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Nutrient recovery is crucial for sustainability as it helps to recycle valuable
resources, reduce environmental pollution, and promote the efficient use of
natural materials in various agricultural and industrial processes. The present
study investigated the impact of using brine and struvite as sustainable nutrient
sources on the growth and c-phycocyanin (C-PC) production by the
cyanobacterium Arthrospira platensis. Three modified growth media were
compared to the standard SAG-spirul medium under yellow-white light [YLT],
and blue-white light [BLT]. In the modified medium BSI, a struvite solution was
utilized to replace dipotassiumphosphate, while diluted brinewas used to replace
NaCl and de-ionized H2O. For BSII, struvite and brine were used as in BSI, with
elimination of the micronutrient from the solution. In BSIII, no other nutrient
sources than bicarbonate-buffer were used in addition to struvite and brine. For
each medium, A. platensis was cultivated and incubated under YLT or BLT till the
stationary phase. The results showed that the combinations of brine and struvite
did not have any significant negative impact on the growth rates in BSIII. However,
adding struvite as a phosphorus source boosted C-PC production just as
effectively as YLT, with boosting biomass yield, unlike when only BLT was
used. In conclusion, the brine/struvite-based media resulted in high biomass
productivity with higher C-PC yields, making it an ideal growth medium for
commercial sustainable C-PC production.
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1 Introduction

The microalgae industry is continuously seeking sustainable, non-mineral-based
nutritional sources to lower production costs while enhancing overall sustainability.
Multiple waste streams have been evaluated and are used currently worldwide in large-
scale microalgae farms. Different waste streams showed high potential for microalgae
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cultivation, which include food waste (Kumar et al., 2022),
municipal wastewater (Han et al., 2024), anaerobic digestate
(Bauer et al., 2021), and waste glycerol (Xu et al., 2019). In
addition, microalgae showed high growth capability on high
salinity water, including brine, i.e., the discharge of desalination
plants (Al Bazedi et al., 2023). In 2017, there were about
19,372 desalination plants globally, a collective capability of
producing around 99.8 million m3 of freshwater per day
(WaterWorld, 2017). Per each liter of produced fresh water, there
are about 1.5 L of highly concentrated brine produced (Jones et al.,
2019). However, a significant environmental concern arises from the
brine generated as a byproduct of desalination processes. Brine
disposal methods commonly include sewer discharge, evaporation
ponds, surface water discharge, deep-well injection, and land
application (Mickley, 2018). Several studies have evaluated the
adverse environmental effects of brine disposal on marine
ecosystems, groundwater, and soil quality. Potential
environmental damage may include pH fluctuations,
eutrophication, and increased levels of heavy metals in marine
environments and plant/animal mortalities (Panagopoulos
et al., 2019).

In order to meet the carbon footprint derivatives of the
European Union, many European countries aim to produce
green energy from hydrogen. Sustainability will largely depend
on the use of seawater, which is available in unlimited quantities
and does not compete with water supply for human consumption.
However, using seawater for hydrogen production requires prior
desalination. This amount will comprise a problem since there is no
concept for disposal of the produced brine. This may become the
bottleneck for the entire energy transformation plans in countries
counting on green hydrogen energy. Thus, finding new alternatives
to remove and valorize brine eco-friendly and cost-effectively are of
great importance. A recent approach is to convert brine into valuable
biomass through microalgae cultivation in brine-based growth
media. Several species such as Chlorella vulgaris, Scendesmus
quadricauda, A. platensis, Nannochloropsis oculata, and
Dunaliella tertiolecta have successfully been grown on brine-
based media (Al Bazedi et al., 2023). Moreover, some microalgae,
when cultivated under salinity stress, enhance the production of
valuable compounds such as pigments, lipids, carbohydrates, and
other bioproducts. This opens possibilities not just to reduce the
volume of rejected brine but also to reduce production costs
associated with prices for micronutrient media (Osman et al., 2023).

The microalgae market in European countries can not currently
compete with the low-cost systems used e.g., in Asia, which limits
market applications. Cyanobacteria like A. platensis have a high
tolerance to elevated salinity. For instance, some A. platensis strains
showed slightly reduced growth at 600 mM NaCl (3.5% salinity,
similar to seawater) (Liu et al., 2016). Experiments showed that
content of 5%–15% seawater in the culture medium only causes a
decrease of biomass yield by 15%–20% as compared with Zarrouk’s
culture medium (Tambiev et al., 2011). A. platensis has a unique
quality to detoxify (neutralize) or to chelate toxic minerals and heavy
metals (Okamura and Aoyama, 1994), and is also capable of
removing minerals from inland saline waters (Sandeep et al., 2013).

Another cost driver in microalgae production is the source of
macronutrients, i.e., nitrogen, phosphorus, and potassium. In order
to reduce such costs, sustainable resources have successfully been

tested in recent years. It was shown that replacing P with struvite-P
enhances c-phycocyanin (C-PC) production in A. platensis, without
compromising growth and biomass yield (Beyer et al., 2023).
Struvite is the crystalized form of the mineral magnesium-
ammonium-phosphate (MAP) with the formula NH4MgPO4

6H2O. Several waste streams can be exploited for the production
of sustainable struvite, e.g., urban wastewater, industrial wastewater,
manure, or livestock slurries (Huygens et al., 2019). As struvite is
already included as a commercial fertilizer in the Registration,
Evaluation, Authorisation and Restriction of Chemicals (REACH)
EC No. 1907/2006 and in the 2023 amendment to the EU eco-
regulation/inclusion, the use of it in culture media is of special
interest for the creation of new formulated sustainable media
(European Commission, 2023).

Growth media combining both brine and struvite as micro- and
macronutrient replacements have, to the best of authors’ knowledge,
never been reported. If successful, such a cost-effective fully
sustainable resource combination would open the opportunity for
microalgae producers to enter new markets. Therefore, this study
aims to test whether media combined of brine and struvite
(recovered from Agri industries) is a suitable application for A.
platensis production, with a special focus on C-PC production. It
was cultivated on several media combinations, i.e., with brine (as a
supplement to NaCl, micronutrients, and freshwater), and struvite
(recovered from cow urine to replace mainly mineral P). The
impacts on microalgal growth and C-PC yield were compared to
the control groups using the standard SAG growth medium.

2 Materials and methods

2.1 Microalgal strain and inoculum
preparation

A. platensis (UTEX 2340) used in this experiment was obtained
from the culture collection of algae at the University of Texas,
United States. The strain was preserved in spirul SAGmedium (Aiba
and Ogawa, 1977) under photoautotrophic conditions. For
upscaling from the stock cultures, one 2 L glass bottle was
prepared as inoculum. Further, 1,500 mL of SAG medium were
inoculated with about 400 mL of stock culture. Cultures were
illuminated at 105 ± 5 μmol m−2 s−1 with 12:12 light/dark cycle,
provided by a daylight fluorescent tube.

2.2 Brine source and struvite preparation

Brine was collected from a desalination plant located on the
Island of Helgoland, Germany (brine salinity was at 63.75 ppt). A
comprehensive elemental characterization of the brine, including
micronutrient analysis, was conducted using Inductively Coupled
Plasma (ICP) spectroscopy and is summarized in Table 1. This
analysis includes a comparison with brine water from other reverse
osmosis desalination plants to provide context for our specific brine
composition. Previous literature tested that the preferential salinity
for A. platensis growth was 200 mmol (11.68 ppt) (Liu et al., 2016).
To match this value, a new brine solution was prepared by adding
de-ionized water to the brine by a factor of 4.45:1, respectively.
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Based on previous successful applications of the pre-treatment
(Beyer et al., 2023), microwave treatment was applied on the struvite
for the BS I/II/III culture media in order to disintegrate the struvite
and liberate nutrients. To prepare the struvite solution, 0.35 g of
struvite was dissolved in 17.5 mL of 0.8 M NaOH solution
(containing 0.56 g NaOH). This solution was heated in a
microwave at 460 W for 8 min and then filtered. The entire
17.5 mL of this filtered solution was added to 1 L of the
culture medium.

2.3 Culture media

The culture media were prepared as shown in Table 1, using
SAG-spirul recipe as a control. For all tested media, bicarbonate
buffer was used to stabilize the pH at 9.5. In the modified media
[BS I], struvite solution was utilized as a replacement for
dipotassium phosphate in solution I, while diluted brine was
used as a replacement for NaCl and de-ionized H2O in solution
II. The same was applied for BS II, but additionally, the

micronutrients were omitted from the solution, to see if the
micronutrients present in brine are sufficient. In BS III,
bicarbonate buffer, struvite, and brine were added, while all
other nutrients were omitted (Table 2).

2.4 Experimental setup

Cultivation of A. platensis in different media was carried out
in 1 L Erlenmeyer flasks and incubated at 29°C ± 2°C. They were
incubated under a yellow-white LED-light source (LED
Aquaristik, Hövelhof, Germany) for the first experimental trial.
For the second experiment, the flasks were incubated under a
blue-white LED light source. The Yellow-WL treatment consisted
of a combination of yellow LEDs (peak emission at 590 nm) and
white light LEDs. The Blue-WL treatment used a combination of
blue LEDs (peak emission at 450 nm) with the white LED. For
both light treatments, the average light intensity was set to 105 ±
5 μmol photons m−2 s−1 at light: dark cycle of 14:10 h. For further
analysis, 10 mL of each culture were taken under sterile

TABLE 1 Elemental analysis of the desalination brine compared to other brine sources.

Elements Concentration
(mg L−1)

Desalination plant in Oman
(mg L−1)

Desalination plant in the canary islands
(mg L−1)

Phosphorus (P) <0.250 - <0.10–0.44

Potassium (K) 583 43.1–668 588–916

Calcium (Ca) 465 417–1,020 703–1,181

Magnesium (Mg) 1,570 260–1980 2,105–3,036

Sodium (Na) 13,600 1,670–15300 17,761–21,070

Iron (Fe) 0.0300 <0.05 <10

Manganese (Mn) 0.00300 <0.05–0.07 <2

Boron (B) 4.89 - 6.3–8.1

Silicon (Si) 0.122 - <2.4–48.2

Aluminium (Al) <0.150 - 3–15

Molybdenum (Mo) 0.0140 - <200

Arsenic (As) 0.00200 - <2

Lead (Pb) <0.0100 - <2

Chromium (Cr) 0.0100 <0.02 <2

Zinc (Zn) 0.167 <0.05 <2–25

Selenium (Se) <0.00100 -

Barium (Ba) 0.0130 - 9–194

Strontium (Sr) 8.98 11.4–28.2 18.8–22.1

Lithium (Li) 0.210 - 0.6–1.4

Vanadium (V) 0.00700 - 3–16

Ammonium-Nitrogen
(NH₄-N)

0.080 -

Nitrate-Nitrogen (NO₃-N) <0.10 5.2–46.7 0.2–48.2

References This study Ahmed et al. (2001) Rivero-Falcón et al. (2023)
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conditions, twice a week, up to 20 days for the first experiment,
and 28 days for the second experiment after reaching the
exponential phase.

2.5 Measurements and analysis

2.5.1 Photometric measurements
For the photometric measurements of the optical density, 2 mL

culture were taken and the absorbance was screened between
450 nm and 750 nm using S50 UV/Vis Biochrom Libra
spectrophotometer to determine the absorption peaks. Based on
the screening, absorbance values at 480 nm (at the absorbance peak
of beta-carotene) and 700 nm (absorption maximum of the Qy band
of the bulk chlorophyll a in the photosystem I) were used (Koehne
and Trissl, 1998), 615 nm and 652 nm for the calculation of

c-phycocyanin (Safari et al., 2020) were then recorded. For each
sample, their respective typical culture medium was used as a blank.
To determine the maximum specific growth rate [μmax] over a
period from day 0 to day 20, a sigmoidal fit was applied to the
data as previously described.

2.5.2 Dry weight measurement
For the calculation of the dry weight from freshly taken samples,

a correlation formula between optical density and dry weight was
determined. For this, 50 mL of A. platensis were taken to prepare a
dilution series. The absorbance of A. platensis stock and different
diluted cultures was measured at 700 nm. The dry weight was
measured using glass microfiber filters (Whatman), with a 1.2 μm
particle retention previously dried for 10 min at 100°C in a
microwave oven (CEM GmbH, Kamp-Lintfort, Germany). A
volume of 5 mL of each fresh sample of the dilution series were

TABLE 2 Chemical components of the used culturemedia with their respective modifications. SAGwas based on the spirulina medium recipe (SAG), with an
identical chemical composition. For BS I struvite substrate was used as an alternative phosphate source, and brine as a NaCl and de-ionized water
replacement. BS II includes struvite as an alternative to dipotassium sulphate, and brine as a NaCl, de-ionized water and micronutrient solution
replacement. In BS III I struvite substrate was once again used as an alternative phosphate source and brine as a replacement for solution II.

Components SAG BS I BS II BS III

Solution I

De-ionized H2O (mL) 500 500 500 500

NaHCO3 (g) 13.61 13.61 13.61 13.61

Na2CO3 (g) 4.03 4.03 4.03 4.03

K2HPO4 (g) 0.5 0 0 0

Struvite (g) 0 0.35 0.35 0.35

NaOH (g) 0 0.56 0.56 0.56

Solution II

De-ionized H2O (mL) 500 0 0 0

NaNO3 (g) 2.5 2.5 2.5 0

K2SO4 (g) 1 1 1 0

NaCl (g) 1 0 0 0

Brine solution (mL) 0 500 500 500

MgSO4 * 7H2O (g) 0.2 0.2 0.2 0

CaCl2 * 2H2O (g) 0.04 0.04 0.04 0

FeSO4 * 7H2O (g) 0.01 0.01 0.01 0

EDTA (mL) 0.08 0.08 0.08 0

Micronutrient Solution (mL) 5 5 0 0

Stock solution [g/L] Applied solution

ZnSO4 * 7H2O 1 1 mL

MnSO4 * 4H2O 1 2 mL

H3BO3 2 5 mL

Co(NO3)2 * 6H2O 0.2 5 mL

Na2MoO4 * 2H2O 0.2 5 mL

CuSO4 * 5 H2O 0.005 1 mL

De-ionized H2O - 981 mL

FeSO4 * 7 H2O - 0.7 g

EDTA - 0.8 g
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filtered, then the filters were dried again at 100°C until constant
weight. The dry weight was measured and the correlation between
absorption of chlorophyll a [OD 700] and dry weight [DW] was
derived from Equation 1;

DW gL−1( ) � 0.012 + 0.55gL−1OD700 AU( ) (1)

The propagated error on the calculated dry weight was
determined using Equation 2;

σDW gL−1( ) � �������������������������������������������
0.552σ2OD700 AU( ) + OD700 AU( )20.0282gL−1 + 0.0262

√
(2)

2.5.3 Biomass and in-vivo C-phycocyanin
productivities

Biomass productivity (BP, g DW L−1 d−1) was calculated from
the values of the dry weight at the early stage of the exponential
growth phase (tE, d) and at the late stage of the exponential growth
phase (tL, d) using Equation 3 (Abomohra et al., 2013);

BPtL−tE � DWtL −DWtE( ) × tL − tE( )−1 (3)

In-vivo phycocyanin estimation has emerged as a valuable tool
for monitoring cyanophytes in water sources and treatment plants
(McQuaid et al., 2011; Marion et al., 2012; Beyer et al., 2023). Using
Bennett and Bogorad’s formula, in-vivo c-phycocyanin yield (cCPC,
mg mL−1) of A. platensis was determined from the absorbance at
615 nm (OD615), and 652 nm (OD652) using Equation 4 (Safari
et al., 2020);

cCPC � OD615 − 0.474 × OD652( ) p 5.34−1 (4)

In-vivo C-phycocyanin productivity (CPC-P, mg L−1 d−1) was
determined using the concentrations of c-phycocyanin (c, mg mL−1)
at early stage (tE) and later stage (tL) of growth (Abomohra et al.,
2013) using Equation 5;

CPC⁃PtE−tL � ctL − ctE( ) × tL − tE( )−1 (5)

2.6 Statistical analysis

Pearson correlation was used to quantify the linear relationship
between two continuous variables. In addition, one-way ANOVA
was used to compare the means of the four treatment groups that
have been formed based on a categorical variable (medium used)
with a significance level set to P < 0.05. To determine which specific
groups have significantly different means, Tukey’s Honestly
Significant Difference (HSD) test was used.

3 Results

3.1 Cell density and maximum growth rate

The effect of different culture media under different light sources
on A. Platensis cultivation was evaluated. In general, results showed
insignificant differences (P > 0.05) in beta-carotene and chlorophyll-
a between different applied media (SAG, BSI, BSII, and BSIII) and
between the two studied light treatments. Only one exception can be
recorded for the maximum growth rate in BSI incubated in yellow-
white light (YLT), which showed μmax of 0.20 days−1 due to the
minor variance between the values at 480 nm of their respective
cultures [var.: 1.98 E−4].

Figure 1 compares the growth of A. platensis in four different
culture media (SAG, BS I, BS II, and BS III) under two light
conditions (yellow-white and blue-white) over 20 days. The
results clearly show that light quality significantly impacts
growth, with yellow-white light promoting faster growth and
higher biomass production across all media types compared to
blue-white light. Under yellow-white light, the brine-struvite-
based media, particularly BS II, outperform the standard SAG
medium, reaching higher final biomass concentrations. BS II
achieves the highest dry weight of around 1.0 g/L by day 15. In
contrast, under blue-white light, growth is slower and more linear,
with the SAG medium slightly outperforming the BS media. The

FIGURE 1
Dry weight data of A. platensis cultures grown in four culture media [SAG, BS I, BS II, BS III] under yellow-white light (A) and blue-white light (B) over
an cultivation period of 20 days. Each data point shows the mean of the values derived from six dry weight values for each time point. n =
66 per treatment.
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stark difference in growth patterns between the two light conditions
highlights the critical importance of light spectrum in A. platensis
cultivation. Figure 2 summarizes the maximum growth rates. As
shown in Figure 2A, a significant increase in the maximum growth
rates for the YLT was recorded between the control with BSI and BS
III (SAG/BSI: P-value at 480 nm = 0.02; P-value at 700 nm ≤ 0.001;
SAG/BSIII: P-value at 480 nm = 0.01; P-value at 700 nm ≤ 0.001).
The maximum growth rates between SAG to BSI and BSIII showed
an increase by 39.2% (SAG/BSI) and 57.6% (SAG/BSIII). Between
BSI and BSIII, the maximum growth rates showed no significant
difference (BSIII/BSI: P-value at 480 nm = 0.88; P-value at 700 nm =
1.00). However, the growth in BSII was significantly lower than that
in the control (SAG/BSII: P-value at 480 nm = 0.03; P-value at
700 nm = 0.03), with a decrease by 14.1% (SAG/BS II).

3.2 Biomass andC-phycocyanin productivity

Table 3 illustrates the biomass productivity of A. platensis
cultivated in different media at YLT and BLT. For YLT, biomass

productivity significantly increased in BS I and BS III compared to
the control, with P-values SAG/BSI = 0.02 and SAG/BSIII = 0.02. For
BLT, ANOVA test showed no significant differences when
comparing the four media, with F-value of 2.21 and P-value of
0.16. Regarding C-PC productivity in YLT, the values for SAG
medium were significantly lower in comparison to all other tested
media (BSI, BSII, BSIII) (Figure 3). The results demonstrate that
yellow-white light consistently enhances C-PC productivity across
all media compared to blue-white light. Under yellow-white light, all
brine-struvite-based media (BS I, II, and III) outperform the
standard SAG medium, with BS I showing the highest C-PC
productivity, followed closely by BS III. This aligns with biomass
productivity significantly increased in BS I and BS III compared to
the control under yellow-white light. This suggests that the
simplified, brine-struvite-based media are not only suitable for A.
platensis growth but can actually enhance C-PC production,
especially under optimal light conditions. Under blue-white light,
C-PC productivity is generally lower and more consistent across
media types, with BS III showing a slight advantage. For BLT, the
production of c-phycocyanin showed no significant difference

FIGURE 2
Comparison of maximum growth rates (μmax) of A. platensis cultivated in different culture media (SAG, BSI, BSII, BSIII) and different light conditions
of yellow-white light (A) and blue-white light (B). Each boxplot represents the specific generation times of three cultures per growth medium. The
whiskers show the respective standard derivation with a coefficient of 1.5 p-values (A): SAG/BSI (*): 480 nm = 0.02; 700 nm ≤ 0.001; SAG/BSII (**):
480 nm = 0.03; 700 nm = 0.03; SAG/BSIII (***): 480 nm = 0.01; 700 nm ≤ 0.001. p-values (B): SAG/BSI (*): 480 nm = 0.09; 700 nm = 0.12; SAG/BSII
(**): 480 nm = 0.024; 700 nm = 0.4; SAG/BSIII (***): 480 nm = 0.83; 700 nm = 0.7.

TABLE 3 The biomass productivity during the exponential growth phase from day 0 to day 8 under yellow-white light (YLT) and from day 0 to day 7 under
blue-white light (BLT) in different culture media (SAG, BSI, BSII and BSIII]. The standard error is shown, as well as the increase of each parameter in relation
to the control group [SAG].

Light source Parameter Medium

SAG BSI BSII BSIII

YLT Biomass productivity [g L−1d−1] 0.04 ± 0.002 0.05 ± 0.001 0.045 ± 0.002 0.05 ± 0.001

Increase to SAG (−) [%] 0 26.2 13.0 24.3

BLT Biomass productivity [g L−1d−1] 0.01 ± 0.001 0.017 ± 0.00 0.0102 ± 0.003 0.018 ± 0.00

Increase to SAG (−) [%] 0 76.0 2.2 81.5
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between different media (SAG, BSI, BSII, and BSIII), with F-value =
1.18 and P-value = 0.367.

The values for the C-PC content yield (expressed per biomass
per day) are shown in Figure 3. For YLT, C-PC content yield was
significantly higher in BS [I-III] culture media (P-value = 0.001).
Contrary to YLT, C-PC content yield under BLT in BS [I-III] was
not significantly higher compared to SAG (P-value = 0.46). Overall
C-PC content yield was higher in the BTL, by 5.4% for BSI and
12.1% for BSIII, with a significant increase over SAG [by 407.5%;
P-value = 0.01] and BS II [by 53.2%; P-value = 0.01]. All media of
BLT showed significant differences with SAG of ZLT. However, with
reduced growth in the BLT, biomass productivity was per average
70.4% lower than in the YLT.

4 Discussion

The present study is the first report proofing that A. platensis
can be grown on local waste streams fully replacing mineral-
based synthetic growth medium with struvite and brine. This
would help the agri-industry sector to valorize and reduce waste
streams from animal production, i.e., cow urine. In addition, it
would provide the growing biohydrogen industry with a
biological approach to valorize and reduce brine in the
coming decades. On the other hand, the new suggested media
will provide the microalgae industry with a near-zero cost
growth medium at simultaneous high sustainability. This
implies that brine can replace micronutrients coming from
commercial micronutrient pre-mixes. It also implies that

production can even be enhanced when commercial media
and brine are used together.

Comparing the obtained maximum specific growth rate of A.
platensis to values in literature, the present values using YLT in SAG
showed 0.1808 days−1, which is higher than the stated values of the
maximum specific growth rate of about 0.144 days−1 (Islam et al.,
2003; Usharani et al., 2012). Results from the modified culture media
BS I and BS III under YLT showed a significant increase in growth
compared to the control group (SAG). Interestingly, using struvite
and diluted brine as main nutrient sources in BS III resulted in a high
maximum growth rate of 0.22 days−1, showing that both positively
influence the growth of A. platensis. Interestingly, BS III, despite its
minimal composition, performs nearly similar to BS I under yellow-
white light. This indicates that A. platensis can effectively utilize the
nutrients provided by struvite and brine, potentially reducing the
need for additional nutrient supplementation. The slightly lower
performance of BS II compared to BS I and BS III under yellow-
white light might suggest some benefit from either the presence of
micronutrients (as in BS I) or their complete absence (as in BS III),
though this difference appears minor. The effectiveness of BS III can
be attributed to the complementary nutrient profiles of struvite and
brine. Struvite provides essential macronutrients (N, P, and Mg),
while the brine serves as an excellent source of micronutrients,
including Zn, Mn, B, Mo, and Fe, which are crucial for various
metabolic processes in A. platensis. This synergistic nutrient
provision likely contributes to the enhanced growth observed.
Several studies demonstrated that Brine discharges from reverse
osmosis plants include trace metals, such as iron (Fe), nickel (Ni),
chromium (Cr), and molybdenum (Mo) (Omerspahic et al., 2022).

FIGURE 3
Bar graph of C-PC content per biomass per day [mg g−1d−1] of the cultures grown in different culturemedia (SAG, BS I, BS II, BS III) under yellow-white
light (YLT) and blue-white light (BLT). Values were calculated with the data from an interval of early exponential phase to late exponential phase during the
cultivation period. The whiskers show the respective standard error of the means. n = 3 per boxplot.
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The composition of the brine used in this study is presented in
Table 1. When compared to brine compositions reported in other
studies (Ahmed et al., 2001; Rivero-Falcón et al., 2023), brine used in
the present study shows similarities in potassium and sodium levels,
but differences in other elements. Notably, our brine contains lower
levels of iron, manganese, and zinc, but detectable amounts of Mo
and vanadium, which are not reported in the reference sources.
Nitrogen content also varies significantly among the sources. It’s
important to note that brine composition can vary significantly
depending on the location of the desalination plant, the seawater
composition, and the technique used for desalination. This
variability is evident in the diverse compositions reported in
literature (as seen in Table 1). Consequently, these results, while
promising, cannot be universally applied to microalgae media
development based on brine without considering these
compositional variations.

Recent studies have explored the use of struvite as an optimized
nutrient source for microalgae cultivation. Struvite has been shown
to support biomass productivity comparable to or higher than
conventional media for various microalgae species (Chaoyu et al.,
2017; Tang et al., 2023). It provides efficient nutrient utilization and
can satisfy trace metal requirements (Davis et al., 2015). Moreover,
the controlled nutrient release properties of struvite make it a
valuable buffering nutrient source, with the potential to enhance
the growth of microalgae (Tang et al., 2023). Experiments were
carried out to assess the use of struvite as a primary nutrient source
for cultivating two industrially relevant microalgae species:
Nannochloropsis salina and Phaeodactylum tricornutum. These
trials were conducted in both laboratory settings and outdoor
pilot-scale raceways, spanning various seasonal conditions. The
results demonstrated that media formulations containing either
raw or refined struvite supported biomass production rates that
were comparable to, or exceeded, those achieved with conventional
growth media. In outdoor co-culture conditions, the peak biomass
yield reached approximately 20 ± 4 g of ash-free dry weight per
square meter per day. It demonstrates that these waste-derived
nutrient sources can effectively support A. platensis growth,
potentially as well as or better than conventional synthetic media.
This finding supports the main thesis of using waste streams for
sustainable microalgae cultivation (Davis et al., 2015). However,
growth rates under BLT showed lower values compared to values
reported in the literature (Islam et al., 2003; Usharani et al., 2012).
This shows that blue light is less beneficial for the growth of A.
platensis than yellow light. This can be attributed to the differences
in the action spectra of photosynthesis (Jorgensen et al., 1987;
Subramaniam et al., 1999). Although both light treatments had
similar irradiances in the PAR region, the photosynthetic efficiency
under yellow light is generally higher due to the action spectra of
photosynthesis (Blanken et al., 2013). This difference can be
attributed to several factors, a) Absorption efficiency where
yellow light (570–590 nm) is more efficiently absorbed by
chlorophyll a and phycobilins, the primary photosynthetic
pigments in A. platensis (Markou et al., 2016). b) Photosystem
balance where yellow light may provide a more balanced excitation
of both photosystem I and II, potentially leading to more efficient
electron transport and ATP and NADPH production, the essential
molecules for carbon fixation and biomass accumulation, compared
to blue light (Mohsenpour andWilloughby, 2013). This difference in

photosynthetic response likely explains the increased biomass
productivity observed under yellow light in the present study.
Research on A. platensis cultivation under different light
conditions reveals varying effects on biomass and pigment
production. Red light generally promotes the highest biomass
concentration and pigment production per culture volume
(Tayebati et al., 2021). However, BLT results in the highest
pigment content per dry weight, despite lower overall biomass
(Tayebati et al., 2021). YLT enhances phycocyanin and
allophycocyanin production in mixotrophic cultures (Yun et al.,
2021). White light yields the highest biomass in mixotrophic
conditions but lower pigment concentrations (Rizzo et al., 2015;
Yun et al., 2021). Light quality significantly influences energy
transfer processes within photosystems (Haury and Bogorad,
1977). Yellow light, in particular, enhances the energy transfer
efficiency in phycobilisomes, which are connected to
Photosystem II, as observed in both cyanobacteria and red algae
(Akimoto et al., 2012; Biswas et al., 2024). This efficient energy
transfer under yellow light is closely tied to the action spectra for
photosynthesis, contributing to the overall photosynthetic efficiency
and potentially explaining the higher biomass productivity observed
in the present study.

While these results clearly demonstrate enhanced biomass and
PC productivity under YLT compared to BLT, the underlying
mechanisms require further investigation. The observed effects
could be due to increased photosynthetic efficiency,
photomorphogenic responses, or a combination of both.
Photomorphogenesis, which involves gene induction in response
to specific light qualities, can significantly influence the
accumulation of bioactive compounds like PC. Previous studies
have shown that blue or red light can induce photomorphogenic
responses that enhance PC production (Pagels et al., 2020a; Pagels
et al., 2020b). In order to distinguish between these processes, future
experiments could adopt a photo biological strategy where
photosynthesis is saturated under yellow light, followed by the
application of low irradiances of blue or red light to evaluate
their photomorphogenic effects. This approach would clarify the
extent to which the observed increases in biomass and PC
production under YLT are attributable to photosynthetic activity
versus photo morphogenesis.

Overall, the growth of A. platensis in media enriched with brine
(in addition to SAG micronutrients, BSI) was significantly higher
than that in the SAG medium. However, the growth in media
containing solely brine (BSIII, without micronutrients) was
similar to the growth in the SAG medium. Previous reports
showed that the effect of salinity on microalgae including
Arthrospira varies. For example, optimal salinity levels for
maximum biomass productivities of Oocystis pusilla were
observed at around 3,000 ppm Total Dissolved Solids (TDS),
resulting in significant increases in biomass yield compared to
standard media. However, salinity levels beyond this optimum
(e.g., 3,500 ppm TDS) led to marked reductions in productivity
(Osman et al., 2023). Species-specific responses have been noted,
with A. maxima showing continuous decreases in growth with
increasing seawater levels, where final dry biomass decreased by
15% below the control (Tambiev et al., 2011). In addition, the
growth of A. platensis completely stopped at seawater
concentrations ranging between 40% and 60%. Liu et al. (2016)
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reported similar growth in A. platensis cultivated at low salinity
(200 and 400 mM NaCl) to those obtained in the control Zarrouk
medium, with slightly lower growth (−6%) at a salinity of 600mM. A
similar effect, decreasing growth and biomass yield, with increasing
salinity, was reported in other studies (Polat et al., 2020; Tejada-Ruiz
et al., 2020; Ghalhari et al., 2022).

The present salinity values that supported the highest growth
in A. platensis were higher than those reported to inhibit the
growth. One factor that might contribute to enhanced growth in
the present study is the enrichment of brine with microalgal
nutrients. Previous studies reported enhanced microalgal
growth in brine. For instance, the growth of C. vulgaris
enhanced when grown in 25% dilution of brine mixed with
bold basal media (BBM), while brine dilutions of 30%–35%
resulted in growth inhibition (Gilani et al., 2024). However,
Tambiev et al. (2011) utilized sea salt sourced from Black Sea
with Zarrouk’s medium at various volumetric ratios. Results
confirmed the inhibitory effects of natural, pre-filtered, and
autoclaved sea salt. Notably, the strain utilized in the present
study (UTEX 2340) was not specifically previously evaluated for
its high salt tolerance. These findings suggest that the strain
exhibits a noteworthy tolerance to high salinity levels, which
would play a crucial role in future applications.

Apart from the impact of struvite-brine-based media (SBBM) on
growth, the present study aimed to evaluate if the SBBM potentially
compromises C-PC enhancing effect of struvite recorded in the
recent study (Beyer et al., 2023). Results confirmed that SBBM has
no negative impact on C-PC yield. This may be related to the passive
transfer of ammonia into the cell whichmay be independent of other
minerals affecting active ion transfer across the cell membrane. As
previously suggested (Beyer et al., 2023), higher C-PC is correlated
to a nitrogen-sparing effect associated with ammonia fraction in
struvite. The present study also demonstrated that SBBM enhanced
C-PC production, especially during the exponential growth phase.
This has an important industrial value since the harvesting time of
biomass and C-PC will be towards the end of this phase. C-PC
measurements were done mainly to confirm that there is no negative
effect on C-PC associated with brine in the media and this was
confirmed. Recent studies on A. platensis cultivation have revealed
strategies to enhance both biomass and C-phycocyanin (C-PC)
production. Light intensity significantly affects growth and
product formation, with lower intensities favoring C-PC
production and higher intensities promoting extracellular
polymeric substances (Dejsungkranont et al., 2017). Optimal light
intensities for cell growth (282 μmol m−2 s−1) and phycocyanin
synthesis (137 μmol m−2 s−1) differ, with light attenuation impacting
intracellular phycocyanin content (del Rio-Chanona et al., 2015).
Research on light quality and intensity effects on microalgal
cultivation has shown promising results for enhancing biomass
and phycocyanin production. White light in mixotrophic
conditions yielded the highest biomass concentration for A.
platensis (Chainapong et al., 2012). However, yellow and red
lights in mixotrophic cultures produced the highest phycocyanin
content (Chainapong et al., 2012). White light generally results in
higher biomass and phycocyanin production compared to green and
blue light (Jung et al., 2022). Moreover, the overall yield was not
improved under BLT due to the lower growth rate of A. platensis.
These results highlight the complex interplay between nutrient

availability, light conditions, and metabolite production in
A. platensis.

The aforementioned findings have significant implications for
sustainable A. platensis cultivation, demonstrating that simplified,
potentially more cost-effective and environmentally friendly
media based on brine and struvite can support and even
enhance C-PC production, particularly when combined with
appropriate light conditions. The success of BS III, in
particular, highlights its potential for developing highly efficient
minimal growth medium for industrial-scale production of this
valuable cyanophyte. The data clearly shows that yellow-white
light consistently leads to higher biomass and C-PC productivity
across all media types compared to the blue-white light. Under
yellow-white light, the brine-struvite-based media (BS I, II, and III)
outperformed the standard SAG medium, with BS I showing the
highest C-PC productivity, followed closely by BS III. In contrast,
under blue-white light, C-PC productivity was generally lower and
more consistent across media types, with BS III showing a slight
advantage. The standard SAG medium consistently yielded the
lowest C-PC productivity under both light conditions. These
results suggest that using brine-struvite-based media,
particularly BS I or BS III, in combination with yellow-white
light, could significantly enhance C-PC production in A.
platensis cultures compared to the standard media and lighting
conditions.

5 Conclusion

The present study marks a significant milestone by
demonstrating that A. platensis can be cultivated using local
waste streams, i.e., combined brine and struvite, to effectively
substitute mineral-based synthetic growth mediums. Results not
only offer a solution for valorizing and reducing waste streams from
the agricultural industry but also present an innovative approach for
the emerging hydrogen energy sector to address brine disposal
challenges in the coming decades. Moreover, the novel media
tested in this study provides the microalgal industry with a cost-
effective and highly sustainable alternative. The incorporation of
brine and struvite as nutrient sources resulted in enhanced growth
rates, showing the potential synergistic effects between natural and
synthetic components. Despite the variability in brine composition,
the observed growth enhancements confirmed the adaptability of
the cultivated A. platensis to diverse environmental conditions.
Furthermore, the study confirmed that the use of SBBM does not
influence the production of C-PC as a valuable pigment with many
industrial applications, suggesting the need of further
biotechnological exploitation. These findings not only expand the
current understanding of microalgae cultivation, but also highlight
the potential for integrating waste valorization and sustainable
resource utilization in bioprocessing industries. The broader
implications of this research are far-reaching, potentially
revolutionizing multiple sectors including circular economy
practices, sustainable agriculture, clean energy transition, food
and nutrition security, and biotechnology. Future research
directions could include scaling-up the cultivation process,
investigating other microalgal species, exploring geographical
variations, developing automated optimization systems, and
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conducting comprehensive life cycle analyses. By addressing these
areas, future studies can build upon this foundational work, further
advancing the fields of sustainable biotechnology and circular
economy practices.
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