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Mesenchymal stem cells (MSCs) are naturally-derived regenerative materials that
exhibit significant potential in regenerative medicine. Previous studies have
demonstrated that MSCs-based therapy can improve heart function in
ischemia-injured hearts, offering an exciting therapeutic intervention for
myocardial ischemic infarction, a leading cause of worldwide mortality and
disability. However, the efficacy of MSCs-based therapies is significantly
disturbed by the myocardial microenvironment, which undergoes substantial
changes following ischemic injury. After the ischemic injury, blood vessels
become obstructed and damaged, and cardiomyocytes experience ischemic
conditions. This activates the hypoxia-induced factor 1 (HIF-1) pathway, leading
to the rapid production of several cytokines and chemokines, including vascular
endothelial growth factor (VEGF) and stromal-derived factor 1 (SDF-1), which are
crucial for angiogenesis, cell migration, and tissue repair, but it is not sustainable.
MSCs respond to these cytokines and chemokines by homing to the injured site
and participating in myocardial regeneration. However, the deteriorated
microenvironment in the injured myocardium poses challenges for cell
survival, interacting with MSCs, and constraining their homing, retention, and
migration capabilities, thereby limiting their regenerative potential. This review
discusses how the deterioratedmicroenvironment negatively affects the ability of
MSCs to promote myocardial regeneration. Recent studies have shown that
optimizing the microenvironment through the promotion of angiogenesis can
significantly enhance the efficacy of MSCs in treating myocardial infarction. This
approach harnesses the full therapeutic potential of MSCs-based therapies for
ischemic heart disease.

KEYWORDS

mesenchymal stem cells, microenvironment, agiogenesis, myocardial regeneration,
ischemic heart disease

OPEN ACCESS

EDITED BY

Donglin Xia,
Nantong University, China

REVIEWED BY

Wenyi Zheng,
Karolinska Institutet (KI), Sweden
Biao Wang,
BeiGene, China

*CORRESPONDENCE

Ying Xiao,
yingxiao@wchscu.cn

†These authors have contributed equally to
this work

RECEIVED 22 July 2024
ACCEPTED 09 September 2024
PUBLISHED 20 September 2024

CITATION

Chu Q, Jiang X and Xiao Y (2024) Rebuilding the
myocardial microenvironment to enhance
mesenchymal stem cells-mediated
regeneration in ischemic heart disease.
Front. Bioeng. Biotechnol. 12:1468833.
doi: 10.3389/fbioe.2024.1468833

COPYRIGHT

© 2024 Chu, Jiang and Xiao. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Review
PUBLISHED 20 September 2024
DOI 10.3389/fbioe.2024.1468833

https://www.frontiersin.org/articles/10.3389/fbioe.2024.1468833/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1468833/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1468833/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1468833/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1468833/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2024.1468833&domain=pdf&date_stamp=2024-09-20
mailto:yingxiao@wchscu.cn
mailto:yingxiao@wchscu.cn
https://doi.org/10.3389/fbioe.2024.1468833
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2024.1468833


1 Introduction

Ischemic heart disease (IHD), caused by stenosis or blockage of
the coronary arteries resulting in a lack of blood supply to the
myocardium, remains one of the leading causes of death worldwide
(Bradley and Berry, 2022; Pastena et al., 2024). Followingmyocardial
ischemia, there is an extensive loss of cardiomyocytes, which are
then replaced by excessive collagen deposition. This leads to
impaired heart contraction and relaxation, eventually resulting in
heart failure (Stone et al., 2023). Current clinical treatments, such as
vasodilation, diuresis, and inotropic therapies, can temporarily
relieve ischemic symptoms but do not regenerate new
cardiomyocytes for functional recovery (Ahmadi et al., 2016;
Boden et al., 2023; Niccoli et al., 2021). Given the limited self-
renewal capacity of cardiomyocytes, cell-based strategies to
replenish lost cardiomyocytes or promote endogenous repair
offer a new option for patients (Hsiao et al., 2013; Madonna, 2022).

Mesenchymal stem cells (MSCs) are naturally derived
regenerative materials with the capacity for self-renewal and
multi-lineage differentiation, and they are widely distributed
across various tissues (Castilla-Casadiego et al., 2020; Chang
et al., 2021; Cherian et al., 2020). MSCs-based therapies have
shown promising potential in promoting myocardial recovery
from ischemic injury (Ward et al., 2018). However, the
mechanistic understanding of MSCs in myocardial regeneration
remains controversial (Najar et al., 2021). Although a growing body
of preclinical and clinical studies has observed improvements in
heart function, more cautious analyses have revealed that the
quantity of cardiomyocytes differentiated from MSCs is far below
the sufficiency needed to support significant myocardial recovery
from MSCs treatment (Ward et al., 2018; Eschenhagen et al., 2017).

One of the most significant challenges is the low efficiency of
MSCs homing to the infarcted heart, with cells often redistributing
to other organs, including the lung, liver, and spleen (Chan et al.,
2022; Penna et al., 2008). Additionally, a rapid loss of transplanted
MSCs occurs within the first 48 h after transplantation via
intravenous, intracoronary, or intramyocardial injection (Malik
et al., 2020; Chin et al., 2024). Although there are techniques to
enhance MSCs retention at the injured myocardium, such as cell
patches, these MSCs primarily exert their effects through paracrine
mechanisms, improving the microenvironment by promoting
angiogenesis, reducing fibrosis, and modulating inflammation
(Shi et al., 2021; Wu and Zhao, 2012; Yan et al., 2022; Zhang
et al., 2016a). These findings suggest a critical issue: the ischemia-
injured myocardium is unsuitable for MSCs homing, retention, and
differentiation into cardiomyocytes, thereby limiting their potential
for myogenesis.

The myocardial microenvironment is composed of various
physiological, chemical, and biological factors primarily generated
by non-cardiomyocyte cells, including immune cells, stromal cells,
and vascular cells (Tang et al., 2020). Following ischemic injury,
these cells undergo substantial changes, leading to a dynamic shift in
the microenvironment (Li et al., 2021). Immune cells such as
macrophages, neutrophils, and lymphocytes are rapidly activated
in response to ischemic insult, migrating to the injured myocardium
to eliminate debris from dead cells (Sun et al., 2021). The vasculature
is damaged due to the ischemia-induced loss of vascular cells,
including endothelial cells, pericytes, and smooth muscle cells

(Lupu et al., 2020). Angiogenesis is then initiated, relying on
viable endothelial cells from collateral vessels, contributing to the
reconstruction of vasculature and partially alleviating hypoxia (Xiao
et al., 2020). Stromal cells, mainly fibroblasts, are activated and
transformed into myofibroblasts, producing abundant collagen and
facilitating collagen crosslinking, leading to cardiac fibrosis (Li et al.,
2014). These changes significantly impact the biological activities
and functions of MSCs in myocardial regeneration (Khalil and
McCain, 2021).

In this review, we summarized the current understanding of
MSCs involved in myocardial regeneration and the relationship
between changes in the myocardial microenvironment and the
biological activities of MSCs during ischemic injury progression,
providing a novel insight into the critical role of rebuilding the
microenvironment in promoting the efficacy of MSCs in myocardial
regeneration.

2 MSCs applied in IHDs therapy

MSCs are multipotent stem cells characterized by self-renewal,
robust proliferative capacity, and multilineage differentiation potential.
MSCs predominantly express positive markers such as CD29, CD90,
CD105, and CD44, while showing negative expression of hematopoietic
and vascular markers like CD45, CD34, CD19, CD11b, and CD14
(Dominici et al., 2006). MSCs can differentiate into various mesoderm
lineages and cell types, including osteoblasts, adipocytes (Casado-Diaz
et al., 2016), skeletal muscle myocytes/myotubes (Park et al., 2016), and
cardiomyocytes (Makino et al., 1999) under growth factor-rich selective
media. MSCs can be derived from a wide range of sources, including
bone marrow, adipose tissue, umbilical cord, placenta, and dental pulp
(Prakash et al., 2023). Bone marrow-derived MSCs (BM-MSCs) were
the first identified and isolated from bone marrow (Friedenstein et al.,
1970; Friedenstein et al., 1966) and have emerged as one of the leading
candidates for clinical translational applications. Due to the invasive
nature of harvesting BM-MSCs and their poor cell viability, alternative
sources of MSCs have been explored. Among these, umbilical cord
mesenchymal stem cells (UC-MSCs) are considered one of the most
ideal sources for transplantation therapy due to their ease of collection,
wide availability, and low immunogenicity (Sriramulu et al., 2018).
Additionally, adipose-derived mesenchymal stem cells (AD-MSCs)
exhibit stronger immunomodulatory properties compared to other
MSCs and have also been extensively studied (Czerwiec et al., 2023).
While MSCs from different sources have varying characteristics in
terms of collection, proliferation, differentiation, and functional
regulation (Hoogduijn et al., 2014), their capacity for myocardial
regeneration is recognized for its encouraging potential in the
therapeutic effect of IHD. Since the early 2000s, when landmark
studies reported that bone marrow cells could potentially replace
damaged myocardium in the adult heart (Orlic et al., 2001), MSCs
have been studied for the treatment of IHD for over 20 years, yielding
promising preclinical results and mixed clinical outcomes.

2.1 Preclinical studies

Since Orlic et al. reported the potential of bone marrow cells to
replace damaged adult myocardium in 2001, a finding that was later
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challenged, MSCs-based therapies for myocardial regeneration have
been extensively studied. These studies have utilized differentiated
or undifferentiated MSCs from allogeneic, autologous, and even
xenogeneic sources, employing various delivery approaches (Huang
et al., 2010; Jansen Of Lorkeers et al., 2015; Luger et al., 2017; Tomita
et al., 1999). Meta-analyses have reported an overall 12% increase in
left ventricular ejection fraction (LVEF) in rodent studies following
MSCs administration compared to untreated groups. Additionally, a
7% increase in LVEF was observed in large species such as pigs, with
only 7 out of 16 studies showing favorable results for MSCs.
Correspondingly, an 8% reduction in infarct size was observed in
half of the preclinical studies in rodents, and a 6.4% reduction in pig
hearts was noted in the seven studies that reported favorable results
for MSCs administration (Kanelidis et al., 2017).

2.2 Clinical trials

Most clinical trials of cell therapy for IHD have concentrated on
BM-, with AD- and UC-MSCs also being studied in recent years
(Ward et al., 2018). These trials have demonstrated favorable safety
and tolerability. The treatment of acute myocardial infarction (AMI)
typically involves the intracoronary injection of MSCs following
percutaneous coronary intervention (PCI), with intravenous
injection being used in some cases. A meta-analysis of 13 clinical
trials in AMI reported a highly significant 3.78% increase in LVEF
for the MSCs-treated group compared to the control group (Attar
et al., 2021). MSCs have also been investigated for the treatment of
chronic ischemia and ischemic cardiomyopathy. The primary route
of treatment for chronic myocardial infarction (MI) is
intramyocardial, rather than intracoronary or intravenous (Wang
et al., 2015a). A meta-analysis demonstrated the efficacy of MSCs,
highlighting the overall safety and efficacy of autologous BM-MSCs
in chronic MI treatment (Kanelidis et al., 2017). A randomized
controlled trial by Zhang et al. assessed the efficacy of MSCs
transplantation in patients with chronic MI, reporting significant
improvements in LVEF and reduced infarct size (Wang et al.,
2015b). These findings supported the long-term outcomes of
MSCs therapy, observing improved survival rates, reduced
rehospitalization, and enhanced quality of life among treated
patients (Afzal et al., 2015). Nowadays, there are 2 related MSC
products approved for the treatment of peripheral vascular disease.
One is Stempeucel for atherosclerotic and non-atherosclerotic

critical limb ischemia, developed by Stempeutics; and the other is
Vescell (ACP-01), under development by Hemostemix, for the
treatment of IHD. Several clinical trials are currently underway
for the treatment of IHD using UC-MSCs (Table 1).

2.3 Mechanisms of MSCs in promoting
myocardial regeneration

2.3.1 Differentiation, paracrine effects and
immunomodulation of MSCs

Numerous studies have demonstrated the ability of MSCs to
differentiate into cardiomyocytes, endothelial cells, and smooth
muscle cells. Notably, evidence of MSCs differentiating into
functional cardiomyocytes, including the acquisition of
contractile properties and the expression of cardiomyocyte
marker genes in vitro, has been observed after treatment with 5-
azacytidine, a hypomethylating agent (Tomita et al., 1999). Due to
safety concerns, further studies have shifted from the use of 5-
azacytidine to alternative agents, such as insulin and
dexamethasone, to induce MSCs differentiation into
cardiomyocytes (Shim et al., 2004). Transplantation of these
MSCs-derived cardiomyocytes into ischemic-injured hearts has
been shown to contribute to myocardial functional recovery (Iso
et al., 2007). Of note, undesirable integration of these transplanted
cells with the resident cardiomyocytes, and the occurrence of
arrhythmia post-transplantation primarily hinders the application
of MSCs in the treatment of IHD (Yagyu et al., 2019). Moreover,
several studies have reported when MSCs were directly transplanted
into themyocardium, they rarely differentiated into cardiomyocytes,
possibly ascribed to lacking of appropriate signals and
microenvironment (Eschenhagen et al., 2017; Leiker et al., 2008).
Results from animal and patients have demonstrated that MSCs can
improve cardiac function, although this improvement is likely not
due solely to the replacement of injured contractile cardiomyocytes.
With the advancement of research technology, more evidence shows
that MSCs promote the improvement of cardiac function not
through the differentiation into cardiomyocytes but through
paracrine effects and immunomodulation (Gallina et al., 2015).

Paracrine effects are currently widely studied for understanding
MSCs-induced myocardial regeneration (Li et al., 2023). MSCs
primarily secrete various growth factors and cytokines, such as
vascular endothelial growth factor (VEGF), fibroblast growth

TABLE 1 Summary of the ongoing clinical trials for IHD.

Trial ID Trial title Cell source Condition Phase Routine

NCT06147986 Evaluate the Efficacy and Safety of Allogeneic Umbilical
CordMesenchymal Stem Cells as an Add-On Treatment for
Acute ST-elevationMyocardial Infarction (STEMI) Patients

Allogeneic umbilical cord
mesenchymal stem cells

ST-elevation Myocardial
Infarction

III Intracoronary and
Intravenous

NCT05935423 Umbilical Cord Mesenchymal Stem Cell Improve Cardiac
Function on ST-elevation Myocardial Infarction (STEMI)
Patients

Umbilical Cord
Mesenchymal Stem Cell

ST Elevation Myocardial
Infarction

III Intracoronary

NCT05043610 MSCs for Prevention of MI-induced HF Umbilical Cord
Mesenchymal Stem Cell

Myocardial Infarction,
Acute

III Intracoronary

NCT04776239 Allogeneic Mesenchymal Human Stem Cell Infusion
Therapy for Endothelial DySfunctiOn in Diabetic Subjects
With Symptomatic Ischemic Heart Disease. (ACESO-IHD)

Umbilical Cord
Mesenchymal Stem Cell

Ischemic Heart Disease;
Diabetes Mellitus

I/II Intravenous
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factor (FGF), and insulin-like growth factor-1 (IGF-1) (Gallina et al.,
2015). These factors promote angiogenesis in ischemic regions,
improving blood supply to the myocardial tissue and providing
necessary nutrients and oxygen for cardiomyocyte regeneration (Yin
et al., 2023). Additionally, MSCs produce anti-fibrotic factors that
reduce scar tissue formation by inhibiting fibroblast-to-
myofibroblast transition and reducing collagen fiber deposition
(Takahashi et al., 2006). Moreover, MSCs secrete
immunomodulatory factors that inhibit T-cell activation, thereby
reducing the production of pro-inflammatory cytokines that might
further damage cardiomyocytes (Gomez-Ferrer et al., 2021).

MSCs can activate intrinsic immune responses. Direct injection of
adult stem cells can trigger an acute inflammatory response
characterized by CCR2+ and CX3CR1+ macrophage accumulation,
which alters fibroblast activity, reduces fibrosis, and enhances the
mechanical properties of the injured heart (Vagnozzi et al., 2020).
Furthermore, MSCs interact directly with immune cells, such as
macrophages, T-cells, and natural killer (NK) cells. They can
polarize macrophages towards an M2 phenotype, associated with
anti-inflammatory and pro-repair activities. This shift promotes the
clearance of cellular debris and supports angiogenesis while inhibiting
the release of harmful pro-inflammatory cytokines (Ben-Mordechai
et al., 2013). Similarly, MSCs can suppress T-cell proliferation and
activation, reducing the risk of allograft rejection and alloreactivity in
transplantation settings (Martinez et al., 2017).

2.3.2 The processes of MSCs participation in
myocardial regeneration

The underlying processes of MSCs in myocardial regeneration
involve their homing to the injured myocardium and retention there
for subsequent functions. These processes require precise regulation
of multiple signals and structural support.

2.3.2.1 Homing
MSCs homing refers to the biological activities that enableMSCs

to move towards the injured site, which is the first and foremost step
for their participation in myocardial regeneration (Szydlak, 2019).
The direction of MSCs migration is determined by several cytokines,
chemokines, and pro-inflammatory factors. These signals, produced
in response to ischemic injury, act as navigators for MSCs homing
and are termed tissue injury signals. Stromal cell-derived factor-1
(SDF-1), also known as CXCL12, is one of the most important tissue
injury signals for MSCs homing (Zhang et al., 2016a). After ischemic
injury, SDF-1 proteins are rapidly upregulated in the injured
myocardium and released into the circulation (Rota, 2010). SDF-
1 proteins bind to the receptor CXCR4 on MSCs, activating
intracellular signal transduction via the mitogen-activated protein
kinase (MAPK) pathways to phosphorylate cytoskeletal proteins like
vimentin for cell migration (Chen et al., 2020; Tang et al., 2011).
Consequently, MSCs are mobilized from their resident niche into
the circulation and then move towards the injured myocardium
(Tang et al., 2011). Other tissue injury signals, including pro-
inflammatory factors (interleukins [ILs] and tumor-necrosis
factor-α [TNF-α]) and growth factors (VEGF, PDGF and TGF-
β), also play a role in MSCs homing (Szydlak, 2019). The process of
MSCs homing generally occurs in the early phase after ischemic
injury, accompanied by the upregulation of tissue injury signals at
the injured site (Kang and Zheng, 2013).

The conduit for tissue injury signal transduction is primarily the
vasculature-dependent circulation system. This conduit is essential
for the movement of circulating stem cells and their arrival at the
injury site (Kang and Zheng, 2013). When MSCs reach the injured
site, regional chemokines and cytokines in high concentrations bind
to receptors on the MSCs, mediating their rolling along endothelial
cells. Thereafter, adhesive molecules like vascular cell adhesion
molecule-1 (VCAM-1) on the surface of endothelial cells bind to
integrins on the membranes of MSCs, inducing MSCs adhesion and
subsequent transmigration through the endothelial layer, thus
completing MSCs homing (Segers et al., 2006; Nitzsche et al., 2017).

Direct injection of MSCs into the injured myocardium bypasses
the homing process, and forces MSCs to remain there. This
technique is widely used in MSC-based therapy for IHDs but is
an invasive procedure that brings additional risks to patients
(Kanelidis et al., 2017). Moreover, intramyocardial injection of
MSCs can create isolated cell islands with poor connections to
native cardiomyocytes, potentially causing arrhythmias in the
future (Yagyu et al., 2019).

2.3.2.2 Retention
After homing to the injured myocardium, MSCs must survive and

be colonized there for long-term retention. Essential oxygen and
nutrients are necessary for the survival of MSCs, and both are
mainly provided by vasculature. Some research has demonstrated
that MSCs can tolerate lower oxygen levels (5%) via the activation
of the HIF-1 signaling pathway, with their paracrine function to
promote angiogenesis being enhanced under hypoxic conditions
compared to normal conditions with 21% oxygen (Sun et al.,
2020a). However, in the context of MSCs transplantation in IHDs,
deprivation of oxygen and nutrients by damaged vasculature usually
creates a deteriorated microenvironment, leading to massive MSCs
apoptosis post-transplantation (Chen et al., 2018). Poor retention of
transplanted MSCs is a significant drawback that limits the clinical
application of MSCs-based therapy for IHDs (Kanki et al., 2011).

The colonization of MSCs after homing to the injured
myocardium is also regulated by mechanical stress provided by
the extracellular matrix (ECM) (Raimondi et al., 2013). MSCs are
sensitive to changes in mechanical stress via ion channels on the cell
surface, including Piezo1, which activates the intracellular Hippo
pathway effector YAP/TAZ to regulate cell morphology,
proliferation, and differentiation. A previous study revealed that a
3D soft and elastic hydrogel could effectively enhance cell growth,
proliferation, and osteogenic differentiation of MSCs (Di et al.,
2023). Additionally, the differentiation of embryonic stem cells
(ESCs) into cardiomyocytes favored 3D cultures with less
mechanical stress than 2D cultures (Ou et al., 2011). However,
an increase in mechanical stress due to excessive collagen deposition
after ischemic injury may hinder the colonization, proliferation, and
differentiation of transplanted MSCs (Li et al., 2014).

2.3.2.3 Promotion of myocardial regeneration
After MSCs homing and retention in the injured myocardium,

they can perform functions such as secretion and differentiation for
myocardial regeneration.

The role of MSCs in myocardial regeneration is debated,
particularly whether they can differentiate into cardiomyocytes to
replace lost cardiomyocytes after ischemic injury, as we also noted
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above. One crucial requirement for MSCs differentiation is the
induction of specific signals (Eschenhagen et al., 2017). During
heart development, several factors, including BMPs, WNTs, and
FGFs, and the sequential activation of transcription factors like
MIXL1, Nkx2.5, and GATA4, are involved in the differentiation
from MSCs into cardiomyocytes (Buijtendijk et al., 2020). The first
report in 1999 indicated the induction of adult MSCs differentiation
into cardiomyocyte-like cells with sarcomere for spontaneous
contraction by adding 5-azacytidine into the cultures (Makino
et al., 1999; Tomita et al., 1999). Further studies have developed
various methods by combining different chemicals to improve the
efficiency of MSCs differentiation into cardiomyocytes, and these
induced cardiomyocytes have been applied for cell transplantation
in IHDs for myocardial regeneration (Shim et al., 2004). However,
little studies have observed that MSCs differentiate into
cardiomyocytes in vivo (Leiker et al., 2008), likely due to the lack
of appropriate signals in the microenvironment.

3 Interplay between MSCs and the
altered microenvironment after
ischemic injury

The myocardial microenvironment is a complex system
composed of various non-cardiomyocytes, including immune
cells, vascular cells, and fibroblasts, as well as the non-cellular
extracellular matrix. It plays a critical role in modulating the
behavior of MSCs and influencing their ability to effectively
participate in tissue repair and regeneration (Franchi et al., 2020).

3.1 Pathological changes after
myocardial ischemia

The dramatic pathological changes following myocardial ischemia
include the massive loss of cardiomyocytes, destruction of microvessels,
and recruitment and activation of immune cells (Figure 1). Current

knowledge indicates that the regenerative capacity of cardiomyocytes is
extremely weak, leading to fibrotic repair to maintain the heart’s
integrity. Various fibrotic mediators and cytokines released by
macrophages, lymphocytes, and other cells create a fibrotic
microenvironment in the ischemic area, stimulating the
transformation of fibroblasts into myofibroblasts (Xiao et al., 2023).
These myofibroblasts produce large amounts of extracellular matrix
proteins, leading to collagen deposition and cardiac fibrosis, which
induces adverse remodeling that can gradually progress to heart failure
(Prabhu and Frangogiannis, 2016).

3.2 Change of vasculature and the
deteriorated microenvironment

Appropriate vasculature is crucial for the survival and normal
function of cardiac cells, as it provides essential oxygen, nutrients,
growth factors, and cytokines (Brutsaert, 2003). Ischemic injury,
arising from the obstruction of blood vessels, can lead to further
structural damage in these vessels (Xiao et al., 2021a). Endothelial
cells, in particular, are highly susceptible to ischemic insults and may
experience impaired integrity and increased permeability. This
disruption of the endothelial barrier facilitates the leakage of fluid
and macromolecules into the surrounding tissue, exacerbating the
ischemic injury (Chu et al., 2023). Additionally, ischemic insults can
damage the basement membrane, resulting in the loss of its
structural support and regulatory functions. Furthermore, smooth
muscle cells in the vessel wall may undergo apoptosis or dysfunction,
compromising the structural integrity of blood vessels and
contributing to the progression of vascular remodeling and
dysfunction (Heitzer et al., 2001). In response to ischemia-
induced hypoxia, angiogenesis is initiated, sprouting from
existing endothelial cells and expanding towards the injured site
to recover blood supply (Nofi et al., 2018). However, angiogenesis is
often not sustained, and vascular remodeling further impairs the
ability of blood vessels to withstand hemodynamic stress (Xiao
et al., 2021a).

FIGURE 1
Interplay between MSCs and the altered microenvironment after ischemic injury. The graphic symbols were listed in the right panel.
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The ischemic injury leading to vascular changes directly affect
the survival andmigration ofMSCs. As blood vessels are the primary
route for MSCs to obtain oxygen, nutrients, and growth factors,
vascular obstruction or damage disrupts the microenvironment,
compromising their survival and normal functions (Kang and
Zheng, 2013). On the other hand, endothelial cells losing their
integrity and increasing vascular permeability might facilitate the
migration of MSCs from blood vessels to the injured site (Chu et al.,
2023). Additionally, in response to ischemia-induced hypoxia,
MSCs might activate their paracrine effects on
immunomodulation and suppress inflammatory responses (Xiao
et al., 2021b). Some studies showed that hypoxia might shift the
differentiation preference of MSCs towards vascular repair-related
cell types, including endothelial cells and smooth muscle cells (Tian
et al., 2022).

Following ischemic injury, the heart undergoes a series of
intricate immune responses involving the activation and
infiltration of various immune cells. These include both innate
immune cells, such as neutrophils and macrophages, and
adaptive immune cells, including T and B cells (Nahrendorf
et al., 2007; Frangogiannis, 2014). These immune cells
accumulate at the site of cardiac injury and release a multitude of
inflammatory mediators and cytokines, such as interleukins (IL-1,
IL-6, IL-17), tumor necrosis factor-alpha (TNF-α), chemokines
(CXCL1, CCL2), and reactive oxygen species (ROS), which
further promote the inflammatory response and tissue repair
(Swirski and Nahrendorf, 2013). The immune response typically
peaks within 4–7 days following ischemic injury and subsequently
reduces to a stable state over time (Xiao et al., 2021a).

MSCs respond to cytokines and chemokines released from the
injured myocardium, rapidly mobilizing and migrating towards the site
of injury under the guidance of these factors (Kang and Zheng, 2013).
Once in the injured myocardium, MSCs interact with various immune
cells. Macrophages play a pivotal role in the inflammatory response
following ischemic heart injury, with the ability to polarize into M1
(pro-inflammatory) or M2 (anti-inflammatory) phenotypes, each
exerting distinct effects on MSCs (Ben-Mordechai et al., 2013).
M1 macrophages release pro-inflammatory cytokines that can
compromise MSCs survival and function, while M2 macrophages
foster a more conducive environment for MSCs-mediated tissue
repair. Reciprocally, MSCs can influence macrophage polarization,
favoring the M2 phenotype, which aids in reducing inflammation
and promoting healing (Neupane et al., 2023). Additionally, MSCs
can mitigate the inflammatory response by suppressing T cell
proliferation and activation (Behm et al., 2024), as well as inhibiting
NK cell activation and cytotoxicity, thereby protecting heart tissue from
immune-mediated damage. The interplay between MSCs and immune
cells is dynamic, with MSCs promoting a more balanced immune
response that supports tissue repair (Najar et al., 2010).

On the other hand, the ECM forms the native cellular support
network and has a strong interplay with its residing cells. Following
myocardial ischemic injury, the ECM undergoes significant
remodeling, particularly in its composition (Chu et al., 2021).
Activated cardiac fibroblasts proliferate and increase the synthesis
of collagenous proteins, primarily types I and III collagen, which are
then deposited in the ECM. This excessive deposition of collagenous
proteins leads to fibrosis, altering the structural integrity of the
myocardium (Xiao et al., 2023). In addition to collagen, non-

collagenous components of the ECM, such as
glycosaminoglycans, proteoglycans, elastin, and laminin, may also
undergo changes in their content and distribution, further
contributing to ECM remodeling (Bonnans et al., 2014).

This remodeling process creates a new microenvironment that
supports MSCs migration and affects their biological behavior. Firstly,
the remodeled ECM provides a structural framework and essential cues
for MSCs migration. Specific signals and adhesion molecules, including
growth factors, cytokines, and chemokines embedded within the
remodeled ECM, could guide MSCs to the injured area, acting as
chemoattractants for efficient homing and tissue repair processes (Zhu
et al., 2006). Additionally, the mechanical stress altered by the
remodeled ECM might change MSCs biological functions, including
their paracrine effects to attenuate myofibroblast transition-induced
fibrosis (Galie and Stegemann, 2014) and promote angiogenesis (Piao
et al., 2005). Furthermore,MSCs could acquire contraction ability when
exposed to mechanical stretch, contributing to functional recovery after
ischemic injury (Choi et al., 2017; Girao-Silva et al., 2014; Izadpanah
et al., 2022). However, excessive collagen deposition leads to fibrotic scar
formation, resulting in a deteriorated microenvironment for MSCs
characterized by stiff ECM, intensive mechanical stress, and reduced
blood vessels (Li et al., 2021). Therefore, this situation should be avoided
when utilizing MSCs treatment for IHDs.

4 Rebuilding of myocardial
microenvironment forMSCs promotion
of myocardial regeneration

As discussed earlier, the efficacy of MSCs-based therapies largely
depends on the quality of the recipient myocardial
microenvironment. Enhancing the myocardial microenvironment
is pivotal for maximizing the regenerative capacity of MSCs. By
addressing the underlying deficiencies in the myocardial
microenvironment and creating a more favorable setting for
MSCs engraftment, the regenerative potential of MSCs can be
fully realized, opening new therapeutic avenues for myocardial
regeneration.

The essential role of vasculature in facilitating MSCs homing to
injured tissue is well-documented (Shi et al., 2021). In IHDs, the
destruction of blood vessels disrupts the signaling between the
injured myocardium and MSCs and impedes MSCs migration to
the injury site, ultimately hindering tissue regeneration. Numerous
studies have demonstrated that promoting angiogenesis beforehand
benefits the survival of transplanted MSCs (Shi et al., 2021; Chin
et al., 2021). Recovering vasculature in the injured myocardium
enhances the survival prospects of grafted MSCs, making
angiogenesis a promising therapeutic approach (Figure 2).

4.1 Regulation of angiogenesis in the
ischemic myocardium

The HIF-1 signaling pathway is a central regulator of
angiogenesis, orchestrating the expression of multiple pro-
angiogenic factors and metabolic adaptations essential for vessel
formation (Semenza, 2014). HIF-1 is a heterodimeric transcription
factor with two subunits: HIF-1α and HIF-1β (ARNT). HIF-1α, the
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oxygen-sensitive subunit, is tightly regulated by cellular oxygen
levels. Under hypoxic conditions, HIF-1α escapes hydroxylation
and proteasomal degradation, translocates to the nucleus, and
dimerizes with HIF-1β to form an active transcription complex
(Wang et al., 1995). This complex binds to hypoxia-responsive
elements (HREs) in target gene promoters, inducing their
expression. One crucial target of HIF-1 in angiogenesis is VEGF,
which promotes endothelial cell proliferation, migration, and tube
formation (Liu et al., 2018; Cheng et al., 2016). HIF-1 directly
upregulates VEGF expression, initiating and enhancing the
angiogenic response and revascularization to improve tissue
perfusion (Liu et al., 2018; Li et al., 2012).

However, the angiogenic response following myocardial
ischemic injury is often impaired (Zhang et al., 2016b). While
angiogenesis is rapidly activated in response to ischemic injury,
peaking at day 4 and declining after 1 week, HIF-1α consistently
accumulates in the ischemic myocardium (Xiao et al., 2020; Xiao

et al., 2021a). The primary issue may be impaired activation of HIF-1
regulation of angiogenic factors, leading to an imbalance between
angiogenic factors and their inhibitors. This imbalance hinders new
blood vessel formation and limits tissue revascularization, ultimately
affecting MSCs-mediated tissue repair. Additionally, the
inflammatory response following myocardial ischemia releases
pro-inflammatory cytokines that inhibit angiogenesis and
promote fibrosis (Gomez-Ferrer et al., 2021).

4.2 Rebuilding of the microenvironment and
enhancement of MSCs efficacy

Several mechanisms underlie the beneficial effects of
angiogenesis on the ischemic myocardial microenvironment and
MSCs function (Shi et al., 2021). Firstly, new blood vessel formation
increases oxygen and nutrient delivery to the injured tissue and

FIGURE 2
The approaches for angiogenesis and its role in rebuilding the microenvironment and in improving MSCs efficacy.
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removes waste products, creating a more conducive environment for
MSCs survival and proliferation (Sun et al., 2020b). Secondly,
angiogenesis stimulates the release of growth factors and
cytokines beneficial for MSCs function. For instance, VEGF and
FGF, potent angiogenic factors, also promote MSCs proliferation,
migration, and differentiation (King et al., 2021). The restoration of
functional vasculature in the ischemic myocardium provides a route
for MSCs to migrate to the injury site and plays a key role in ECM
reconstruction and inflammatory response modulation (Gomez-
Ferrer et al., 2021; Sun et al., 2020b). Vasculature-derived ECM
supports MSCs adhesion and migration, essential for efficient
recruitment to damaged tissue (King et al., 2021). Angiogenesis
also modulates the inflammatory response by promoting anti-
inflammatory cell infiltration and reducing pro-inflammatory
cytokine levels, creating a less hostile microenvironment for
MSCs, allowing for better cell survival and function (Chin
et al., 2021).

Promoting angiogenesis in ischemic heart disease can be
achieved through activating angiogenic factors (Lupu et al.,
2020). Direct intravenous injection, intramyocardial injection, or
gene therapy with VEGF and FGF can significantly increase capillary
density (Henning, 2016). Overexpression of HIF-1α via adenoviral
or lentiviral vectors stimulates angiogenic factor expression (Huang
et al., 2014). A recent study showed that while HIF-1α proteins
consistently accumulate in the infarct zone, angiogenic factor
expression is impaired, possibly due to dysfunction in selective
HIF-1 signaling regulation. Supplementing the trace element
copper can retune this dysregulation and reactivate HIF-1 target
angiogenic factor expression without excessively increasing HIF-1α
accumulation (Xiao et al., 2023; Zhang et al., 2016b).

Other techniques, including physical stimuli like low-intensity
pulsed ultrasound (LIPUS) and electrical stimulation, have also been
explored as non-invasive means to enhance VEGF expression and
promote capillary formation (Amaral et al., 2001; Li et al., 2022).
Electrical stimulation stimulates the release of angiogenic growth
factors from endogenous cells and promotes neovascularization
(Zhao et al., 2021). Both techniques have shown positive effects
on angiogenesis and cardiac function in preclinical studies.

Another approach involves cell-based therapies, particularly using
endothelial progenitor cells (EPCs). EPCs exhibit inherent angiogenic
properties and secrete a diverse range of growth factors promoting blood
vessel formation. When injected into the ischemic myocardium, EPCs
can differentiate into vascular endothelial cells, directly participating in
new blood vessel formation (Ghem et al., 2017; Zhang et al., 2008).
Combining MSCs and EPCs for ischemic heart disease treatment
represents an innovative and promising therapeutic approach. MSCs,
known for their immunomodulatory effects, reduce inflammation and
promote tissue repair, while EPCs specifically target endothelial cells
regeneration. This combination harnesses the regenerative and
angiogenic potential of these stem cells to promote cardiac tissue
repair and restore blood flow to ischemic regions of the heart.

5 Conclusion and perspective

In conclusion, MSCs have emerged as a promising therapeutic
option for IHDs due to their paracrine properties, which promote

angiogenesis, modulate inflammatory responses, and inhibit the
fibrotic process. However, the efficacy of MSCs-based therapies is
significantly disturbed by the myocardial microenvironment, which
undergoes dramatic changes following ischemic injury. Rebuilding
the myocardial microenvironment, particularly by promoting
angiogenesis, is a pivotal strategy to enhance the regenerative
capacity of MSCs. Angiogenesis improves tissue perfusion and
creates a more conducive environment for MSCs survival and
function. Strategies to promote angiogenesis, such as activating
the HIF-1 signaling pathway, supplementing copper, and
combining EPCs and MSCs-based therapies, have shown
promising results in preclinical studies. Future research should
focus on elucidating the mechanisms underlying MSCs
promotion of myocardial regeneration, developing novel
techniques to rejuvenate the ischemic microenvironment, and
conducting rigorous clinical trials to validate the efficacy and
safety of these therapeutic approaches. With continued
advancements in stem cell biology and regenerative medicine,
MSCs-based therapies hold great potential for treating IHD,
ultimately improving patient outcomes and quality of life.
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