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Purpose: The objective of this study was to create and assess a Deep Learning-
Based Radiomics model using a single sequence MRI that could accurately
predict early Femoral Head Osteonecrosis (ONFH). This is the first time such a
model was used for the diagnosis of early ONFH. Its simpler than the previously
publishedmulti-sequenceMRI radiomics basedmethod, and it implements Deep
learning to improve on radiomics. It has the potential to be highly beneficial in the
early stages of diagnosis and treatment planning.

Methods: MRI scans from 150 patients in total (80 healthy, 70 necrotic) were
used, and split into training and testing sets in a 7:3 ratio. Handcrafted as well as
deep learning features were retrieved from Tesla 2 weighted (T2W1) MRI slices.
After a rigorous selection process, these features were used to construct three
models: a Radiomics-based (Rad-model), a Deep Learning-based (DL-model),
and a Deep Learning-based Radiomics (DLR-model). The performance of these
models in predicting early ONFH was evaluated by comparing them using the
receiver operating characteristic (ROC) and decision curve analysis (DCA).

Results: 1,197 handcrafted radiomics and 512 DL features were extracted then
processed; after the final selection: 15 features were used for the Rad-model,
12 features for the DL-model, and only 9 features were selected for the DLR-
model. The most effective algorithm that was used in all of the models was
Logistic regression (LR). The Rad-model depicted good results outperforming the
DL-model; AUC = 0.944 (95%CI, 0.862–1.000) and AUC = 0.930 (95%CI,
0.838–1.000) respectively. The DLR-model showed superior results to both
Rad-model and the DL-model; AUC = 0.968 (95%CI, 0.909–1.000); and a
sensitivity of 0.95 and specificity of 0.920. The DCA showed that DLR had a
greater net clinical benefit in detecting early ONFH.

Conclusion: Using a single sequence MRI scan, our work constructed and verified a
Deep Learning-Based Radiomics Model for early ONFH diagnosis. This strategy
outperformed a Deep learning technique based on Resnet18 and a model based
onRadiomics. This straightforwardmethodcanoffer essential diagnostic datapromptly
and enhance early therapy strategizing for individuals with ONFH, all while utilizing just
oneMRI sequenceandamore standardizedandobjective interpretationofMRI images.
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1 Introduction

Osteonecrosis of the femoral head (ONFH) is a very common
pathology of the hip that can lead to activity restrictions and
catastrophic lifestyle changes. As demonstrated in our previous
publication (Hu et al., 2024), the prevalence and the incidence of
ONFH have significantly increased and may continue to increase, at
least in China, for the next 2 decades. Therefore, early diagnosis and
treatment planning of ONFH is crucial to preserve the femoral head
and improve the prognosis. In 2019, The Association Research
Circulation Osseous Staging System (ARCO) published a revised
classification version for ONFH. They classified ONFH into Stage I:
X-ray results are within normal range, but either magnetic
resonance imaging (MRI) or scans of bones show positive
findings. Stage II: The X-ray shows aberrant findings such as
minor signals of increased bone density, localized bone loss, or
cystic changes in the femoral head. However, there is no evidence of
a fracture in the underlying bone, fracture in the necrotic area, or
flattening of the femoral head. Stage III refers to a fracture that
occurs in the subchondral or necrotic zone, which can be observed
on X-ray or computed tomography (CT) scans. The third stage was
subdivided into two categories: stage IIIA, which refers to early
femoral head depression of 2 mm or less, and stage IIIB, which refers
to late femoral head depression of more than 2 mm. Additionally,
stage IV indicates the presence of osteoarthritis as evidenced by
X-ray findings such as joint space narrowing, acetabular alterations,
and/or joint destruction (Yoon et al., 2020). Our study and,
according to the revised ARCO classification, classified only Stage
I and II as early ONFH; afterwards we made use of their MRI scans
for this investigation.

Traditional imaging modalities such as X-ray and CT
(computed tomography) have restrictions when it comes to
identifying early stages of osteonecrosis of the femoral head
(ONFH), as there are no visible bone changes at this stage using
these techniques. Therefore, the widely accepted gold standard for
diagnosing early ONFH is MRI (Hu et al., 2015). However, it is user-
dependent, which makes the interpretation of MRI vary between
different radiologists. Thus, this necessitates the need for a robust
and standard, reliable way to detect early ONFH using MRI.

Deep learning showed some promising results and an
outstanding performance in detecting and classifying ONFH
(Shen et al., 2023; Wang et al., 2021; Shen et al., 2024). But it
comes at the cost of heavy data labeling time and preparations to
train a successful model. Hence, making us look for another way that
could achieve similar or better results with less work load.

Radiomics is a developing technique that entails converting
regular radiological pictures into radiomics features. (Gillies et al.,
2016), then recognizing important characteristics to create a
distinctive framework for predicting clinical labels or outcomes.
It is been widely used for the detection of various oncological
changes by many researchers (Ding et al., 2021). In
musculoskeletal disorders, Klontzas demonstrated that radiomics
is capable of differentiating between Osteoporosis and Avascular
necrosis (Klontzas et al., 2021). Wang introduced a radiomics
method that utilizes MRI scans to diagnose early ONFH. His
method specifically makes use of Multi-sequence MRI. In his
investigation, he utilized T1 weighted with fat suppression and
T2 weighted radiographs, along with coronal short time of

inversion recovery pictures (Cor STIR) (Wang et al., 2024).
Cheng reported that using a combined model of both Deep
Learning and Radiomics; displayed an outstanding ability in
diagnosing osteoporosis (Cheng et al., 2023). Liu also reported
similar findings when combining radiomics with deep learning,
he utilized Boruta selection to find the key features; and was able to
distinguish between glioblastoma and brain metastasis (Liu et al.,
2021). Another paper applied both deep learning and radiomics to
differentiate between brain abscess and cystic glioma (Bo et al.,
2021); they analyzed the features by spearman rank correlation test.
Our aim is to be able to precisely diagnose early ONFH using a
single-sequence MRI while reducing the up-front workload and the
complexity of using different MRI sequences. Therefore, and for the
first time; we are utilizing a Deep Learning-based Radiomics model
for this purpose.

2 Materials and methods

2.1 Study participants

A total of 150 patients were included in this retrospective
research: 80 healthy patients MRIs were acquired from those who
came for routine checkups without any clinical or radiologic signs
and symptoms of ONFH. In addition, 70 patients’ radiographs were
diagnosed by the radiology department of Xi’an Jiaotong University
Second Hospital with early ONFH between FEB 2016 and APR
2024. The eligibility criteria for the patients were: 1) exhibited
clinical symptoms such as hip pain or activity restriction. 2) only
stage 1 and 2 ONFH patients were included based on ARCO
classification. 3) Positive, clear MRI without artifacts. 4) No
evidence of femoral head depression or fracture on normal
radiograph, as that indicates a later stage of the disease. The data
was acquired from the digital health record system of our hospital.
The study design pipeline is illustrated in Figure 1. This retrospective
investigation obtained permission from the ethics oversight Board of
our hospital, with no requirement of informed consent
from patients.

2.2 Region of interest segmentation

The MRI images were taken using a (Avanto, Siemens
Healthineers; Erlangen, Germany) 1.5 T (tesla) scanner with the
following values: Sequence type turbo spin echo (TSE); T2-weighted
with fat suppressed (FS); slice thickness 4.5 mm, FOV 640*640 mm,
acquisition matrix 0\320\240\, echo time 67 ms, repetition time
3000 ms, in the coronal plane; (Headfirst- Supine) position.

One skilled orthopedic surgeon (5 years of experience) manually
segmented the region of interest (ROI) on each MRI slice; using
ITK-SNAP 4.2.0 (https://www.itksnap.org/). Subsequently, an
imaging specialist with 6 years of expertise in interpreting
musculoskeletal MRI scans carefully examined all the segmented
pictures to confirm their accuracy. Any disagreements were
discussed or fixed till a satisfactory result was obtained. The ROI
for healthy patients consisted of the femoral head and the closer part
of the femoral neck. However, for patients with ONFH, the ROI was
limited to the necrotic area only.
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2.3 Image preprocessing

The cases were split into training and testing groups using a
random distribution, with a ratio of 7:3. The entire training dataset
was utilized to train the predictive model, whereas instances in the
testing dataset were employed for the internal evaluation of the
models’ performance. In this experiment, we employed the fixed-
resolution resampling method to address any variations in voxel
spacing. The voxel spacing of all pictures was standardized by
resampling them to a size of 1*1*1 mm. Ultimately, the data
underwent z-score standardization, also known as zero-mean
normalization.

2.4 Features extraction

The feature extraction in this work included conventional
handcrafted radiomic features derived from the original
radiographs, such as geometry, intensity, and texture. In addition
to the deep learning features derived automatically from a
Convolutional Neural Network (CNN) utilizing training data.

PyRadiomics was utilized to extract radiomic features. The
manually generated radiomic features can be classified into three
distinct categories: (a) geometric, (b) intensity, and (c) textural. The
shape in three dimensions of the necrotic cells is referred to by the
geometry features. The intensity features analyze the statistical
spread of voxel intensities within the femoral head using first-
order statistics. The texture features indicate the features that
describe the patterns or the spatial distributions of intensities
beyond the first order. Different approaches, including the gray-
level run length matrix (GLRLM), neighborhood gray-tone
difference matrix (NGTDM), gray-level size zone matrix
(GLSZM), and the gray-level co-occurrence matrix (GLCM) are
employed to retrieve texture features. Furthermore, to achieve high-
throughput features, the nonlinear intensity of image voxels is
converted using various transformations such as Square, Square

Root, Logarithm, Gradient, LBP3D, and Exponential. The high
Laplace filter utilizes sigma values of 1, 2, and 3. Additionally,
the process of extracting first-order statistics and texture features
involved the use of eight wavelet transform algorithms: HLL, HLH,
HHL, HHH, LHH, LLL, LLH, and LHL. For a comprehensive
explanation of all image features, please refer to the online
resource at https://pyradiomics.readthedocs.io/en/latest/
features.html.

The Resnet18 model was used as the convolutional neural
network (CNN) architecture in this investigation to obtain deep
learning features. The MRI slice with the largest necrotic area was
cropped and chosen for each patient. Hence, the network was
optimized by applying the stochastic gradient descent method.
The Resnet18 model underwent pre-training using the ImageNet
dataset (http://www.image-net.org/). Subsequently, the pre-trained
model was utilized to initialize feature extraction. The model
selected an average pooling layer to extract deep features and
then used a principal component analysis to compress and
obtain the finalized deep features. The CNN training parameters
were as follows: batch size = 96, epochs = 30, and unit learning rate =
0.001.

2.5 Feature selection

Before feature selection, all the features were normalized by
applying the z-score standardization method approach. Both the
Radiomics and Deep Learning features underwent filtration through
a series of four phases. 1) The Mann–Whitney U test was performed
on all features, and only the features with a P-value less than
0.05 were retained. The Pearson test was employed to assess the
relation between features and categories. Features having a P-value
less than 0.05 were deemed possibly predictive. The Max-Relevance
and Min-Redundancy (mRMR) technique was employed in our
study, and it is been widely used in different radiomics methods
before (Xie et al., 2024) to enhance the visualization of features by

FIGURE 1
This study’s design and work pipeline.
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maximizing relevance and minimizing redundancy. Ultimately, the
crucial features were evaluated by the utilization of the least absolute
shrinkage and selection operators (LASSO).

2.6 Radiomics and deep learning (DL)
models construction

Once the features were selected using LASSO, we utilized these
features in a range of machine learning classifiers such as Random
Forests (RF), K-Nearest Neighbors (KNN), Logistic Regression (LR),
Support Vector Machines (SVM), XGBoost, and others. After
comparing all the parameters, we chose the highest performance
to build the prediction models. Here, we utilized 5-fold cross-
validation to build the final Rad and DL models. To evaluate
whether a combination of the features mentioned above could
produce superior outcomes. Using the previously described
approach, a Deep Learning-Based Radiomics (DLR) model was
built by combining features from both Deep Learning
and Radiomics.

2.7 Statistical analysis

The evaluation of data was conducted using the Python
Statsmodels package (0.13.2 version), and a p-value below
0.05 was considered to have statistical significance. The predictive
models’ clinical importance in diagnosing early ONFH was
evaluated by plotting Receiver Operating Characteristic (ROC)
curves and analyzing the corresponding Area Under the Curve
(AUC), diagnostic accuracy, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV). In
addition, the model’s discriminative power was assessed using
calibration curves and decision curve analysis (DCA). We also
utilized Delong’s test to compare the ROC curve AUCs.

3 Results

3.1 Patients’ characteristics

The study comprised a total of 150 patients’ MRI scans,
consisting of 80 healthy individuals and 70 patients with early
ONFH, based on the specified criteria for inclusion. The patients
were categorized into a training group of 105 individuals and a
testing group of 45 individuals. Table 1 demonstrates a summary of
the patient’s primary attributes.

3.2 Feature extraction and selection

By utilizing a special feature analysis software integrated into
Pyradiomics (http://pyradiomics.readthedocs.io), a total of
1,197 Radiomics features have been retrieved. The features
included: 234 First Order, 182 (GLDM), 208 (GLRLM), 208
(GLSZM), 65 (NGTDM), 286 (GLCM), and 14 Shape features.
Furthermore, Resnet18, which was pre-trained using the slice
with the most necrotic tissue in its cross-section, was used to
extract a total of 512 DL features.

We conducted a Mann-Whitney U test and performed feature
screening on all of the chosen features. Only features with a
P-value less than 0.05 were retained, resulting in the following
numbers: The Rad model consists of 983 features. The DL model
consists of 487 characteristics. The DLR model consists of
1,534 features.

The second phase involved evaluating features with high
repeatability by utilizing the Pearson correlation coefficient,
which measures the correlation between features. If the
correlation coefficient between any two features exceeded 0.9,
only one of them was kept. The Rad-model had 195 features, the
DL-model had 35 features, and the DLR-model had 244 features.

In the third step, to ensure maximum feature representation,
Max-Relevance and Min-Redundancy (mRMR) were used for
further feature filtering. Rad-model = 30, DL-model = 30, DLR-
model = 30 features.

In addition, the logistic regression model (LASSO) was
employed to minimize the number of features and identify the
most significant features for constructing the model. LASSO applies
a shrinkage technique to all regression coefficients, pushing them
toward zero and specifically setting the coefficients of unimportant
features to zero based on the regulation weight Lambda (λ). In order
to determine the ideal value of λ, a 10-fold cross-validation was
conducted using a minimal criteria approach. The value of λ that
resulted in the lowest cross-validation error was selected as the final
value. The kept features with non-zero coefficients were utilized to fit
a regression model and then integrated to create a Radiomics model.
Afterward, we calculated a radiomics score for each patient by
multiplying the retained features with their respective model
coefficients and summing them up. The LASSO regression
modeling was performed using the Python scikit-learn package,
identifying 12 radiomics features, 14 DL features, and 9 DLR
features. The figures below display the mean square errors (MSE)
obtained from 10-fold validation, as well as a coefficient profile plot
of the LASSO models. Each curve in the plot depicts the changing
trajectory of each independent predictor. Figures 2A, C, E Explains
the process of feature selection using the least absolute shrinkage and

TABLE 1 Basic characteristics of a total of 150 patients.

Characteristic Healthy patients (n = 80) Early ONFH patients (n = 70)

Age (years)
Mean ± SD

40.1 ± 14.04 47.21 ± 14.91

Gender, No. (%)

Male 30 (37.5%) 34 (48.58%)

Female 50 (62.5%) 36 (51.42%)
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selection operator (LASSO) logistic regression in the Radiomics-
model (A), DL-model (C), DLR-model (E). Figure 2 Shows the mean
squared error (MSE) values obtained from doing 10-fold cross-

validation for Radiomics-model (B), DL-model (D), DLR-model (F).
The histogram of the selected features for the DLR-model is
displayed in Figure 3.

FIGURE 2
(A, C and E) LASSO Coefficients profile plot with various log(λ) is displayed; the vertical dashed line represents the selected features with nonzero
coefficients chosen to the optimal lambda (B, D and F)MSE of 10-fold cross-validation for the most valuable features screened for the Rad, DL, and DLR
models, respectively.
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3.3 Predictive performance of radiomics, DL,
and DLR models

As LR performed almost the best in each model, it was the
classifier of choice for the construction of the Rad, DL, and DLR
models. The Rad-model showed good results with an (AUC = 0.957)
and (AUC = 0.944) in both the training and testing cohort,
respectively, as shown in Figure 4 training (A), testing (B).
Which outperformed the DL-model that showed (AUC = 0.935)
and (AUC = 0.930) for the training and testing cohort
correspondingly; illustrated in Figure 4 training (C), testing (D).

After the fusion of the selected Radiomics and DL
features, the DLR-model was developed by integrating all
(Kocak et al., 2024) features together in one model. The
significant features selected for the DLR-model were as
follows: DLR_LR_model = −0.2678082691039214 + +0.440703
* DL_464 + 0.444099 * log_sigma_2_0_mm_3D_glcm_Imc1
+0.576826 * DL_501–0.026022 * wavelet_HLH_gldm_
DependenceVariance −0.590691 * wavelet_HHL_firstorder_
Kurtosis +0.253499 * log_sigma_2_0_mm_3D_firstorder_
90Percentile +0.377429 * DL_115–0.238724 * log_sigma_5_0_
mm_3D_glrlm_LongRunHighGrayLevelEmphasis −0.656008 *
wavelet_HLL_gldm_LargeDependenceHighGrayLevelEmphasis
+0.089201 * DL_490 + 0.337023 * DL_508–0.160717 * wavelet_
HHH_glszm_LargeAreaEmphasis. An improved performance
over both the Rad-model and DL-model was found for the
DLR-model; (AUC = 0.956) in the training dataset and
(AUC = 0.968) in the testing dataset as displayed in Figure 4
training (E), testing (F). The diagnostic AUC, 95%CI, accuracy,
sensitivity, specificity, PPV, NPV, precision, recall, and F1 of the
three models are likewise demonstrated in Table 2. In addition,
the calibration curves showed good agreement between all
models, as shown in Figure 5. The P-values of the Hosmer-
LemeShow test in Table 3 were 0.446, 0.051, and 0.234 for the
Radiomics, DL, and DLR models, respectively. This indicates a

good-fitting model, as all of the values were greater than 0.05.
Delong’s test has been used to compare the ROC curve AUCs of
all models, as shown in Table 4. Both the CLEAR (Kocak et al.,
2023) and METRICS (Kocak et al., 2024) checklists of this study
were presented in Supplementary Figures S1, S2. Furthermore,
the net benefit was plotted against threshold probability in
Figure 6, which displays the Decision curve analysis (DCA); it
indicates that the DLR-model has the highest net benefit in
identifying ONFH, which means that the DLR-model was
useful for predicting early ONFH from healthy patients.

4 Discussion

In this study, we presented how Radiomics and Deep learning
features can be combined tomake a Deep Learning-based Radiomics
model that can predict early ONFH accurately; AUC = 0.968 (95%CI
0.909–1.000). This model has shown superior results to both the
Rad-model (AUC = 0.944 (95%CI 0.862–1.000) and the DL-model
(AUC = 0.930 (95%CI 0.838–1.000). The ROC for the three models
is illustrated in Figure 7; it shows that the DLR-model has an
improved and higher AUC = 0.968 than the other two models.
Our study was based on a single sequence MRI (T2W1), that has
been utilized to extract Radiomics and Deep learning features.
Unlike Wang (Wang et al., 2024), which used a multi-sequence
(T1W1, FS-T2W1, and Cor STIR) MRI-based method to predict
early ONFH using Radiomics only. He claimed that in order to
thoroughly diagnose early ONFH, it is imperative to take into
account various MRI sequences. However, we have demonstrated
that a single sequence MRI is sufficient and can achieve a high
accuracy using a Deep Learning-based Radiomics method rather
than multi-MRI sequences and Radiomics only. In his study, he also
considered ONFH stage I, II and IIIA as early stages, which we
disagree with. According to the revised ARCO classification (Yoon
et al., 2020), only stage I and II are considered early stages. Stage IIIA

FIGURE 3
Histogram of the features selected for the DLR model, displaying each feature’s contribution.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Alkhatatbeh et al. 10.3389/fbioe.2024.1471692

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1471692


shows microfractures or depression in the femoral head that could
be visible on a more affordable CT scan and does not necessarily
need an MRI that is more expensive and might not be available in

many institutions. In addition, the whole purpose of using radiomics
or deep learning in detecting early ONFH is accuracy and simplicity.
Hence, achieving those results using a single widely used MRI

FIGURE 4
ROC curves for all models in both the training and testing groups. (A) ROC curves of different classifiers on Radiomic-model (training). (B) ROC
curves of different classifiers on Radiomic-model (testing) (C) ROC curves of different classifiers on DL-model (training). (D) ROC curves of different
classifiers on Radiomic-model (testing). (E) ROC curves of different classifiers on DLR-model (training). (F) ROC curves of different classifiers on DLR-
model (testing).
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sequence is a great advantage. Besides that, Klontazs applied
radiomics and machine learning to differentiate between
Osteoporosis and avascular necrosis of the hip (AVN). It was not

mentioned what stages were included or excluded or following
which grading system for AVN. Following feature extraction, he
only used three machine learning classifiers (XGboost, CatBoost and
SVM) to perform the experiment. Whereas we have used LR, SVM,
KNN, RandomForest, ExtraTrees, XGBoost, LightGBM, and MLP
and compared them all to obtain the best performing model. In his
paper, XGboost displayed the best results achieving AUC of 93.7%.
on the other hand, our top performer LR based on the combined
model; showed superior results with an AUC of 0.9698. Other
previous studies have used deep-learning methods to detect early
ONFH (Shen et al., 2023; Wang et al., 2021; Klontzas et al., 2023; Li
et al., 2023). Deep learning uses features from a single image with the
largest necrotic area, whereas radiomics obtains quantitative
features from multiple MRI slices at once. It can detect more
features, as we proved in our study; we could extract
1,197 radiomic features, whereas deep learning features were
512 only. In addition, deep learning requires an extensive
amount of labeled data for the training. Nonetheless, radiomics
has an advantage over DL as it is effective even when using smaller

TABLE 2 All the metrics for the Radiomic, DL, and DLR models.

Model Classifier Acc AUC 95% CI Sen Spec PPV NPV PREC Recall F1 Cohort

Rad LR 0.905 0.957 0.9217–0.9925 0.88 0.927 0.917 0.895 0.917 0.88 0.898 Train

Rad LR 0.911 0.944 0.8622–1.0000 0.95 0.880 0.864 0.957 0.864 0.95 0.905 Test

DL LR 0.905 0.935 0.8824–0.9874 0.88 0.927 0.917 0.895 0.917 0.88 0.898 Train

DL LR 0.911 0.930 0.8377–1.0000 0.95 0.880 0.864 0.957 0.864 0.95 0.905 Test

DLR LR 0.914 0.956 0.9183–0.9930 0.88 0.945 0.936 0.897 0.936 0.88 0.907 Train

DLR LR 0.933 0.968 0.9085–1.0000 0.95 0.920 0.905 0.958 0.905 0.95 0.927 Test

ACC, Accuracy; AUC, area under curve; CI, confidence interval; SEN, Sensitivity; Spec, Specificity; PPV, positive predictive value; NPV, negative predictive value; PREC, Precision.

FIGURE 5
The calibration curves for DLR-model in the training group (left), and testing group (right), demonstrate a strong correlation between the average
predicted probability (x-axis) and the proportion of positive outcomes (y-axis), indicating successful calibration with the perfect calibrated line.

TABLE 3 Illustrates the significance levels (p values) obtained by the
Hosmer-Lemeshow test, which is used to assess the goodness-of-fit of
models.

Model Rad-
model

DL-
model

DLR-
model

Cohort

P 0.952 0.549 0.380 Train

P 0.446 0.051 0.234 Test

TABLE 4 Delong test for each of the models.

Cohort DLR Vs. Rad DLR Vs. DL DL Vs. Rad

Train 0.870 0.133 0.185

Test 0.594 0.145 0.800
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datasets. We have not compared our results to a radiologist, which is
a disadvantage of our study. Still, other studies did compare them,
and radiomics always had either similar results to an experienced
radiologist or even better ones (Klontzas et al., 2021; Wang et al.,
2024). We think by using a combined Deep Learning-Based
Radiomics method and a single sequence MRI only; we provided
a great diagnostic method for the early detection of ONFH and a
significant contribution to the research. As far as we know, we are
the first to combine deep learning and radiomics for this specific
task. Our study has some limitations, including 1) moderate sample
size for both the training and testing. 2) We have made our study
only using a single center, a multi-center study in the future could
further display better analysis for using Radiomics to detect early
ONFH. In conclusion, using a single sequence MRI scan, our work
constructed and verified a Deep Learning-Based Radiomics Model
for early ONFH diagnosis. This strategy outperformed a Deep

learning technique based on Resnet18 and a model based on
Radiomics. This straightforward method can offer essential
diagnostic data promptly and enhance early therapy strategizing
for individuals with ONFH, all while utilizing just oneMRI sequence
and a more standardized and objective interpretation of
MRI images.

5 Conclusion

In conclusion, using a single sequence MRI scan, our work
constructed and verified a Deep Learning-Based Radiomics Model
for early ONFH diagnosis. This strategy outperformed a Deep
learning technique based on Resnet18 and a model based on
Radiomics. This straightforward method can offer essential
diagnostic data promptly and enhance early therapy strategizing

FIGURE 6
Decision curve analysis was performed on the DLR-model across the training group (left) and the testing group (right). The y-axis represents the net
benefit, while the x-axis represents the threshold probability. The DLR model demonstrates a superior total beneficial effect in predicting early ONFH in
healthy patients.

FIGURE 7
ROC of the radiomic-model, DL-model, and DLR-model, training set (left), testing set (right). That shows an improvement of AUC = 0.968 using the
fused features.
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for individuals with ONFH, all while utilizing just one MRI sequence
and a more standardized and objective interpretation of MRI images.
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