgO–neem NPs recorded a significant activity for
Gram-positive and Gram-negative bacterial strains in a

concentration-dependent manner compared with MgO NPs and
neem extract at all concentrations. This activity is close to the
positive control Gentamicin, especially at the higher
concentration (100 μg/mL). This behavior was attributed to the
functionalization of MgO–neem NP surfaces with biomolecules
from the neem extract. It is reported that the biological synthesis
of NPs enhances the ROS generation ability, improving the
antibacterial activity (Umaralikhan and Jamal, 2018; Suresh et al.,
2018). The neem extract was also identified as a powerful
antibacterial agent due to the high content of phenolic and
flavonoid phytochemicals (Moorthy et al., 2015). The
antibacterial action of bioinspired MgO NPs from different
biological sources was reported against many pathogens (Table 3).

Moreover, when comparing the inhibition zones, Gram-
negative bacterial strains (S. typhimurium and E. coli) exhibited
smaller inhibition zones than the examined Gram-positive strains
(S. aureus and B. subtilis) after treatment with all test samples. This
behavior was reported for most Gram-negative bacterial strains,
which was attributed to the stronger structure of Gram-negative
bacteria than that of Gram-positive bacteria. Due to this structural
variation, Gram-negative bacterial strains possess higher resistance
to destruction than Gram-positive bacterial strains. However,
bioinspired MgO–neem NPs showed a higher activity than MgO
NPs at the three concentrations. These findings reflect the impact of
the green synthesis of MgO NPs in treating different pathogens.

3.2.3 Anticancer activity
As a distinct property, MgO NPs were characterized by the

ability to generate ROS due to their high surface-to-volume ratio.
The physicochemical properties of MgO NPs, such as size, shape,
and surface reactivity, control the number of generated ROS. Upon
entering the cellular membrane, these ROS cause oxidative stress,
which, in turn, causes DNA damage, protein oxidation,
mitochondrial malfunction, and, eventually, cell death (Velsankar
et al., 2023; Majeed et al., 2018). The percentage of cell viability was
determined for the tested samples by the colorimetric MTT assay as
a function of mitochondrial activity and normalized to its respective
control (Figures 10A, B). A significant concentration-dependent

TABLE 3 (Continued) Comparison of different bioactivities of bioinspired MgO NPs from different biological sources.

Measured activity Bio-source Findings Reference

C. orientalis • IC50 against DPPH: 22.65 μg/mL Amina et al. (2020)

P. alba • % Scavenging DPPH: 69.2% Thakur et al. (2022)

M. oleifera • IC50 value against DPPH: 290 μg/mL Fatiqin et al. (2021)

P. marsupium • IC50 value against DPPH: 89.67 μg/mL Gatou et al. (2024)

S. trilobatum • IC50 value against DPPH: 5.34 μg/mL Narendhran et al. (2019)

Antifungal activity Roots of S. costus • Inhibition zone for C. tropicalis (20 mm) and C. glabrata (19 mm) Fouda et al. (2021)

A. terreus • Inhibition zone for C. albicans (12.8 mm) Pugazhendhi et al. (2019)

P. chrysogenum • Inhibition zone for C. albicans (14.7 mm) Sharma et al. (2022)

Antidiabetic activity P. marsupium • IC50 value for alpha-amylase inhibition: 56.32 μg/mL
• IC50 value for protein inhibition: 81.69 μg/mL

Gatou et al. (2024)

H. rosa-sinensis • IC50 value for alpha-amylase inhibition: 327 mg/mL
• IC50 value for alpha-glucosidase inhibition: 400 mg/mL

Nadeem et al. (2021)

FIGURE 9
Inhibition zone (mm) of bioinspired MgO–neem NPs and MgO
NPs; the represented values are the mean of three replicates. [**] p <
0.01 and [*] p < 0.05 compared to the test samples for all bacterial
strains used in the study.
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reduction in the cell viability of HepG2 cancer cells was observed
after treatment with all samples. Bioinspired MgO–neem NPs
showed distinct cancer cell-killing activity with an IC50 value of
94.58 μg/mL compared with doxorubicin (IC50 = 26.62 μg/mL),
MgO NPs (IC50 = 241.77 μg/mL), and neem extract (IC50 =
361.68 μg/mL) (Figure 10A). There was no significant effect on
the cell viability of normal cells except for cells treated with
doxorubicin (IC50 = 123.57 μg/mL), (Figure 10B). These results
demonstrate the high selectivity of MgO–neem NPs toward cancer
cells, which is stimulated by their green synthesis and linked with
antibacterial activity results (Fouda et al., 2021; Suba et al., 2022;
Mangalampalli et al., 2019; Kessler et al., 2022; Mittag et al., 2019).
Comparable findings were reported for bioinspired MgO NPs after
exposure to different types of cancerous cells (Table 3).

3.2.4 Oxidative stress assay
MgONPs cause ROS production under physiological conditions

due to their large band gap, enabling them to donate hydrogen ions
easily (Majeed et al., 2018; Mittag et al., 2019; Krishnamoorthy et al.,
2012). This study assessed the generation of ROS following the
exposure of two distinct cell lines to MgO NPs, MgO–neem NPs,
and neem extract with variable concentrations for 24 h. Figure 11A
shows an increase in ROS generation in HepG2 cancer cells that is
dosage-dependent, which is consistent with the cytotoxicity and

antibacterial findings, given that MgO–neem NPs exhibited
increased toxicity against HepG2 cells compared with MgO NPs
and neem extract. These findings show that exposure to MgO–neem
NPs increases ROS levels, which, in turn, causes oxidative stress and
cellular damage. In contrast, there was no notable increase in the
level of ROS in either the untreated or normal HUVEC cells
(Figure 11B). Many researchers have observed that MgO NPs
have a stronger selectivity against cancer cells (Mittag et al.,
2019; Poljsak et al., 2013; Joó et al., 2023). Since cancer cells have
high rates of metabolism and proliferation, the presence of
additional chemical and signaling components in MgO NPs
increases their reactivity. These findings also aligned with the
high scavenging activity of the obtained bioinspired MgO–neem
NPs. In normal cell lines, the number of generated ROS is limited
and can be eliminated by the antioxidant scavengers’ enzymes. Due
to the high selectivity in cancer cells, the number of generated ROS is
huge due to the high surface-to-volume ratio, which disturbs the
balance between antioxidant activity and ROS and cannot be
neutralized by the action of antioxidant scavengers’ enzymes
(Gong et al., 2020; Alqahtani et al., 2020). These unique
bioactivities of bioinspired MgO–neem NPs increase their
potential as alternative agents in the biomedical field.

3.2.5 Antidiabetic activity
The antidiabetic activity of MgO NPs is evaluated by the

estimation of α-amylase and α-glucosidase inhibition percentages.

FIGURE 10
Cell viability after treatment with MgO–neem NPs, MgO NPs,
neem extract, and doxorubicin (for 24 h) as evaluated from the MTT
assay for the cancer cell line (HepG2) (A) and normal cell line
(HUVECs) (B).

FIGURE 11
ROS level after exposure to MgO NPs, MgO–neem NPs, and
neem extract for 24 h for the cancer cell line (HepG2) (A) and normal
cell line (HUVECs) (B).
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It is reported that these two digestive enzymes break down
carbohydrates into glucose. These two enzymes are crucial factors
influencing the conversion of disaccharides and oligosaccharides
into monosaccharides (Evans et al., 2002; Forman and Zhang, 2021).
Therefore, the inhibition of these two enzymes is critical for the
treatment of type-2 diabetes. The percentage of α-glucosidase
inhibition was calculated spectrophotometrically using yeast α-
glucosidase and pNPG after treatment with MgO NPs,
MgO–neem NPs, neem extract, and acarbose with variable
concentrations, as shown in Figure 12A.

Compared with acarbose as the standard with an IC50 value of
11.16 μg/mL, MgO–neem NPs showed concentration-dependent
powerful inhibition with an IC50 value of 50.6 μg/mL. This behavior
was linked to the high antioxidant activity of MgO–neem NPs.
Moreover, neem extract and MgO NPs demonstrated comparable
inhibition with IC50 values of 82.64 and 172.25 μg/mL, respectively.
Similar behavior was observed for α-amylase inhibition percentage,
and the test samples followed the same trend, starting with acarbose
as the standard with an IC50 value of 12.41 μg/mL, MgO–neem NPs
with an IC50 value of 61.53 μg/mL, neem extract with an IC50 value
of 133.96 μg/mL, and MgO NPs with an IC50 value of 227.75 μg/mL
(Figure 12B). It is reported that oxidative stress plays a critical role in
the development of diabetes. An excess blood glucose level causes
oxidative stress, which, in turn, causes glucose to auto-oxidize and

free radicals to develop (Caturano et al., 2023; Chen et al., 2018;
Dunkelberger and Song, 2010). Therefore, the treatment with
MgO–neem NPs led to scavenging these free radicals, causing the
inhibition of α-glucopyranoside and α-amylase enzymes. These
results agreed with the report on bioinspired MgO NPs (Table 3).

3.2.6 Anti-inflammatory activity
As a defense mechanism, inflammation involves blood vessels,

immune cells, and molecular mediators. Inflammation has three
main functions: it dissolves injured cells and tissues, starts tissue
healing, and removes the source of cell harm. White blood cells in
the human body use the process of inflammation to defend the body
against harm or infection from external intruders like bacteria and
viruses. A low level of inflammation may risk the organism’s life by
allowing hazardous stimuli, like germs, to gradually destroy tissue
(Ammulu et al., 2021; Sharmila and Selvaraj, 2024b), 102. An anti-
inflammatory medication works to lessen inflammation.
Regrettably, organisms’ tissues and organs may suffer more harm
from unchecked inflammation. Therefore, finding natural sources of
anti-inflammatory drugs is critical.

A protein denaturation assay was used to assess the anti-
inflammatory action of MgO NPs, and the degree of denaturation
inhibition indicated high anti-inflammatory action. The
percentage of inhibition of diclofenac sodium as standard,
MgO NPs, bioinspired MgO–neem NPs, and neem extract was
calculated and is shown in Figure 13. Significant inhibition was
recorded for MgO–neem NPs with an IC50 value of 6.66 μg/mL
compared with that of diclofenac sodium with an IC50 value of
20.56 μg/mL, while neem extract and MgO NPs showed less
inhibition with IC50 values of 48.56 and 102.44 μg/mL,
respectively. Traditionally, neem extract is used to treat
inflammation. The primary cause of the enhanced anti-
inflammatory properties of MgO–neem NPs is their
phytochemical content, mainly the phenolic and flavonoid
components. These phytochemicals enhance ROS generation,
as we mentioned before, leading to the activation of pro-

FIGURE 12
Antidiabetic activity of MgONPs, MgO–neemNPs, neem extract,
and acarbose at variable concentrations. The percentage of α-
glucosidase inhibition versus test sample concentration (A) and the
rate of α-amylase inhibition versus test sample concentration (B).

FIGURE 13
Protein denaturation inhibition percentage of MgO NPs,
MgO–neem NPs, neem extract, and diclofenac sodium at variable
concentrations.
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inflammatory cytokines and interleukins (Gatou et al., 2024;
Sharmila and Selvaraj, 2024a).

4 Conclusion

Comprehensive studies were conducted to assess the effect of the
neem extract on the physiochemical properties and bioactivity of
MgO nanoparticles. For comparative purposes, MgO NPs were
synthesized chemically by the chemical precipitation approach,
using sodium hydroxide as a reducing gent, and biologically
using the neem extract as a reducing gent. Structural
investigations showed that the cubic face-centered structure of
MgO NPs remained unchanged after green synthesis. The
produced MgO NPs showed good stability in biological media
for 8 h, with thermal stability up to 500°C. The neem extract’s
biomolecules, which primarily modify the particle size and optical
band gap, are responsible for the bioreduction of magnesium ions.
These biomolecules also improve the ability of bioinspired
MgO–neem NPs to scavenge free radicals, which, in turn, boost
their antioxidant and antidiabetic activities through the inhibition of
α-glucopyranoside and α-amylase enzymes. Furthermore, the
bioinspired MgO–neem NPs’ enlarged optical band gap facilitates
their easy donation of hydrogen ions, which affects the formation of
ROS under physiological conditions. Therefore, the antibacterial,
anticancer, and anti-inflammatory properties of bioinspired
MgO–neem NPs are mostly attributable to these ROS.
Consequently, bioinspired MgO–neem NPs demonstrated potent
antibacterial activity against both Gram-positive and Gram-negative
bacteria. Furthermore, cytotoxicity measurements verified the
bioinspired MgO–neem NPs’ remarkable selectivity toward the
hepatocellular cancer HepG2 cell line compared to normal
human umbilical vein endothelial cells (HUVECs). This
selectivity was corroborated by the fact that bioinspired MgO
NPs generate more ROS in cancer cell lines than in normal cell
lines. Moreover, an excess number of generated ROS can boost the
anti-inflammatory capacity of bioinspired MgO NPs by activating
the pro-inflammatory cytokines and interleukins that initiate the
inflammatory process. Ultimately, the bioinspired MgO NPs show
increased potential as a localized therapeutic agent for the treatment
of many diseases due to their exceptional biocompatibility and
antioxidant, antibacterial, anticancer, antidiabetic, and anti-
inflammatory activities. However, further research is needed to
investigate their pharmacokinetics as an alternative to existing
natural medication on the market.
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