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Myocardial ischemia-reperfusion injury (MIRI) is a critical issue that arises when
restoring blood flow after an ischemic event in the heart. Excessive reactive
oxygen species (ROS) production during this process exacerbates cellular
damage and impairs cardiac function. Recent therapeutic strategies have
focused on leveraging the ROS microenvironment to design targeted drug
delivery systems. ROS-responsive biomaterials have emerged as promising
candidates, offering enhanced therapeutic efficacy with reduced systemic
adverse effects. This review examines the mechanisms of ROS overproduction
during myocardial ischemia-reperfusion and summarizes significant
advancements in ROS-responsive biomaterials for MIRI treatment. We discuss
various chemical strategies to impart ROS sensitivity to these materials,
emphasizing ROS-induced solubility switches and degradation mechanisms.
Additionally, we highlight various ROS-responsive therapeutic platforms, such
as nanoparticles and hydrogels, and their unique advantages in drug delivery for
MIRI. Preclinical studies demonstrating the efficacy of these materials in
mitigating MIRI in animal models are reviewed, alongside their mechanisms of
action and potential clinical implications. We also address the challenges and
future prospects of translating these state of the art biomaterial-based
therapeutics into clinical practice to improve MIRI management and cardiac
outcomes. This reviewwill provide valuable insights for researchers and clinicians
working on novel therapeutic strategies for MIRI intervention.
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1 Introduction

Myocardial infarction (MI) remains the leading cause of morbidity and mortality
worldwide, underscoring the urgent need for innovative therapeutic strategies (Reed et al.,
2017; Laforgia et al., 2022). MI is characterized by the occlusion of coronary arteries, resulting in
a deprivation of oxygen and nutrients to the damaged myocardium. Re-establishing blood flow
through reperfusion, typically via percutaneous coronary intervention or thrombolysis, is critical
for saving the ischemic myocardium (Thygesen et al., 2007; Saito et al., 2023). However, this
process induces a series of harmful effects, including oxidative stress caused by a surge in reactive
oxygen species (ROS), calcium overload, and a strong inflammatory response, leading to further
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myocardial damage, known as myocardial ischemia-reperfusion injury
(MIRI) (Yellon and Hausenloy, 2007; Algoet et al., 2023; Liu Y.
et al., 2023).

ROS, including superoxide anion (O2
•−), hydroxyl radical (•OH),

and hydrogen peroxide (H2O2), are natural byproducts of cellular
metabolism, primarily generated in mitochondria during oxidative
phosphorylation (Sies et al., 2022). Under normal physiological
conditions, ROS are tightly regulated by endogenous antioxidant
systems, maintaining redox homeostasis. However, during
myocardial I/R, the abrupt reintroduction of oxygen during
reperfusion disrupt the balance between ROS production and
scavenging, resulting in an uncontrolled burst of ROS from various
sources, including the mitochondria, xanthine oxidase, NADPH
oxidases, and uncoupled nitric oxide synthase (NOS). This excessive
ROS generation triggers a cascade of deleterious events, including lipid
peroxidation, protein oxidation, DNA damage, inflammation, and
various forms of programmed cell death (e.g., apoptosis, pyroptosis,
ferroptosis), ultimately exacerbating myocardial injury and dysfunction
(Cadenas, 2018; Dubois-Deruy et al., 2020).

Over the past few decades, significant progress has been made in
developing anti-MIRI drugs (Ibanez et al., 2015; Zhou et al., 2021),
however, systemic drug administration faces challenges such as poor
targeting, limited efficacy, and potential toxic side effects. Recent
advancements in nanotechnology and biomaterials have paved the
way for creating targeted therapeutic strategies that deliver drugs
specifically to ischemia-reperfusion injured myocardium (Luo et al.,
2023). The unique ischemia-reperfusion microenvironment (IME),
characterized by acidosis, elevated ROS levels, and massive
inflammatory cell infiltration, has become a critical target for
developing controlled-release strategies for anti-MIRI drugs
(Hausenloy and Yellon, 2013; Li and Gao, 2023).

Among the various strategies targeting the IME, ROS-responsive
nanomaterials are currently the most advanced and promising. These
materials are engineered to specifically detect abnormal ROS levels at the
site of injury and to trigger the controlled release of therapeutic agents or
modulation of cellular signaling pathways, thereby improving tissue
inflammation (Chung et al., 2015; Lee et al., 2018; Xia et al., 2023),
impaired angiogenesis (Chen et al., 2021; Zheng et al., 2022a), or fibrosis
(Surendran et al., 2020; Gaytan et al., 2023; Zhang J. et al., 2024).
Strategies for fabricating ROS-responsive biomaterials encompass a
diverse array of approaches, primarily based on ROS-induced
solubility switches and degradation mechanisms (Lee S. H. et al.,
2013; Xu et al., 2016b). Solubility switching strategies exploit the
reversible transformation of the amphiphilic nature of materials
towards ROS, thereby achieving controlled release of the
encapsulated therapeutic agent. In contrast, the ROS-induced
degradation strategy involves incorporating ROS-labile linkages
within the polymer backbone, designed to cleave upon exposure to
ROS, leading to material degradation and subsequent release of the
therapeutic agent. Biomaterials that utilize ROS-induced solubility
switching or degradation elements, including polymeric nanoparticles,
injectable hydrogels, and biomimetic nanoparticles, loaded with anti-
MIRI drugs possessing antioxidant, anti-inflammatory, pro-survival, or
pro-angiogenic properties, have become promising targeted therapeutic
strategies forMIRI in the past decade (Bae et al., 2016; Ziegler et al., 2019;
Li et al., 2020; Li et al., 2021; Hao T. et al., 2022; Hou et al., 2022; Huang
et al., 2022; Lan et al., 2022; Li et al., 2022; Weng et al., 2022; Zhang X.
et al., 2022). These ROS-responsive nanomedicines have demonstrated

their precise targeting and controlled drug release capabilities and
achieved enhanced therapeutic effects in MIRI animal models,
providing strong support for their future clinical applications.

In this review, we aim to provide a comprehensive overview of
the progress in ROS-responsive biomaterials for treating MIRI over
the past decade (Figure 1). We summarize the mechanisms
underlying ROS overproduction during myocardial I/R, strategies
for fabricating ROS-responsive biomaterials, and the current ROS-
responsive therapeutic platforms for MIRI intervention. We also
discuss the challenges and future prospects of translating these
technologies into clinical practice, aiming to improve
cardiovascular health and patient outcomes.

2 ROS overproduction during
myocardial I/R

The excessive generation of ROS is a pivotal factor in MIRI. This
ROS storm triggers a cascade of deleterious events, including
mitochondrial dysfunction and lipid peroxidation, leading to
cardiomyocyte necrosis and various forms of programmed cell
death such as apoptosis, pyroptosis, and ferroptosis (Cadenas,
2018; Gong et al., 2024). Several recent reviews have well
elucidated the mechanisms of ROS generation following
myocardial I/R and its complex role in MIRI (Cadenas, 2018;
Bugger and Pfeil, 2020). Here, we focus on providing a summary
of current knowledge about the source and mechanism of ROS
overproduction after myocardial I/R from the perspective of
different cell types in damaged myocardium, including
cardiomyocytes and non-cardiomyocytes (e.g., inflammatory cells,
endothelial cells, and platelets). (Figure 2).

2.1 ROS generation in cardiomyocytes

2.1.1 Mitochondrial electron transport chain (ETC)
Mitochondria are the primary sources of ROS production in

damaged cardiomyocytes during myocardial I/R (Bugger and Pfeil,
2020). The ETC complexes, particularly complexes I and III, are key
sites where electron leakage occurs, leading to the formation of
superoxide anion (O2

•−). During ischemia, the activity of complex I
is inhibited due to oxygen depletion, causing electron accumulation.
Upon reperfusion, these electrons react with the reintroduced
oxygen, generating a significant amount of O2

•− through reverse
electron transport (RET) (Paradies et al., 2004; Chen et al., 2008;
Vinogradov and Grivennikova, 2016). This process is exacerbated by
the accumulation of succinate during ischemia, which is rapidly
oxidized upon reperfusion, driving RET and enhancing ROS
production (Chouchani et al., 2014). Complex II also contributes
to ROS generation, though to a lesser extent than complexes I and III
(Chouchani et al., 2014; Chouchani et al., 2016). Additionally, Fe2+

released by the ruptured mitochondria reacts with intracellular
H2O2, triggering the Fenton reaction and generating the highly
strong oxidant •OH (Gordan et al., 2018).

2.1.2 NADPH oxidase (NOX)
NADPH oxidases are another critical source of ROS in both

cardiomyocytes and non-cardiomyocytes (Kahles and Brandes,
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2013). NOX enzymes, particularly NOX2 and NOX4, are
upregulated in response to I/R injury (Braunersreuther et al.,
2013). These enzymes transfer electrons from NADPH to
oxygen, producing O2

•−. NOX-derived ROS are implicated in
various pathophysiological processes, including endothelial
dysfunction and inflammation (Paravicini and Touyz, 2008).
Inhibition of NOX activity has been shown to reduce myocardial
infarct size and ROS levels (Thirunavukkarasu et al., 2012;
Braunersreuther et al., 2013), underscoring its significance in
I/R injury.

2.1.3 Xanthine oxidase (XO)
Xanthine oxidase is a key enzyme in purine metabolism that

generates ROS as a byproduct in cardiomyocytes (Boueiz et al.,
2008). During ischemia, xanthine dehydrogenase is converted to
XO, which then produces O2

•− and H2O2 during reperfusion. XO-
derived ROS contribute significantly to oxidative stress and tissue

damage in MIRI (Madesh and Hajnoczky, 2001; Hool, 2009). The
use of XO inhibitors, such as allopurinol, has demonstrated
cardioprotective effects by reducing ROS production and
subsequent cellular injury (Grimaldi-Bensouda et al., 2015).

2.2 ROS generation in endothelial cells (ECs)

ECs are pivotal in the pathophysiology of MIRI and other
cardiovascular diseases, largely due to their role as major sources
of ROS (Yang et al., 2016; Chen et al., 2019; Haybar et al., 2019).
Among the key mechanisms regulated by ECs is the synthesis of
nitric oxide (NO), a vasodilator with protective cardiovascular
effects, mediated by endothelial nitric oxide synthase (eNOS)
(Mount et al., 2007). Under physiological conditions, eNOS
efficiently produces NO, which not only promotes vascular
relaxation but also exerts antioxidant effects. However, during

FIGURE 1
Schematic representation of ROS-responsive nanomedicines targeting MIRI. bFGF: basic fibroblast growth factor; COF: covalent organic
framework; CLP: an amphiphilic copolymer was designed and synthesized by sequentially conjugating luminol and PEG with Ce6; CS-B-NO: chitosan
modified by boronate-protected diazeniumdiolate; LP: liposome; NO: nitric oxide; PPTP: PGE2-PEG modified tellurium-crosslinked polyethyleneimine;
PEG: poly (ethylene glycol); PPS: poly (propylene sulfide); PMVs: platelet mem brane vesicles; PVA: poly (vinyl alcohol); PTPSCs: PLGA-TK-PEG-
SS31; TBD: to be determined; TPE: Tetraphenylethene; TSPBA: N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1,N1,N3,N3-tetramethylpropane-
1,3-diaminium.
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oxidative stress, the cofactor tetrahydrobiopterin (BH4), essential
for eNOS function, undergoes oxidation, leading to the uncoupling
of eNOS. This uncoupling diverts eNOS activity from NO
production to the generation of O2

•−, thereby increasing ROS
levels and exacerbating endothelial dysfunction (Dumitrescu
et al., 2007; Alkaitis and Crabtree, 2012). Strategies to recouple
eNOS, such as supplementation with BH4 or its precursors, have
shown promise in reducing ROS production and ameliorating
cardiac damage (Antoniades et al., 2006). Despite the antioxidant
role of NO under normal conditions, its interaction with O2

•− can

result in the formation of peroxynitrite (ONOO−), a harmful oxidant
(Radi, 2013). The presence of ONOO− further intensifies oxidative
stress, contributing to greater myocardial damage during IR injury
(Liu et al., 2005; Yu et al., 2018).

2.3 ROS generation in inflammatory cells

Inflammatory cells, such as neutrophils and macrophages, are
recruited to the site of injury during reperfusion. These cells produce

FIGURE 2
Schematic illustration of potential ROS sources in injured myocardium during MIRI. O2

•− are primarily produced in the mitochondrial ETC. Fe2+

released by the ruptured mitochondria generates •OH via Fenton reaction. Mitochondrial NOX also generates O2
•−. Damaged antioxidant systems, such

as SOD2, fail to adequately remove O2
•− or H2O2 leading to the accumulation of ROS. In the extramitochondrial space, NOX and XO play major roles in

ROS production during I/R. Excessive ROS causes oxidative damage to lipids, proteins, and nucleic acids, leading to cell death and exacerbating I/R
injury. The increased oxidative stress in the extracellular microenvironment of the injured myocardium is mainly attributed to the contents released after
the rupture of the plasma membrane of damaged cardiomyocytes, as well as the ROS released by neutrophils, macrophages, endothelial cells, and
activated platelets.
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large amounts of ROS via their NADPH oxidase systems in response
to inflammatory stimuli (Chakraborti et al., 2000). Neutrophil-
derived ROS contribute to tissue damage by exacerbating
oxidative stress and promoting further recruitment of
inflammatory cells (Jordan et al., 1999). The interaction between
inflammatory cells and damaged endothelium also creates a vicious
cycle of ROS production and cellular injury (Knock, 2019).

2.4 ROS generation in activated platelets

Platelets also contribute to ROS production after myocardial I/R.
During I/R, platelets become activated and release ROS through
their mitochondrial pathways and NADPH oxidase systems
(Begonja et al., 2005). Platelet-derived ROS also plays a

significant role in amplifying the inflammatory response and
promoting thrombus formation, which can further obstruct blood
flow and exacerbate myocardial injury (Takaya et al., 2005; Xu et al.,
2006). Targeting platelet activation has shown potential in reducing
the extent of myocardial damage and improving reperfusion
outcomes (Schanze et al., 2023).

Collectively, the overproduction of ROS during myocardial I/R
injury arises from various cellular sources, including
cardiomyocytes, endothelial cells, inflammatory cells, and
platelets. Functional impairment or activity changes of
mitochondrial ETC, NADPH oxidase, XO and uncoupled eNOS
during I/R are the core regulatory mechanisms leading to excessive
ROS generation in different cell types in the injured myocardium.
Understanding these sources and their mechanisms provides critical
insights into the pathophysiology of MIRI. Future efforts to design

TABLE 1 ROS-responsive elements.

ROS-
responsive
mechanism

ROS-responsive
elements

Chemical structure and oxidation Sensitivity References

Solubility Switch

Sulfur-
Based
linkages

Thioether H2O2: 3.3 vol% Gruhlke and Slusarenko (2012),
Xu et al. (2016a), Wang et al.
(2022), Yue et al. (2023), Yang

et al. (2024)

Poly (propylene
sulfide)

H2O2 : 100 μM

Poly
(L-methionine)

H2O2 : 1 mM

Selenium-linkages H2O2 : 0.1% v/v Ma et al. (2010), Tan et al. (2012),
Xu et al. (2013)

Tellurium- linkages H2O2 : 100 μM Cao et al. (2015), Wang et al.
(2015)

Degradation

Phenylboronic Acid and Ester H2O2 : 50 μM Sun et al. (2013), Stubelius et al.
(2019), Han and Domaille (2022)

Poly (thioketal) H2O2 : 0.2% v/v Liu and Thayumanavan (2020),
Wang et al. (2020), Xie et al.

(2022), Yao et al. (2022b), Shen
et al. (2024)

Peroxalate ester H2O2: >50 nM Romanyuk et al. (2017)

Poly (L-proline) H2O2 : 5 mM Yu et al. (2011), Lee et al. (2014),
Gupta et al. (2015)

Disulfide, diselenide, and
ditelluride bond

H2O2: <20 μM Hou et al. (2022), Lan et al.
(2022), Cao et al. (2024), Kang

et al. (2024)
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ROS-responsive biomaterials should focus on targeting the specific
features of excessive ROS production in themyocardial IME, with an
emphasis on developing innovative biomaterials with precise cell
type-specific and subcellular organelle-targeting (e.g, mitochondria)
properties.

3 Strategies for ROS-responsive
biomaterials fabrication

The emergence and widespread application of ROS-responsive
biomaterials have greatly changed the limitations of current anti-
MIRI drug interventions. These advanced materials are designed to
engage proactively with the pathophysiological oxidative milieu,
offering a targeted and controlled release of therapeutic agents. This
section delves into the mainstream strategies for the fabrication of
ROS-responsive biomaterials, focusing on ROS-induced solubility
switching and degradation mechanisms (Table 1).

3.1 ROS-induced solubility switch

The principal strategy for fabricating ROS-responsive
biomaterials involves the incorporation of functional groups that
undergo significant solubility changes in response to ROS. Under
oxidative conditions, these groups typically transform from
hydrophobic to hydrophilic states, enhancing water solubility and
facilitating the release of encapsulated drugs.

3.1.1 Sulfur-containing polymers
Sulfur-containing polymers are among the earliest developed

ROS-responsive systems (Yue et al., 2023). Due to sulfur’s diverse
oxidation states, ranging from −2 to +6, these materials can undergo
significant changes upon exposure to ROS. When oxidized, sulfide-
containing polymers form sulfoxides or sulfones, increasing their
hydrophilicity. This change leads to polymer swelling, disassembly,
and eventual drug release (Gruhlke and Slusarenko, 2012). Poly
(propylene sulfide) (PPS) is the most fundamental used sulfur-
containing ROS-responsive functional group. PPS-based
nanoparticles, stable in water, degrade rapidly upon exposure to
H2O2 but not to superoxide, releasing encapsulated drugs effectively
(Shofolawe-Bakare et al., 2022; Bezold et al., 2023). Thioether is
another well-studied ROS-responsive linker that undergoes a
hydrophobic to hydrophilic transition upon oxidation, which
makes thioether-containing polymers widely used in the precise
delivery and release of drugs in response to oxidative
microenvironment-related diseases (Wang et al., 2022).
Additionally, poly (L-methionine), an amino acid-based polymer,
exhibits ROS-responsive behavior through the oxidation of its
sulfur-containing methionine residues to sulfoxides and sulfones.
This oxidation alters the polymer’s hydrophobicity, leading to
structural changes and the release of therapeutic agents (Xu
et al., 2016a; Yang et al., 2024). Given the inherent advantages of
this amino acid-based polymer, such as biocompatibility and
biodegradability, it may become a key material in the design of
next-generation therapeutics for the treatment of ROS-related
diseases, such as cancer and chronic liver disease (Yoo et al.,
2017; Hao Y. M. et al., 2022).

3.1.2 Selenium-containing polymers
Selenium-based materials exhibit a more pronounced

response to ROS compared to sulfur-based ones due to
selenium’s lower electronegativity and larger atomic radius
(Xu et al., 2013). These materials can undergo a solubility
switch due to the oxidation of selenium moieties to
selenoxides or selenones upon exposure to low concentrations
of H2O2 (0.01% v/v) (Ma et al., 2010), leading to the release of
encapsulated therapeutic agents. The development of selenium-
containing block copolymers, such as PEG-PUSe-PEG, has
shown promise in drug delivery applications where the
hydrophobic polyurethane block containing selenides can self-
assemble into micelles that disassemble upon ROS exposure (Tan
et al., 2012). In addition, the biological significance of selenium,
particularly its role in enhancing the catalytic activity of
glutathione peroxidase (GPx), makes it an ideal candidate for
the design of ROS-responsive materials (Kieliszek and
Blazejak, 2013).

3.1.3 Tellurium-containing polymers
Tellurium, positioned below selenium in the periodic table,

offers even higher sensitivity to ROS due to its chemical
properties, making tellurium-containing polymers ultra-
responsive and suitable for applications in pathological
microenvironment with relative low levels of ROS (Cao et al.,
2015; Wang et al., 2015). Similar to selenium-based delivery
systems, tellurium-containing biomaterials exhibit pronounced
solubility changes under oxidative conditions (Wang et al., 2015),
ensuring timely and controlled drug release. Their potential in
therapeutic applications, particularly in inflammation and tumor
progression sites (Lu et al., 2017; Dominguez-Alvarez et al., 2022), is
being explored, although research in this area remains limited.

3.2 ROS-induced degradation

Another critical strategy involves the design of biomaterials that
degrade upon exposure to ROS through the cleavage of specific
chemical bonds within the polymer backbone, thereby releasing the
therapeutic agents in a controlled manner. This degradation
mechanism is pivotal for the functionality of ROS-responsive
biomaterials in targeted drug delivery and tissue engineering
applications.

3.2.1 Phenylboronic acid and ester-
containing polymers

Phenylboronic acid and its ester derivatives are exceptionally
sensitive to ROS, undergoing rapid oxidative degradation due to the
cleavage of the boron-carbon bond (Han and Domaille, 2022).
Under oxidizing conditions, the linkage between boronic acids/
esters and the material or drug molecules of interest becomes
oxidized with the insertion of oxygen (Stubelius et al., 2019).
Notably, the reaction kinetics are significantly influenced by the
nucleophilicity of the boron center, with nucleophilic boronic esters
reacting more quickly than their corresponding acids (Sun et al.,
2013). Moreover, recent studies have shown that boronic esters with
ether bonds exhibit excellent degradation kinetics at biologically
relevant concentrations of H2O2, around 50 μM (Jourden et al.,
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2011). This sensitivity makes boronic ester-containing polymers
some of the most ROS-responsive materials available, particularly
suitable for applications requiring high sensitivity to ROS and
precise control over the release of therapeutic agents.

Interestingly, most of currently reported anti-MIRI hydrogel
drug delivery systems that employ ROS-responsive degradation
mechanisms incorporate boronic acid or boronic ester as their
core ROS-responsive functional groups (detailed in Section 4) (Li
et al., 2021; Hao T. et al., 2022; Zhang X. et al., 2022). This preference
is likely due to their proven effectiveness in maintaining hydrogel
stability while allowing for precisely controlled degradation and
drug release in response to oxidative stress.

3.2.2 Poly (thioketal) (TK) polymers
Similar to boronic esters, thioketal linkages are destabilized in

the presence of O2
•−and H2O2, leading to the oxidation into ketones

and organic thiols or disulfides (Liu and Thayumanavan, 2020). This
degradation mechanism has been widely used to develop ROS-
responsive materials containing thioketals for targeted drug release
therapy in diseases characterized by high ROS microenvironments,
such as enteritis (Shen et al., 2024), wound repair (Martin et al.,
2014), and ischemic heart disease (Xie et al., 2022; Yao Y.
et al., 2022).

3.2.3 Peroxalate ester-containing polymers
Peroxalate esters are another class of ROS-responsive polymers

that degrade in the presence of relative low H2O2 (>50 nM),
producing carbon dioxide and other byproducts, with the
potential to generate chemiluminescence (Romanyuk et al., 2017;
Hao Y. M. et al., 2022). This characteristic makes them particularly
valuable in applications that benefit from real-time monitoring of
ROS levels, as the chemiluminescence can serve as an optical signal
for the presence of oxidative stress.

In the context of MIRI, peroxalate ester-containing polymers
have shown potential in both diagnostic and therapeutic roles. The
generated luminescent signals can help in the detection of ROS
bursts during reperfusion, while the degradation of the polymer
allows for the controlled release of therapeutic agents precisely when
ROS levels are elevated (Lee D. et al., 2013). Recent advancements in
the design of peroxalate ester-based hydrogels have also
demonstrated their capability to act as both ROS scavengers and
drug delivery platforms, thereby providing a dual function in
mitigating oxidative damage and delivering cardioprotective
drugs (Bae et al., 2016).

3.2.4 Poly (L-proline)-containing polymers
Poly (L-proline) is another naturally occurring amino acid-

based polymer that has shown particularly sensitive to ROS due
to the presence of pyrrolidine rings (Tian et al., 2021). Under
oxidative stress, the proline residue undergoes oxidation, leading
to the cleavage of the polymer backbone (Amici et al., 1989). This
degradation results in the release of entrapped drugs or therapeutic
agents, making poly (L-proline) a useful material in drug delivery
systems, particularly for applications where controlled degradation
is essential (Dai et al., 2023). Poly (L-proline) has been widely used
in the fabrication of scaffolds for tissue engineering applications
where the degradation rate can be matched to the tissue regeneration
process (Yu et al., 2011; Lee et al., 2014). The ROS-responsiveness of

these scaffolds can be further enhanced by incorporating additional
ROS-sensitive elements such as boronic esters or thioketal groups.

3.2.5 Disulfide, diselenide, and ditelluride bond-
bontaining polymers

Compared with the integration of individual chalcogen elements
(sulfur, selenium, tellurium) to impart solubility transition
properties to nanomaterials, recent studies have increasingly
favored the use of disulfide, diselenide, and ditelluride bonds as
ROS-responsive degradation elements (Yuan et al., 2021; Hou et al.,
2022; Lan et al., 2022; Weng et al., 2022; Qiu et al., 2024). These
bonds spontaneously cleave under oxidative conditions, leading to
the degradation of nanomaterials and enabling controlled
drug release.

Disulfide bond (-S-S-) is widely used due to their stability
under normal conditions and their ability to break in the
presence of ROS, such as H2O2 (as low as 20 μM), making
them ideal for delivery systems for tumors and diseases
related to ischemia-reperfusion injury (Kang et al., 2024; Qiu
et al., 2024). Diselenide bond (-Se-Se-), with lower bond
dissociation energy than disulfides, responds more quickly to
ROS and have been explored in neurodegenerative diseases and
MIRI (Yuan et al., 2021; Weng et al., 2022). Although less studied,
the ditellurium bond (-Te-Te-) is the most sensitive to ROS and
can respond rapidly, and has recently been increasingly studied
for its application in nanomaterial design to alleviate diseases
such as MIRI where excessive ROS production is present (Hou
et al., 2022; Lan et al., 2022).

4 ROS-responsive therapeutic
platforms for MIRI intervention

In recent decades, ROS-responsive functional groups have been
extensively integrated into various biomaterials, such as polymer
nanoparticles, hydrogels, patches, and biomimetic materials (Zhang
et al., 2015; Xu et al., 2016a; Chakraborty et al., 2023). These
advancements enable targeted and controlled drug release at sites
with elevated ROS levels. Given the excessive ROS production in
damaged myocardium following ischemia-reperfusion injury
(Cadenas, 2018), recent developments in nanomedicine have
increasingly utilized these ROS-responsive elements to achieve
precise, targeted delivery of cardioprotective drugs with anti-
inflammatory (Li et al., 2020; Hou et al., 2022; Huang et al.,
2022; Lan et al., 2022; Weng et al., 2022), antioxidant (Bae et al.,
2016), pro-survival (Li et al., 2022; Zhang X. et al., 2022), or pro-
angiogenic properties (Li et al., 2021; Hao T. et al., 2022). By
responding to ROS stimuli, these drugs can be released
specifically at the site of myocardial injury, enhancing therapeutic
efficacy while minimizing side effects.

Although several recent reviews have comprehensively explored
the landscape of ROS-related nanoplatforms for alleviating MIRI,
their main focus is on ROS-scavenging nanozymes and
nanomaterials loaded with antioxidant drugs (Zhang Z. et al.,
2022; Li et al., 2023). In contrast, here we focus on the
application of various ROS-responsive biomaterials in alleviating
MIRI in the past decade. Additionally, we systematically summarize
the preferred ROS-responsive functional groups used in these
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biomaterials and highlight the cardioprotective properties of the
encapsulated drugs.

4.1 Polymeric nanoparticles

Biocompatible and versatile polymers such as poly (lactide-co-
glycolide) (PLGA), poly (ethylene glycol) (PEG), and
polyethylenimine (PEI) are commonly used to create
multifunctional drug-loaded nanoparticles (Sah et al., 2013). To
achieve ROS-responsive drug release, these nanoparticles often
incorporate ROS-sensitive functional groups as linkers either
between polymeric backbone chains or between the polymer and
the drug molecule. Upon exposure to elevated ROS levels, these
linkers undergo degradation or solubility changes, triggering the
controlled release of the encapsulated drugs (Xu et al., 2016b).
Currently, sulfide and tellurium moieties are particularly
prevalent as ROS-responsive components in polymeric
nanoparticles designed to selectively respond to the oxidative
stress in the injured myocardium.

4.1.1 Sulfide-based linkages
Li and colleagues have developed a ROS-responsive polymeric

nanoparticle synthesized from diblock copolymers of PEG and PPS
for the delivery of ginsenoside Rg3, a natural product with potent
antioxidant properties, to mitigate MIRI (Li et al., 2020). Upon
encountering ROS, the sulfide linkages within the PPS undergoes
oxidative conversion from a hydrophobe to a hydrophile, releasing
Rg3 specifically at the site of injury. In a rat model of MIRI, the
intramyocardial injection of these nanoparticles demonstrated
improved cardiac function and reduced infarct size (Figure 3).
The therapeutic action of Rg3 was found to be mediated through
activating FoxO3a, a protein involved in oxidative stress regulation
(Link, 2019).

Distinct from sulfide-based ROS-responsive solubility
transitions, Huang et al. developed a biodegradable, redox-
responsive covalent organic framework (COF) nanocarrier
integrating tetraphenylethene (TPE) and disulfide moieties (ss)
for prolonged MIRI therapy (Huang et al., 2022). The TPE-ss
COF system demonstrated exceptional redox-responsiveness,
degrading efficiently in the presence of H2O2 and facilitating the

FIGURE 3
ROS-responsive polymeric nanoparticles were created through the self-assembly of diblock copolymers of poly (ethylene glycol) (PEG) and poly
(propylene sulfide) (PPS) and used to encapsulate and deliver Rg3 to sites of MIRI. Upon intramyocardial injection, the Rg3-loaded PEG-b-PPS
nanoparticles responded to ROS, releasing Rg3, which then mitigated MIRI by interacting with FoxO3a, exerting anti-oxidative, anti-inflammatory, and
anti-fibrotic effects. Reproduced with permission (Li et al., 2020). Copyright 2019, Elsevier.
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controlled release of therapeutic agent matrine, a natural
quinolizidine alkaloid that protects cells from ischemia-
reperfusion injury by attenuating c-Jun N-terminal kinase (JNK)
signaling. In rat models, intravenous administration of TPE-ss
COF@Matrine markedly reduced myocardial infarction area,
enhanced cardiac function, and alleviated myocardial fibrosis and
cardiomyocyte apoptosis. Additionally, the nanocarrier exhibited
prolonged retention in cardiac tissue, enabling sustained
drug delivery.

4.1.2 Ditellurium linkages
Tellurium’s superior responsiveness to ROS makes it a valuable

component in polymeric nanoparticle design, facilitating the
controlled delivery of encapsulated drugs by regulating material’s
solubility changes under oxidative conditions (Cao et al., 2015). For
instance, Hou and colleagues have engineered an endothelial cell-
targeting and ROS-ultrasensitive nanocomplex system for the co-
delivery of dexamethasone (DXM) and VCAM-1 siRNA (siVCAM-
1) to treat MIRI (Hou et al., 2022). The nanocomplexes, termed
RPPT, were synthesized by crosslinking PEI with ditellurium and
subsequently modified with PEG and the endothelial cell-targeting
peptide cRGD (Figure 4A). Upon systemic administration in a rat
model of MIRI, the cRGD-modified nanocomplexes efficiently
targeted and entered the inflamed endothelial cells located in the
injured myocardium. There, RPPT was sensitively degraded by

overproduced ROS, triggering the release of intracellular
siVCAM-1 and DXM, thereby effectively abolishing the
expression of the neutrophil recruiter VCAM-1 and inhibiting
the production of proinflammatory factors such as TNF-α. The
combined action of DXM and siVCAM-1 cooperatively inhibited
both migration and adhesion of neutrophils, effectively mitigating
the inflammatory response and reducing MIRI.

Interestingly, the same research team used a similar design
strategy to create an anti-inflammatory nanocomplex that
specifically targets inflamed cardiomyocytes to combat MIRI
(Lan et al., 2022). This ROS-responsive nanocomplex was
synthesized by conjugating PEGylated prostaglandin E2
(PGE2-PEG) with ditellurium-crosslinked polyethyleneimine
(PEI), which was then coated with DXM and loaded with
receptor for advanced glycation end-products (RAGE) siRNA
(siRAGE) onto mesoporous silica nanoparticles (MSNs)
(Figure 4B). The resulting nanocomplex exhibited high
stability in serum, preventing premature degradation of siRNA
and enabling efficient ROS-responsive release of siRAGE,
achieving a 72% RAGE silencing efficiency, along with the
delivery of DXM within inflamed cardiomyocytes. When
administered intravenously to MIRI rats, this nanocomplex
significantly reduced myocardial inflammation, leading to
substantial improvements in myocardial function and
reduced fibrosis.

FIGURE 4
(A) The endothelial cell-targeting, ROS-ultrasensitive NCs for co-delivery of siVCAM-1 and DXM aim to treat MIRI inflammation. The ROS-cleavable
RPPT, containing ditellurium, was designed to enclose DXM-loaded PLGANPs and siVCAM-1. After i. v. injection into rats with MIRI, RPPT@siVCAM-1 NCs
efficiently targeted inflamed endothelial cells by binding to over-expressed αvβ3 receptors. In the ROS-rich cytoplasm, RPPT degraded, releasing
siVCAM-1, enhancing VCAM-1 silencing. This reduced neutrophil recruitment to the injured myocardium, significantly improving anti-inflammatory
efficacy and myocardial function recovery. Reproduced with permission (Hou et al., 2022). Copyright 2022, Elsevier. (B) Cardiomyocyte-targeted
nanotherapeutics for ROS-sensitive co-delivery of siRAGE and Dex were developed. Dex-loaded MSNs, coated with PPTP (a ditellurium-containing
polycation), complexed with siRAGE and gated the MSNs to prevent Dex pre-leakage. After systemic injection into myocardial IR-injured rats, the
nanotherapeutics entered inflamed cardiomyocytes via PGE2 recognition of over-expressed EP receptors. Intracellular ROS degraded PPTP, releasing
siRAGE and Dex to silence RAGE and manage myocardial inflammation. Reproduced with permission (Lan et al., 2022). Copyright 2022, Tsinghua
University Press.
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4.1.3 Others
In addition to the commonly used chalcogen compounds

mentioned above, peroxalate ester linkages with H₂O₂ sensitivity
and scavenging capabilities have been utilized to develop ROS-
responsive nanoparticles for treating MIRI (Bae et al., 2016).
Specifically, Bae and colleagues designed H₂O₂-responsive
antioxidant polymer nanoparticles, known as PVAX, by
incorporating peroxalate ester linkages with the naturally
occurring antioxidant compound vanillyl alcohol (VA) in their
backbone. These nanoparticles were synthesized using an
emulsion/solvent evaporation method. The PVAX polymer
rapidly degraded at sites of ROS overproduction, demonstrating
superior therapeutic effects by reducing myocardial infarction size
and apoptosis through its potent antioxidant properties.

Moreover, with the breakthrough development of fluorescent
nanoprobes in the field of precise disease diagnosis, there have been
continuous studies in recent years to design environmentally
responsive fluorescent nanoprobes to respond to specific stimuli
(such as ROS) to achieve simultaneous high-contrast imaging and
targeted treatment of lesion areas (Shen et al., 2021; Xu et al., 2022;
Liu J. et al., 2023; Sun et al., 2023). For example, in the study of
Ziegler et al., a self-assembled fluorescent nanoprobe was developed
for imaging and therapy of MIRI. This nanoprobe is composed of an
amphiphilic copolymer that incorporates a hydrophilic chain of
PEG and hydrophobic components of luminol-conjugated chlorin
e6 (Ce6) (Ziegler et al., 2019). The unique design allows the
nanoprobe to self-assemble into nanoparticles that can

specifically target areas of injured myocardium due to the local
increase in ROS. The nanoprobe demonstrated high specificity for
the ischemic/reperfused myocardiumwith fluorescence signals up to
24 h post reperfusion in a mouse model of myocardial I/R.
Moreover, this study further discusses the broader implications of
using ROS-responsive nanoprobe for targeted drug delivery in other
ROS-associated conditions such as stroke, renal infarction, and
inflammatory diseases. This dual functionality-imaging and
therapy-makes fluorescent nanoprobes an attractive platform for
the development of theranostics, which combine diagnostics
with therapy.

4.2 Injectable hydrogels

Hydrogels are high molecular weight polymer materials with a
three-dimensional cross-linked network structure, known for their
exceptional water absorption and swelling properties, making them
excellent drug delivery carriers (Hamidi et al., 2008). Injectable
hydrogels, in particular, have emerged as a versatile platform in
nanomedicine, offering several advantages in drug delivery and tissue
engineering (Bae et al., 2013). They can facilitate local treatment through
minimally invasive administration, reducing systemic side effects and
improving patient compliance. These hydrogels can be engineered to
respond to specific microenvironmental triggers, such as pH,
temperature, and oxidative stress, allowing for precise control of drug
release and enhancing therapeutic efficacy (Abdollahiyan et al., 2020).

FIGURE 5
(A) Schematic illustration of Gel-bFGF fabrication and overall strategy. (B)Quantitative data corresponding to ki67, vWF CD 31 staining showed that
Gel-bFGF injection promoted angiomyogenesis. (C) A schematic illustrating minimally invasive iPC access in human patients alongside fluoroscopy
images from a patient who underwent a LARIAT procedure. Reproduced with permission (Li et al., 2021). Copyright 2021, Wiley. (D) Schematic illustration
of the treatment of I/R heart injury by CS-B-NO. (E) Schematic illustration summarizing the mechanism of CS-B-NO hydrogel on inhibiting the NF-
κB signaling pathway after I/R injury. (F) Schematic illustration summarizing the mechanism of CS-B-NO hydrogel on activation of the Nrf2 pathway
agains oxidative stress via enhancing Keap1 S-nitrosylation. Reproduced with permission (Hao T. et al., 2022). Copyright 2022, Wiley.
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By taking advantage of the high concentration of ROS in the
damaged myocardium after I/R, in recent years, there have been
continuous studies on the development of ROS-responsive
hydrogels to achieve precise targeting and sustained release of
drugs by intramyocardial or intrapericardial injection in the
damaged area (Li et al., 2021; Hao T. et al., 2022; Zhang X. et al.,
2022). These hydrogel designs all use similar ROS-responsive
degradation elements, namely boronic acid/ester functional

groups. The preference for boronic acid/ester as ROS-responsive
elements in hydrogel design may stem from their stability under
normal physiological conditions but superior reactivity to elevated
ROS levels and ability to undergo rapid degradation to facilitate the
precise release of encapsulated therapeutic agents in the injured
myocardium.

For example, Li and colleagues have engineered a ROS-
responsive hydrogel loaded with basic fibroblast growth factor

FIGURE 6
Schematic illustrating the preparation of ROS-responsive, mitochondria-targeted nanomicelles encapsulating CsA, and the construction of a pH/
ROS dually responsive CsA nanomicelle-loaded injectable hydrogel using Schiff base reactions and boronic ester bonding crosslinks. In a rat model of
myocardial ischemia-reperfusion injury, this hydrogel ensures precise delivery of nanodrugs to mitochondria in response to low pH and high ROS,
reducing oxidative stress at microenvironmental, cellular, and subcellular levels, and restoringmitochondrial andmyocardial functions. Reproduced
with permission (Zhang X. et al., 2022). Copyright 2022, Elsevier.
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(bFGF) for myocardial repair following I/R injury (Li et al., 2021).
This innovative hydrogel was synthesized from poly (vinyl alcohol)
(PVA) cross-linked with a ROS-sensitive benzoboric acid derivative,
enabling the delivery of bFGF directly to the heart’s surface upon
injection into the pericardial cavity (iPC) (Figure 5A). This design
takes advantage of the elevated ROS levels in the damaged
myocardium to trigger “on-demand” release of bFGF, thereby
facilitating angiogenesis and enhancing cardiac function in a rat
model of I/R injury (Figure 5B). Most importantly, these researchers
also proved the feasibility of minimally invasive iPC access in a
human patient during a standard LARIAT procedure, highlighting
the potential for clinical translation (Figure 5C).

Similarly, Hao and colleagues utilized boronic ester as ROS-
responsive element to fabricate an innovative, injectable dual-
function hydrogel, CS-B-NO, designed to counteract MIRI by
addressing the ROS/NO disequilibrium (Hao T. et al., 2022).
This hydrogel, synthesized from chitosan modified with
boronate-protected diazeniumdiolate, stands out for its ability to
release NO in response to ROS stimulation, thereby modulating the
ROS/NO imbalance post-I/R injury (Figure 5D). The CS-B-NO
hydrogel exhibited significant therapeutic effects in attenuating
cardiac injury and adverse cardiac remodeling in a mouse model
of MIRI. The underlying mechanism involved the activation of the
antioxidant defense system and protection against oxidative stress
induced by I/R injury through the adaptive regulation of the Nrf2-
Keap1 pathway, leading to a reduction in inflammation by inhibiting
the activation of NF-κB signaling (Bellezza et al., 2018).

In addition, Zhang and colleagues have devised a hierarchical
targeting pH and ROS dual-responsive hydrogel system that aimed to
restore mitochondrial function and alleviate oxidative stress (Zhang
X. et al., 2022). Notably, this system utilized both thioketal and
boronic ester linkages known for their ROS-responsive degradation
properties. Initially, mitochondrial-targeting polymeric micelles
(PTPSC) were constructed, which self-assemble from thioketal-
crosslinked PLGA and PEG (PLGA-TK-PEG) modified with the
mitochondrial-targeting Szeto-Schiller (SS31) peptide.
Subsequently, these PTPSC micelles were encapsulated within a
pH/ROS dual-responsive injectable hydrogel crosslinked by
reversible imine and boronic ester bonds, and loaded with
cyclosporine A (CsA), a well-established drug known to inhibit the
opening of themitochondrial permeability transition pore (mPTP). In
response to the low pH and high ROS in cardiac tissue during
reperfusion, the imine and boronate bonds in the hydrogels were
broken and the CsA-loaded PTPSCs were controllably released from
the hydrogel matrix into damaged cardiomyocytes (Figure 6). The
elevated intracellular ROS further induced the cleavage of the
thioketal linker and targeted the release of CsA into the
mitochondria via SS31 peptide, thereby blocking the opening of
the mPTP and inhibiting mitochondria-mediated cardiomyocyte
apoptosis, while attenuating the output of mitochondrial ROS to
reduce cytoplasmic ROS levels. In rat models, this novel smart
hydrogel system demonstrated remarkable therapeutic efficacy by
restoring mitochondrial and cardiac functions, underscoring its
potent ROS scavenging capabilities and innovative contribution to
cardiac repair. The integration of these state of the art biomaterials
and mechanisms underscores a promising approach for targeted
therapy, especially in mitigating oxidative stress-related pathologies
where mitochondrial dysfunction plays a pivotal role.

4.3 Biomimetic biomaterials

Given the remarkable biocompatibility, low immunogenicity,
and low toxicity of biomimetic nanomaterials that incorporate cells,
cellular components (such as membranes, lipoproteins, etc.), and
extracellular vesicles (EVs), biomimetic nanomaterials have
emerged as a prominent strategy in nanomedicine development
(Yaman et al., 2020). In the treatment of ischemic heart disease, this
biomimetic approach enables nanomaterials to disguise themselves
as endogenous substances and target damaged myocardial areas,
thereby minimizing toxicity and enhancing biocompatibility (Laiva
et al., 2015; Kang and Kwon, 2022). A recent systematic review
comprehensively summarized the research progress on biomimetic
nanomaterials based on different cell types of biomembranes and
EVs for ischemic heart disease therapy (Yu et al., 2024). Notably, in
recent years, research has focused on integrating various
microenvironmental responsive elements into these biomimetic
nanodelivery platforms to improve their drug loading targeting
and controlled release capabilities (Rios et al., 2015; Wu et al.,
2016; Kobayashi et al., 2018; Liu et al., 2019). In studies on alleviating
MIRI, to date, only two study has used ROS-responsive polymeric
materials to load anti-inflammatory and pro-suvival drugs and
integrated them into platelet membrane chimeric nanodelivery
system to achieve targeted drug delivery in damaged myocardium
(Li et al., 2022; Weng et al., 2022).

Specifically, Weng and colleagues developed this innovative
platelet-bionic ROS-responsive delivery platform, PLP-RvD1,
utilizing platelet membrane chimerism modified liposomes to
achieve targeted delivery to myocardial macrophages at the injury
site and mediate ROS-responsive release of the anti-inflammatory
drug Resolvin D1 via diselenide bonds (Figure 7A) (Weng et al.,
2022). In a mouse MIRI model, the intravenous injection of PLP-
RvD1 resulted in the enrichment of RvD1 in the injured
myocardium, promoting macrophage efferocytosis of apoptotic
cardiomyocytes, production of specialized proresolving mediators
(SPMs), and angiogenesis during injury repair process, effectively
improving ventricular remodeling and protecting cardiac function.
Furthermore, biosafety assessment of this delivery system
demonstrated that PLP-RvD1 did not induce acute inflammatory
responses, exhibited no potential immune reactions, and lacked
organ toxicity, suggesting its suitability for potential clinical
applications.

Similarly, Li and colleagues employed a biomimetic strategy to
develop a platelet membrane-cloaked nanoparticle, CsA@PPTK
(Figure 7B). This nanoparticle is constructed using poly
(thioketal) (PTK), a material rich in thioketal bonds that are
sensitive to various types of ROS. The ROS sensitivity allows the
nanoparticle to release its encapsulated anti-apoptotic drug, CsA,
specifically at the site of injury where ROS levels are elevated (Li
et al., 2022). Upon intravenous injection, CsA@PPTK effectively
accumulated in the infarcted myocardium of MIRI mice, where it
scavenged ROS and modulated the inflammatory response. This
modulation was achieved by increasing the generation of regulatory
T cells (Tregs) and enhancing the M2/M1 macrophage ratio. As a
result, this targeted delivery and responsive release strategy
significantly reduced cardiomyocyte apoptosis, decreased infarct
size, and mitigated fibrosis, leading to improved cardiac function
and left ventricular remodeling. Furthermore, biosafety assessments
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revealed that CsA@PPTK did not induce acute inflammation,
immune reactions, or organ toxicity, highlighting its potential as
a promising candidate for clinical applications in treating MIRI.

In addition to the above-mentioned ROS-responsive therapeutic
platforms specifically designed for MIRI, recent studies have also
extensively explored ROS-responsive nanomaterials with nearly
identical design principles, including the same ROS-responsive
elements and material types, for the treatment of myocardial
infarction (MI). These nanomaterials are often loaded with drugs
that possess anti-inflammatory, antioxidant, pro-angiogenic, and
anti-fibrotic properties (Yao M. Y. et al., 2022; Zheng et al., 2022b; Ji
et al., 2023; Sun et al., 2024; Zhang J. H. et al., 2024). Given the close
similarities in the pathological processes underlying MI andMIRI, it
is highly probable that the nanomedicines developed for MI could
also yield significant therapeutic benefits in the treatment of MIRI.
Notably, while ROS-responsive nanomaterials carrying anti-fibrotic
agents have been effectively utilized inMI therapy (Ji et al., 2023; Sun
et al., 2024), they have not yet been applied in the context of MIRI
treatment. The future development of anti-MIRI nanomedicine may
need to adopt a more holistic approach. This would involve
integrating a spectrum of cardioprotective drugs with multiple
therapeutic properties, aimed at providing comprehensive
protection of cardiac structure and function throughout the
disease progression, from acute injury to chronic remodeling.

5 Prospects and conclusion

ROS overproduction during I/R play a crucial role in myocardial
injury, presenting both a challenge and an opportunity for
innovative treatment strategies. ROS-responsive biomaterials have

emerged as a promising approach to addressing I/R injury in the
heart as well as other organs such as liver, kidney and brain. Despite
their potential, several challenges must be overcome to translate
these biomaterials from the laboratory to clinical practice. 1) One
significant challenge is the integration of multifunctionality in
current ROS-responsive biomaterials to address both diagnostic
and therapeutic needs. The ability to combine therapy with real-
time imaging could significantly improve monitoring and treatment
precision for MIRI. Furthermore, integrating multiple therapeutic
modalities such as antioxidant, anti-inflammatory, pro-angiogenic,
and anti-fibrotic therapies may produce synergistic effects, thereby
enhancing myocardial recovery and function. 2) Another critical
challenge is the complexity of the myocardial I/R
microenvironment, characterized by fluctuating ROS levels and
diverse pathological features that vary depending on the extent of
myocardial injury in each patient. This variability directly impacts
the efficacy of nanomaterials. To overcome this, it is crucial to
enhance our understanding of ROS biology, focusing on the
spatiotemporal changes of ROS in the myocardium after I/R.
Future designs should also integrate multi-stimulus-responsive
capabilities that can react to additional I/R markers such as
pH and inflammation. This strategy will facilitate the creation of
smart-responsive systems that can dynamically adapt to these
microenvironmental changes, thereby enhancing targeting
precision and therapeutic efficacy. 3) With the exception of in
situ injected biomaterials, such as hydrogels, current therapeutic
polymeric or biomimetic nanoparticles injected intravenously are
difficult to effectively target to the heart and are often cleared by the
liver or kidneys. Therefore, the design of these materials should also
incorporate strategies that enhance their affinity and retention
within the damaged myocardium, possibly through the use of

FIGURE 7
(A) A delivery platform called PLP-RvD1, which is responsive to ROS and mimics platelets, was designed. It is created by combining ROS-responsive
liposomes loaded with RvD1 and platelet membranes. This platform retains the platelets’ ability to interact with monocytes, allowing it to reach cardiac
injury sites by hitching a ride with chemotactic circulatingmonocytes following intravenous injection. The high levels of ROS at the injury site break down
the platform, releasing RvD1 quickly. The released RvD1 then facilitates the clearance of dead cardiomyocytes, the production of SPMs, and
angiogenesis, which helps improve ventricular remodeling andmaintain cardiac function in mice with myocardial I/R injury. Reproduced with permission
(Weng et al., 2022). Copyright 2022, BioMed Central. (B) CsA@PPTK effectively accumulated in the ischemic myocardium of MI/RI mice, where it
significantly reduced ROS and promoted the generation of Tregs while increasing the ratio of M2 to M1 macrophages. Additionally, CsA@PPTK notably
decreased cardiomyocyte apoptosis, reduced infarct size and fibrosis in the ischemic myocardium, and lowered MMP-9 protein expression while
increasing CX43 protein expression in the affected tissue. These effects led to a substantial reduction in left ventricular remodeling and a marked
improvement in heart function in MI/RI mice. Copyright 2022, BioMed Central.
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heart-specific peptides or antibodies. 4) Addressing the biosafety
and systemic toxicity of these advanced materials is paramount.
Although nanomedicine can enhance drug bioavailability and
prolong circulation times, the long-term effects require thorough
investigation. Understanding the pharmacokinetics, biodegradation,
and metabolic profiles of these materials is essential to ensuring their
safe clinical application. Preclinical studies and clinical trials should
explore the efficacy of these nanomaterials in larger animal models
to better evaluate their clinical potential. A focus on rigorous
preclinical testing and streamlined regulatory processes will also
be essential to facilitate the transition from bench to bedside. 5)
Finally, the scalability of production is another hurdle that must be
overcome. As these biomaterials move towards clinical application,
the need for efficient manufacturing processes that maintain
material integrity and functionality at scale becomes evident. This
is crucial for meeting the demands of clinical practice while ensuring
cost-effectiveness.

In conclusion, significant advances in ROS-responsive
biomaterials, including polymeric nanoparticles, hydrogels,
and biomimetic nanomaterials, offer a promising approach to
treating ischemia-reperfusion injuries by enabling targeted
therapeutic delivery. These biomaterials can reduce myocardial
damage more effectively than current therapeutics, but
challenges remain in patient variability, targeting specificity,
biocompatibility, long-term safety and efficacy, and
manufacturing scalability. Continued research focusing on
these areas is crucial. By addressing these challenges, ROS-
responsive biomaterials could revolutionize the management
of ischemic conditions across multiple organ systems,
significantly improving patient outcomes and paving the way
for personalized medical interventions.
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