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Existing Mechanical Insufflation-Exsufflation (MI-E) devices often overlook the
impact of cough airflow pressure on mucus clearance, particularly lacking in
control over airway pressure during the expiratory phase, which can lead to
airway collapse and other types of airway damage. This study optimizes the
design of cough assist system and explores the effectiveness of PID and adaptive
control methods in regulating airway pressure. The adaptive control method
compensates for hose pressure drop by online estimation of the ventilatory hose
characteristics. It achieves precise tracking of target pressure and ensures the
generation of peak flow rates effective for mucus clearance, even in the absence
of known patient lung physiological states and unknown hose leakage
parameters. Through a series of comparative experiments, this paper confirms
the significant advantages of adaptive control in reducing oscillations and
overshoot, capable of more stable and precise airway pressure adjustments.
This improved control strategy not only enhances clinical safety but also
significantly improves therapeutic outcomes and reduces the risk of
complications. The findings indicate that the revamped cough assist system,
employing an adaptive control strategy, can effectively prevent airway damage
during assisted coughing, offering a safer and more effective sputum clearance
solution for critically ill patients with expectoration disorders.

KEYWORDS

cough assist, MI-E, airway pressure, adaptive control, clinical safety

Introduction

Cough represents an expedited reflex mechanism in the human body, the purpose of
which is to expel foreign bodies or particles from the respiratory tract, thereby safeguarding
the respiratory system. (Dubuis et al., 2014; Laghi et al., 2017; Zhang et al., 2017). The
process is initiated by a deep inhalation, introducing a substantial volume of air into the
lungs. Subsequently, the laryngeal muscles proceed to close the glottis, while the abdominal
and thoracic muscles contract, generating elevated pressure within the pulmonary system.
Ultimately, the glottis opens abruptly, and the expiratory muscles contract forcefully to
release the air (Fink, 2007). However, for patients with neuromuscular diseases (NMDs) or
disorders like emphysema that impair the function of respiratory muscles, effective
clearance of secretions can be compromised due to weak or impaired cough (Burle
et al., 2018). Mechanical ventilation is a common intervention for the intraoperative
and postoperative management of critical patients (Kwong et al., 2019). In the intensive care
unit (ICU), mechanically ventilated patients may suffer from impaired cough due to the
impediment of glottic closure by endotracheal tubes and the frequent use of sedatives and
muscle relaxants that are concomitant with mechanical ventilation. This impairment of
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coughing can lead to the accumulation of airway secretions,
potentially resulting in respiratory failure, inadequate ventilation,
tracheobronchitis, pneumonia, or other complications associated
with secretion retention (de Camillis Márcio Luiz et al., 2018).
Consequently, assistive cough devices are essential for the
clearance of secretions in patients with compromised cough ability.

In the early 1950s, Barach et al. introduced a physical method
called the “mechanical coughing machine” to simulate some of the
mechanisms of human cough (Bickerman et al., 1952; Barach et al.,
1952). Clinical observations of patients with poliomyelitis revealed
that the maximal expiratory flow rate averaged 1.6 L/s, which is
145% of that produced by the most forceful natural cough. Based on
the advancements in non-invasive ventilation, assistive coughing
devices were subsequently refined, employing blowers to provide
positive pressure for lung inflation and negative pressure for rapid
lung deflation, later termed Mechanical Insufflation-Exsufflation
(MI-E). MI-E delivers up to 60 cm H2O of positive and negative
pressure to generate large peak cough flows, applying high shear
forces to the secretions and propelling them into the oral cavity.
Barach et al. conducted several clinical studies on peak cough flow
based on MI-E (Bach, 1993; Bach, 1995; Bach et al., 1997). With
patient cooperation, peak cough flow rates could reach 6 L/s or
higher. Recently, MI-E has found numerous applications in
secretion clearance for patients with Chronic Obstructive
Pulmonary Disease (COPD), NMDs, and other types of
respiratory muscle dysfunction. Additionally, MI-E has been
utilized for mechanically ventilated patients in the ICU. As one
of the most effective methods of simulating natural cough, MI-E can
propel bronchial secretions to the central airways, which cannot be
cleared by tracheal suctioning (Terzi et al., 2018). However, due to
the reduced consciousness and lack of cooperation in most patients,
CPFR values are typically less than 3 L/s, diminishing the efficacy of
airway secretion clearance. Concurrently, the generation of
substantial negative pressure during the exsufflation phase may
lead to airway collapse.

The airflow volume and pressure generated during a cough are
key determinants of the effectiveness of sputum excretion. (Ren
et al., 2022). Airflow volume dictates the amount of secretion or
foreign matter that can be carried and moved by the cough.
Theoretically, a greater volume increases the efficiency of clearing
secretions or foreign matter from the respiratory tract. Increased
airflow volume, and consequently higher velocities, assist in
disrupting the cohesion of mucus, detaching it from the airway
surfaces, and expelling it from the body. A higher airflow volume
enhances the ability to penetrate into the distal airways, playing a
crucial role in clearing the lower respiratory tract. (Yi et al., 2021).
Furthermore, the pressure of airflow during a cough is equally
critical to its effectiveness. Sufficient airflow pressure is capable of
opening airways that are partially obstructed due to mucus or
constriction, rendering the cough more effective. Elevated
pressure aids in overcoming the adhesive force of mucus, thereby
facilitating its movement from the airway walls. If the pressure is
sustained over time, this contributes to the continuity of the cough,
ensuring a more thorough clearance of the airways. (Ashley
Piccone, 2022).

Recent studies have extensively investigated the impact of
airflow rates on the efficacy of coughing. Parameters such as
Cough Expiratory Volume (CEV), Peak Velocity Time (PVT),

and Cough Peak Flow Rate (CPFR) are utilized to quantify and
describe the outcomes of coughing actions (Mahajan et al., 1994;
Singh et al., 1995; Vansciver et al., 2011; Ren et al., 2021). Devices
based on the Mechanical Insufflation-Exsufflation (MI-E) principle
also aim to improve expectoration efficiency by leveraging these
cough airflow parameters. However, existing MI-E cough assist
systems have not considered the influence of cough airflow
pressure on therapeutic effectiveness. Additionally, these devices
lack effective solutions to control airway pressure during the
expiratory phase, where significant negative pressure can lead to
airway collapse.

Current research on respiratory airflow pressure is extensively
conducted in the context of mechanical ventilation. Researchers
explore various control strategies to enhance mechanical ventilators.
In reference (Borrello, 2005), the modeling and control techniques
of mechanical ventilation are outlined. References (Van De Wouw
et al., 2018) and (Hunnekens et al., 2020) propose variable gain
control, aimed at achieving pressure tracking while reducing
overshoot in patient flow and preventing mis-triggering. This
article demonstrates a notable reduction in patient flow
overshoot. However, some overshoot still occurs, and the control
strategy uses patient flow, which is often unavailable. Reference
(Borrello, 2001) applies an adaptive feedback control method that
estimates the patient model and uses this model to adaptively adjust
the controller to achieve the desired closed-loop transfer function.
Theoretically, this approach is very effective, but obtaining an
accurate patient model is complex in practice. Moreover, in
(Borrello, 2001), hose resistance is overlooked, yet the pressure
drop caused by the hose cannot be ignored for large airflow
caused by large lungs and/or leaks. Furthermore, funnel-based
control (Pomprapa et al., 2015) applied in mechanical ventilation
shows limited gains in tracking performance. Model-based control
approaches used in (Scheel et al., 2017) and model predictive control
methods applied in (Li and Haddad, 2012) require precise patient
parameters, which are often unavailable in practice. Additionally,
Iterative Learning Control (Scheel et al., 2015) applied to mechanical
ventilation has shown significant improvements in tracking
performance. However, this method is limited to the repetitive
sequence of set points and initial conditions. Consequently, the
performance of the Iterative Learning Control framework proposed
in (Scheel et al., 2015) diminishes when patients breathe
autonomously. However, research on such airway pressure
control is rare in cough assist systems that require stronger
expiratory airflow.

Therefore, this study proposes an improved design of the MI-E
cough assist system. By employing adaptive control, the device
effectively regulates airway pressure during the assisted coughing
process facilitated by the cough assist system, offering a novel
solution to enhance safety and prevent airway damage during
expectoration in critically ill patients with expectoration disorders.

Methods

Principles of the cough assist system

The cough assist system is capable of simulating the entire
coughing process, comprising both inhalation and exhalation
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phases found in human respiratory mechanics. Considering the
inability of patients with impaired cough reflex to forcefully
inhale and exhale, the system employs a brushless direct
current (DC) micro-turbine fan to supply air to the lungs,
thereby expanding lung capacity to mimic the inhalation
process observed in healthy individuals. Concurrently, a
combination of a vacuum pump and a vacuum tank is used to
generate a near-vacuum negative pressure state, facilitating the
suction required to simulate cough airflow.

During the inflation process, an electromagnetic valve
(VX234, SMC Ltd., Tokyo, Japan) opens, while a vacuum
proportional valve (ITV0090, SMC Ltd., Tokyo, Japan)
remains closed. The micro-turbine fan supplies air to the
simulated lungs at a predefined pressure to mimic the
inhalation phase of coughing. Simultaneously, the vacuum
pump extracts air from the storage tank, creating a near-
vacuum state. A flow sensor (FS6122, Siargo Ltd., Santa Clara,
USA) is employed to measure the cough airflow, and a pressure
sensor (XGZP6847, CFSensor, Wuhu, China) monitors the
airway pressure. When the airway pressure reaches the
predefined inflation value, the electromagnetic valve closes,
concluding the inflation process. At this juncture, a significant
negative pressure difference is established between the simulated
lungs and the vacuum tank. By adjusting the vacuum
proportional valve, air is rapidly expelled from the simulated
lungs into the vacuum tank, simulating the exhalation phase of a
natural cough. The control of the vacuum proportional valve
allows for the adjustment of the simulated cough airway pressure,
enhancing safety during the expectoration process by preventing
airway damage. The working principle and system composition
of the cough assist machine are illustrated in Figure 1.

Patient-hose dynamics

Before discussing the mathematical model that describes the
interaction between the cough assist machine and the patient during
the expectoration process, it is essential to define the physical
quantities involved, with reference to the mathematical model of
the cough assist system shown in Figure 2 (Reinders et al., 2021).
Firstly, all pressures are defined relative to the ambient pressure, thus
Pamb � 0. The vacuum proportional valve is responsible for opening
the connection between the vacuum tank and the hose, generating
the cough airflow. This negative pressure suction results in flow
through the hose, which encounters resistance rhose. Additionally, a
pressure sensor measures the airway pressure in front of the patient’s
mouth, Pairway. Potential airflow leakage at the connection between
the patient and the mask is modeled using a leakage resistance rleak.
The lung model employs a linear single-compartment model as
described in reference (Ashley Piccone, 2022), which includes the
compliance clungs and resistance rlungs of the lungs. Notably, all
physical parameters, namely, rhose, rleak, rlungs, and clungs, are positive
values. Figure 2 includes _Ppatient representing the patient’s
spontaneous respiratory effort, which is considered an exogenous
disturbance to the lung pressure caused by the patient’s breathing
effort or autonomous coughing action.

Utilizing the parameters and model discussed previously, a
mathematical model between the patient and the hose has been
derived. This model delineates the relationships between the
pressure at the outlet of the vacuum proportional valve (Pout) the
disturbance from the patient’s spontaneous breathing ( _Ppatient), the
state variable representing lung pressure (Plungs), and the outputs
airway pressure (Pairway), and output flow rate (Qout). The output
flow rate Qout, the patient’s flow rate Qpatient, and the leakage flow
rate Qleak are interrelated, and are expressed using Equation 1.

Qpatient � Qout − Qleak (1)

The model employs a linear resistance framework, which
provides reasonable accuracy for typical ventilation flows. Linear
resistances rhose, rleak, and rlungs are utilized to express the
relationships between pressure and flow rates, as delineated in
Equations 2–5.

Qout � Pairway − Pout

rhose
(2)

Qleak � Pairway

rleak
(3)

Qpatient � Plungs − Pairway

rlungs
(4)

Pairway � rleakrhosePlungs + rleakrlungsPout

rleakrlungs + rleakrhose − rhoserlungs
(5)

The dynamics of lung function are encapsulated in Equation 6.

Plungs t( ) � 1
clungs

∫t

0
Qpatientdt + Ppatient t( ) + Plungs 0( ) (6)

In the model, Ppatient(t), which varies over time, represents the
patient’s own physiological activity. This activity is simulated as an
unknown disturbance in lung pressure caused by the patient’s
respiratory or coughing efforts, such as contractions of the

FIGURE 1
Working principle and system components of the cough
assist system.

FIGURE 2
Mathematical model of the cough assist system.
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diaphragm and/or abdominal muscles. Additionally, Plungs(0)
denotes the initial lung pressure, excluding any effort by the
patient. The derivative of lung pressure with respect to time is
expressed in Equation 7.

_Plungs � 1
clungs

× Qpatient + _Ppatient (7)

Combining Equations 3, 7, the dynamics of the lung are
represented by Equation 8.

_Plungs � 1
clungs

×
Plungs − Pairways

rlungs
( ) + _Ppatient (8)

By substituting Equation 5 into Equation 8, this research derive
the differential equation that governs lung dynamics.

_Plungs �
rleakrlungs − rhoserlungs( )Plungs − rleakrlungPout

rlungsclungs rleakrlungs + rleakrhose − rhoserlungs( )
+ _Ppatient

(9)

According to Equation 9, the dynamics of the patient-hose
system can be formulated as a linear state-space system with
inputs. This model uses Pout as the input, Pairway and Qpatient as
the outputs, and Plungs as the state variable. Additionally, _Ppatient acts
as a disturbance within the system Equations 11–14.

_Plungs � AhosePlungs + BhosePout + _Ppatient

Pairway

Qpatient
[ ] � ChosePlungs +DhosePout

(10)

with

Ahose � rleakrlungs − rhoserlungs

rlungsclungs rleakrlungs + rleakrhose − rhoserlungs( ) (11)

Bhose � −rleakrlungs
rlungsclungs rleakrlungs + rleakrhose − rhoserlungs( ) (12)

Chose �

rleakrhose
rleakrlungs + rleakrhose − rhoserlungs

rleakrlungs − rhoserlungs

rlungs rleakrlungs + rleakrhose − rhoserlungs( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (13)

Dhose �

rleakrlungs
rleakrlungs + rleakrhose − rhoserlungs

−rleakrlungs
rlungs rleakrlungs + rleakrhose − rhoserlungs( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (14)

Given that all resistances and compliances in the system are
positive, Ahose is negative, indicating that the patient-hose system is
inherently asymptotically stable. Notably, _Ppatient is considered an
exogenous disturbance; however, in practical terms, it includes
dynamics associated with the patient’s breathing or autonomous
coughing behavior.

Statement of control objectives

Figure 2 Presents a schematic diagram of the expectoration
process within the cough assist system, highlighting its most critical
components. This system operates by utilizing a vacuum
proportional valve to regulate the connection between the

vacuum tank and the hose, thereby generating a cough airflow
through negative pressure to assist the patient in expectorating.
One end of the hose is connected to the vacuum proportional
valve, while the other end is attached to a mask that interfaces
with the patient’s mouth. The airflow exits the mouth, travelling
through the hose towards the vacuum tank. Airflow leakage near
the patient’s mouth along the hose is also a source of airflow, as
illustrated in Figure 2.

In engineering applications, a PID (Proportional, Integral,
Derivative) controller is commonly utilized to address new
control demands. Similarly, in the cough assist system driven by
a vacuum proportional valve, a PID controller can be employed to
achieve the new control objective of regulating pneumatic pressure.
Employing a PID controller to manage this system results in a
closed-loop system, as depicted in Figure 3.

Within this closed-loop framework, the airway pressure
(Pairway) is the variable that requires control, with Ptarget being
the target pressure that the system aims to track. The overall control
objective is to minimize the tracking error, defined as follows
Equation 15:

e � Ptarget − Pairway (15)

or ideally let it converge to zero asymptotically.
However, the PID controller must be robustly adjusted to

accommodate significant variations in the controlled object. For
patients with different conditions, variations in lung compliance
and airway resistance are common. Consequently, a PID
controller may not achieve accurate tracking for all patients
considered.

Therefore, it is considered advantageous to introduce a
feedforward element ΔP to predict and compensate for the
pressure drop between the patient and the hose. If ΔP can be
accurately estimated, it would significantly enhance the control

FIGURE 3
Pid closed-loop system diagram for the expectorator process.

FIGURE 4
Control diagram of the closed-loop system with feedforward
estimation.
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precision and robustness of the control system. The system control
diagram incorporating the feedforward element is illustrated
in Figure 4.

It is noteworthy that predicting pressure drops within the system
is not a trivial task due to various factors.

1) The status of the lungs in different patients is fundamentally
unknown. Although the pressure targets are known a priori,
the flow emanating from the lungs depends on lung resistance
and compliance, which are variables that remain unknown.
Consequently, the flow through the hose and the pressure drop
P across it are also unknown.

2) The characteristics of the hose system used are also unknown.
Consequently, the pressure drop along the hose remains an
unknown variable.

3) During the assisted expectoration process, leakage around the
mask may occur, which is unpredictable and thus leads to
previously unknown pressure drops.

4) Patients may exhibit varying degrees of spontaneous coughing
or breathing activities, which generate airflow and result in
pressure drops; these dynamics are also unpredictable.

Therefore, feedforward prediction and compensation of
pressure drops need to account for multiple variable factors.

Control strategy

A novel adaptive control method is proposed, employing an
online Recursive Least Squares (RLS) estimator to automatically
estimate hose impedance during the expectoration process as shown
in Figure 5. The proposed strategy utilizes airway pressure to update
the estimator.

Another advantage of this control strategy is that it compensates
for the hose pressure drop P using the measured flow rate Qout from
the vacuum proportional valve outlet. The hose pressure drop P
depends on the flow through the hose, which equals the flow rate
Qout from the vacuum proportional valve. Therefore, precise

compensation of the pressure drop based on the measured flow
rate can achieve target pressure tracking that is independent of leaks,
patient lung dynamics, and the patient’s own physiological actions.

Subsequently, a state-space description of the closed-loop
dynamics with a constant r̂hose estimation is derived, as
illustrated in Figure 5. In the diagram, the desired Pcontrol is
equal to Pout. Using Pout � P̂ + Ptarget and Equation 10 results in

_Plungs � AhosePlungs + Bhose Ptarget + ΔP̂( ) + _Ppatient (16)

From Figure 5, it can be determined that the estimated pressure
drop P̂ is given by P̂ � r̂hoseQout. The estimated value of the pressure
drop P̂ can be expressed by Equation 17.

ΔP̂ � r̂hoseQout

� r̂hose Qpatient + Qleak( )
� r̂hose clungs _Plungs − _Ppatient( ) + Pairway

rleak
( )

(17)

Note that Pcontrol � P̂ + Ptarget and Equation 17 essentially
establish the proposed feedback law, which is designed to
compensate for the pressure drop in the hose system.
Substituting Equation 8 into Equation 17 yields Equation 18.

ΔP̂ � r̂hose⎛⎝clungs 1 + rlungs
rleak

( ) _Plungs − _Ppatient( ) + Plungs

rleak
) (18)

For notational purposes, the combined variable Equation 19

r er( ) � er rleak + rlungs( ) + rleakrlungs (19)

Equation 20 defines the estimation error er.

er � rhose − r̂hose (20)

Substituting Equation 18 into Equation 16 results in
Equation 21.

_Plungs � −rleak − er
clungsr er( )Plungs + rleak

clungsr er( )Ptarget + _Ppatient (21)

Thus, the state space of the new closed-loop system can be
represented by Equation 22.

_Plungs � A er( )Plungs + B er( )Ptarget + _Ppatient

Pairway

Qpatient

Qout

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � C er( )Plungs +D er( )Ptarget
(22)

with

A er( ) � −rleak − er
clungsr er( ), B er( ) � rleak

clungsr er( )

C er( ) � 1 − rleak + er( )rlungs
r er( )

−rleak − er
r er( )

−rleak
r er( )[ ]T

D er( ) � rleakrlungs
r er( )

rleak
r er( )

rleak + rlungs
r er( )[ ]T

(23)

It is noteworthy that the dynamics described in Equation 22 are
actually nonlinear due to the system matrix’s dependence on the
estimation error er. Subsequently, analysis of the system using a
constant least squares estimation error er is conducted. Specifically,

FIGURE 5
Experimental setup display.
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this study requires obtaining linear dynamics when er � 0 to
understand the behavior of the closed-loop system under
conditions where resistance estimation is available and pressure
compensation is utilized. This analysis is achieved through the
transfer function of the linear system with a constant estimation
error. Through the transfer function, robust performance
characteristics of the closed-loop system were obtained.

Using the system dynamics in Equations 22, 23, we can calculate
the transfer function from the inputs Ptarget and _Ppatient to the
output Pairway. Consequently, the closed-loop system is
reformulated as follows Equations 24–26:

_Plungs � �APlungs + �Bu
Pairway � �CPlungs + �Du

(24)

Where the input vector u � [Ptarget _Ppatient]T
�A � A er( ), �B � B er( )1[ ]
�C � C1 er( ), �D � D1 er( )0[ ] (25)

Using this form of the closed-loop system, the transfer function
from u to Pairway can be derived.

Pairway s( )
u s( ) � �C s − �A( )−1 �B + �D (26)

Using this, the expression for Pairway can be obtained.

Pairway s( ) � P1Ptarget s( ) + P2
_Ppatient s( ) (27)

with

P1 � rleak + clungsrleakrlungss

rleak + clungsrleakrlungss + er 1 + clungs rleak + rlungs( )s( )
and

P1 � clungserrleak

rleak + clungsrleakrlungss + er 1 + clungs rleak + rlungs( )s( )
Assuming that the airway resistance value is accurately

estimated, meaning the estimation error er � 0 the transfer
function from Ptarget to Pairway, denoted as P1 in Equation 27,
can be derived. Additionally, P2 represents the transfer function
from _Ppatient to Pairway. It can be seen that the airway pressure does
not depend on the patient dynamics or the exogenous disturbances
caused by the patient’s own physiological activities, denoted as
_Ppatient. This independence is a highly desirable characteristic for
the controlled system.

Subsequently, an RLS (Recursive Least Squares) estimator with
an exponential forgetting factor β is employed to automatically
estimate the value of rhose during the expectoration process, as
illustrated in Figure 5 (Ioannou and Sun, 1996). In the
estimation of airway resistance, because data from the distant
past is considered less important than more recent data, an RLS
algorithm featuring an exponential forgetting factor is utilized
(Ioannou and Sun, 1996).

The RLS estimator with a forgetting factor is represented by
Equations 28 and 29.

_̂rhose � C
ΔP − r̂hoseQout

m2
Qout (28)

_C � βC − C2Q
2
out

m2
(29)

Where Qout is the excitation variable, C(t) is referred to as the
covariance, and (ΔP − r̂hoseQout)/(m2) represents the normalized
estimation error of the pressure drop, while m2 is a constant
normalization parameter. As ΔP � rhoseQout, er(t) � rhose −
r̂hose(t) and rhose is constant, the dynamics of the least squares
error can be represented by Equation 30.

_er � −CQ2
out

m2
er (30)

The final closed-loop dynamics, incorporating the estimator and
hose compensation controller, are given by Equations 22, 23, 29, 30.

Appropriate parameters β and C(0) should be selected to enable
rapid convergence of the system. Additionally, the constant
normalization parameter m2 is set to one to reduce the number
of tuning parameters.

Experimental setup

Experimental validation of the control effectiveness for
regulating gas pressure is conducted using an experimental setup.

The cough assist system’s experimental platform, as shown in
Figure 5, primarily consists of critical components such as a vacuum
pump, a vacuum tank, a vacuum proportional valve, a flow sensor, a
pressure sensor, fan, simulated lungs, as well as a power source and a
Rapid Control Prototyping (RCP) system. To ensure real-time
execution of test experiments, the RCP system using the Maple
Technologies MT-1050 is employed for signal acquisition from the
flow and pressure sensors and for outputting voltage signals. The
proposed control strategy is implemented in the Simulink Desktop
Real-Time software environment, and the necessary. a files are
generated through the compiler options to achieve real-time
closed-loop control.

The initial parameter settings during the experimental process
are shown in Table 1.

Results

Results of PID control adjustment of airway
pressure during the Expectorator Process

Considering the lack of real-time pressure variation
curves generated by cough airflow during a patient’s coughing
process, this study opts to validate control effectiveness
using square wave and sinusoidal pressure signals. Square and
sinusoidal signals are two of the most fundamental and
widely used signal types, capable of simulating behavioral

TABLE 1 Initial parameter settings.

Parameter Value Unit

β 0.65 1/s

C(0) 2.5 × 10−3 s/mL2

r̂hose(0) 0 mbars/L

m2 1 −
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patterns in various physical and physiological processes.
Sinusoidal signals provide continuous, periodic variations,
which are useful for testing the system’s performance under
smoother pressure changes. This can emulate the periodic
breathing patterns found in actual physiological
environments. Square wave signals, with their distinct
transition points, test the system’s response to rapid changes.
How the system quickly adapts during the airway pressure drop
phase is a crucial aspect for verifying the sensitivity and
accuracy of the ventilator control system. Moreover, the
sharp pressure changes of the square wave signal align with
the normal operating conditions of cough assist systems
generating negative pressure cough airflow, allowing for the

measurement of peak flow rates to ensure effective
mucus clearance.

In the experiment, an initial attempt is made to adjust airway
pressure using a PID controller, aiming for the airway pressure to
track a target sinusoidal pressure curve. The tracking performance of
the airway pressure curve under PID control and the corresponding
tracking error are represented in Figures 6, 7, respectively.

The tracking results of a sinusoidal pressure curve using a PID
controller revealed significant overshoot and oscillation in airway
pressure regulation during the expectoration exhalation process,
with errors reaching up to ±10 kPa.

The occurrence of these results can be explained by the following
considerations. The airflow is generated by the vacuum generated by

FIGURE 6
Results of PID controller tracking a sinusoidal pressure curve.

FIGURE 7
Error in PID controller tracking of sinusoidal pressure curve.

FIGURE 8
Results of PID controller tracking a square wave pressure curve.

FIGURE 9
Error in PID controller tracking of square wave pressure curve.
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the opening and closing of the vacuum proportional valve, and the
rapid change in flow rate, combined with the compressibility of the
gas, leads to pressure fluctuations and oscillations. Additionally,
there are leaks in the system; when air leaks, it causes changes in
internal pressure. The PID controller attempts to correct the
pressure changes caused by leaks. If the size or rate of the leak
does not match the pressure compensation capability of the control
system, these sudden changes in pressure and subsequent
compensation can lead to pressure fluctuations and oscillations.

Following the observation of airway pressure tracking a
sinusoidal pressure curve under PID control, we examined the
tracking performance of airway pressure against a square wave
pressure curve under PID control. The tracking effectiveness and

corresponding tracking error are depicted in Figures 8, 9,
respectively.

Observations of the PID controller’s tracking results for the
square wave pressure curve led to conclusions similar to those
obtained from tracking the sinusoidal pressure signal. During the
expectoration exhalation process, the regulation of airway pressure
resulted in significant overshoot and oscillation, with errors reaching
up to ±10 kPa. The reasons for the overshoot and oscillation are
consistent with those previously discussed.

Results of adaptive control adjustment of
airway pressure during the
Expectorator Process

This section of the results validates the feasibility and superiority
of the adaptive control strategy proposed in this study for regulating
airway pressure during the expectoration process.

Similarly, we first obtained the results of airway pressure
tracking a sinusoidal pressure signal under the adaptive control
strategy. The tracking performance is displayed in Figures 10, 11.
Comparing these results with those obtained under PID control, it is
straightforward to observe the differences in tracking error
variations for the sinusoidal pressure signal under the two
control strategies, as shown in Figure 12.

Observations from the results indicate that under the adaptive
control strategy, the regulation of airway pressure during the
expectoration exhalation process has significantly improved.
There is no overshoot, and although there is a steady-state error
of approximately −3 kPa, oscillations have been reduced to ±1 kPa, a
tenfold decrease. This effectively ensures comfort and safety in the
airways during patient expectoration.

The significant improvement in control effectiveness with the
adaptive control method is primarily due to its online estimation of
ventilatory hose characteristics, which compensates for hose

FIGURE 10
Results of adaptive control tracking a sinusoidal pressure curve.

FIGURE 11
Error in adaptive control tracking of sinusoidal pressure curve.

FIGURE 12
Tracking errors of PID and adaptive control for sinusoidal
pressure curve tracking.
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pressure drops under conditions of unknown hose leakage
parameters.

During the tracking process of airway pressure to a sinusoidal
pressure signal under the adaptive control strategy, the results of the
changes in the estimated parameters are shown in Figure 13.

It is evident that the adaptive estimation parameters converge
within two–three expectoration cycles, meeting the practical clinical
usage requirements.

Figure 14 and 16 display the tracking performance of airway
pressure to a square wave pressure signal under the adaptive
control strategy.

FIGURE 13
Adaptive estimation parameter variation curve for sinusoidal curve.

FIGURE 14
Results of adaptive control tracking a square wave
pressure curve.

FIGURE 15
Peak flow output during the negative pressure exhalation phase
of a square wave pressure curve.
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The abrupt pressure changes of the square wave signal are
consistent with the normal operating conditions of cough assist
systems that generate negative pressure cough airflow. From the
measurement results of cough airflow flow rates during the sudden
drop phase of the square wave pressure signal in Figure 15, it is
evident that the peak flow rate approaches 6 L/s, which is higher than
the maximum expiratory flow rate of 1.1 L/s produced by a forceful
natural cough. This demonstrates that under the adaptive control
strategy, while regulating airway pressure, the cough assist system
can still generate a forceful cough airflow.

Figures 16, 17 Provides a clear visual representation of the
differences in the effectiveness of the adaptive control strategy
and PID control in regulating airway pressure to track a square
wave pressure signal.

Observations from the results under the square wave pressure
curve lead to the same conclusions as those under the sinusoidal
pressure curve. Under the adaptive control strategy, the regulation of
airway pressure during the expectoration exhalation process has
significantly improved. There is no overshoot, and although there is
a steady-state error of approximately −3 kPa, oscillations have been
reduced to ±1 kPa, which is a tenfold decrease.

During the tracking process of airway pressure to a square wave
pressure signal under the adaptive control strategy, the results of
changes in the estimated parameters are shown in Figure 18.

Similar to the results under the sinusoidal pressure curve, the
adaptive estimation parameters converged within two–three
expectoration cycles under the square wave pressure curve,
satisfying the practical clinical usage requirements.

Discussion

The experimental results reveal that while the PID control
strategy can regulate airway pressure during the expectoration
process, there is noticeable overshoot and oscillation in tracking
the target pressure signal. In practical applications with patients
using the cough assist machine, such overshoot and oscillation,
compared to the natural coughing air pressure, can cause discomfort
and potential airway damage to the patient.

In contrast, under the proposed adaptive control strategy, the
tracking of the anticipated pressure during the expectoration process
exhibits significantly reduced oscillations, greatly diminished overall
tracking errors, and no overshoot in airway pressure. Furthermore,
the experimental results indicate that under the adaptive control
strategy, the estimated parameters can be updated and converge to
stability within 5–6 s. In practical use of the cough assist machine,
this can be achieved with just two to three coughing maneuvers,
which meets the operational requirements of the scenario. This
highlights the effectiveness of the adaptive control approach in
achieving a more stable and accurate pressure management in
cough assist systems.

In this study, we systematically compare the efficacy of PID
control, a traditional control strategy, with the newly proposed
adaptive control in managing airway pressure within an cough
assist machine. PID control is widely used due to its broad
applicability, straightforward parameter setting, and intuitive
calculation process. However, a significant limitation of PID
control is its fixed parameters, which lack flexibility in the face of
the variability of patient physiological parameters typical in clinical
environments. In our experiments, the PID control strategy led to
pressure oscillations and overshoot, instabilities that could
potentially cause unintended high airway pressures and
additional physiological strain on patients, particularly for those
with heightened sensitivity in their respiratory systems, such as
patients with chronic obstructive pulmonary disease or asthma,
highlighting the deficiencies of this control strategy.

In contrast, the adaptive control strategy, by dynamically
adjusting control parameters to suit the current physiological
state of the patient, demonstrated higher control precision and
stability. The adaptive control system uses real-time feedback to
optimize its performance, maintaining appropriate airway pressure
under constantly changing clinical conditions, significantly reducing

FIGURE 16
Error in adaptive control tracking of square wave pressure curve.

FIGURE 17
Tracking errors of PID and adaptive control for square wave
pressure curve tracking.
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potential damage to the patient’s airways. Additionally, the adaptive
control system reduces risks associated with improper operation of
the equipment, such as when operators fail to adjust settings timely
to match changes in patient status.

While the adaptive control strategy still has room for
optimization, such as ensuring control effectiveness while
maintaining algorithm efficiency and stability in emergency
medical situations to avoid introducing additional computational
delays, it is particularly crucial. Therefore, future research will
consider developing more efficient adaptive algorithms to shorten
response times, enhance adaptive control efficiency, further
personalize treatment plans, predict and reduce potential adverse
reactions, and ultimately increase the safety and effectiveness
of therapy.

Conclusion

MI-E cough assist system have not considered the impact of
cough airflow pressure on therapeutic outcomes. Additionally, these
devices lack effective solutions for controlling airway pressure
during the expiratory phase, where significant negative pressure
can lead to airway collapse.

This paper optimizes the design of cough assist machines and
explores the application of PID and adaptive control methods in
regulating airway pressure within these devices. Comparative
experiments with PID controllers have revealed the significant
advantages of the proposed adaptive control in reducing

oscillations and overshoot, offering more stable and precise
airway pressure regulation. Moreover, this adaptive control
strategy does not impact the generation of peak flow rates
necessary for effective mucus clearance. This capability has
visible benefits in terms of clinical safety, which is crucial for
enhancing patient outcomes and reducing the risk of complications.

In summary, this study presents an improved design for MI-E
cough assist system. By employing adaptive control, the device
effectively regulates airway pressure during the assisted coughing
process facilitated by the cough assist system, providing a novel
solution to enhance safety and prevent airway damage in critically ill
patients with expectoration disorders. This approach promises to
offer safer and more effective expectoration support for patients.
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